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Accurate calculations of the spectral density in a strongly correlated quantum many-body system
are of fundamental importance to study its dynamics in the linear response regime. Typical exam-
ples are the calculation of inclusive and semi-exclusive scattering cross sections in atomic nuclei and
transport properties of nuclear and neutron star matter. Integral transform techniques play an im-
portant role in accessing the spectral density in a variety of nuclear systems. However, their accuracy
is in practice limited by the need to perform a numerical inversion which is often ill-conditioned. In
the present work we extend a recently proposed quantum algorithm which circumvents this problem.
We show how to perform controllable reconstructions of the spectral density over a finite energy
resolution with rigorous error estimates. An appropriate expansion in Chebyshev polynomials allows
for efficient simulations also on classical computers. We apply our idea to obtain the local density
of states for graphene in a magnetic field – as a proof of principle. This paves the way for future
applications in nuclear and condensed matter physics.

I. INTRODUCTION

A major challenge in nuclear many-body theory is the
accurate prediction of scattering cross sections in low en-
ergy reactions involving both atomic nuclei and infinite
nuclear matter. For ab-initio approaches with a strong
connection to the underlying theory of QCD it is funda-
mental to be able to control the approximation errors in
both the employed interactions and the adopted many-
body method. With the help of an effective field the-
ory approach the first of this sources of uncertainty has
started to be put on a firmer ground [1–6] and theoret-
ical error estimates coming from the modelling of nu-
clear interactions are now an integral part of the work
of nuclear theorists [7–10]. Using similar tools great ef-
forts are being pursued by the nuclear theory commu-
nity to understand the systematic errors introduced by
the approximate many-body techniques used to solve the
nuclear ground states [11, 12]. Benchmark calculations
for ground state properties of few-body nuclei have also
been performed (see e.g. [13]) but a more complete un-
derstanding of the various sources of systematic errors
in predictions of nuclear dynamics for larger systems is
hindered by the incredible computational complexity of
the problem.

A very powerful approach to study dynamical proper-
ties in medium-mass systems and infinite matter is the
adoption of integral transform techniques which map the
local density of states into more manageable integrated
quantities, a typical example being sum-rules of the nu-
clear response which describe moments of the density of
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states and can be expressed directly as ground-state ex-
pectation values [14, 15]. This important map between
real-time observables and ground-state expectation val-
ues can be achieved more generally by employing integral
transforms with various kernels followed by a numerical
inversion of the resulting integral transform to recover the
response function in the frequency domain. The choice
of integral kernel is typically dictated by the possibil-
ity of evaluating the ensuing integral transform with a
powerful many-body technique. Two of the most popu-
lar examples are the Lorentz Integral Transform (LIT)
widely used in conjunction with diagonalization tech-
niques [16, 17] and, more recently, with the coupled clus-
ter method (LIT-CC) [18–20] and the Laplace transform
applied with Monte Carlo methods thanks to its rela-
tionship with imaginary-time correlation functions [21–
23]. A crucial component of these approaches consists in
inverting the integral transform, a process that for the
Laplace transform can be seen as analytical continuation
from imaginary-time to the real time axis [24]. In gen-
eral this procedure when applied to invert an integral
transform obtained by numerical methods is ill-posed,
in the sense that small errors in the input response can
give rise to arbitrarily large high-frequency noise in the
reconstructed real frequency response [25, 26]. A vari-
ety of approximate inversion techniques that introduce,
more or less explicitly, additional smoothing to reduce
these high-frequency oscillations have been proposed in
the past [27–31]. These can be very successful in sit-
uations where the dominant structure of the response
function is simple and known beforehand, such as for the
quasi-elastic peak in medium energy scattering [23, 32],
but the introduced systematic errors are no longer suf-
ficiently under control to trust predictions with unex-
pected features thus severely limiting explorations of the
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nuclear dynamics in challenging regimes where little ex-
perimental information is available to guide the inversion.

At this point it is important to mention that some
observables connected with integrated properties of the
response, like e.g. the electric dipole polarizability of
nuclei [33] or the impurity contribution to the thermal
conductivity in the outer crust of neutron stars [34], can
be obtained directly from the integral transform thus al-
lowing to avoid the inversion step. Moreover, the severity
of the induced systematic errors strongly depends on the
properties of the integral kernel that defines the inte-
gral transform, a feature recognized early on and one
of the inspirations for introducing the LIT in nuclear
physics [16, 35] as well as generalizations of the Laplace
transform [36, 37]. One of the salient features of an ideal
integral transform kernel is the ability to set a resolution
scale which then allows for an effective coarse-graining
of the frequency space signal, e.g. for the LIT this is
controlled by the kernel width. This intuition led re-
cently to the introduction of quantum algorithms to re-
liably estimate both inclusive and exclusive scattering
cross sections through an appropriate integral transform
of the spectral density using simulations performed with
quantum computers [38–40] (see also [41–43] for similar
approaches and [44, 45] for recent reviews).

In this work we extend the results of Ref. [39] to
show how to reconstruct, with controllable errors, gen-
eral response function in frequency space from integral
transforms expressed on a basis of Chebyshev polyno-
mials thus completely avoiding the use of uncontrollable
numerical inversion procedures. The use of Chebyshev
polynomials for this task is reminiscent of the Kernel
Polynomial Method (KPM) [46] introduced in the con-
text of condensed matter physics and especially popular
in conjunction with a matrix product representation (see
e.g. [47–49]).

The paper is organized as follows. In the next Section
we briefly describe the approach introduced in Ref. [39]
for the calculation of the spectral density discussing dif-
ferences and similarities with KPM. The method’s ac-
curacy and its dependence on the particular choice of
integral kernel is discussed in Sec. III where we also com-
pare it directly with the more standard KPM approach.
In Sec. IV we introduce a new construction for coarse-
graining the spectral density in a way that allows for a
direct control of the approximation error and study a
simple benchmark to show its efficacy. We present also
an application of our method to obtain predictions of
the local density of states for graphene in a magnetic
field. Finally, in Sec. V we conclude and discuss the po-
tential benefit of our proposal when used in conjunction
with classical many-body techniques like matrix product
states and coupled cluster theory.

II. FORMALISM

Following the presentation in Ref. [39] we start by in-
troducing the local density of states (or dynamical re-
sponse function) defined as

S(ω) =
⟨Ψ0∣Ôδ (Ĥ − ω) Ô∣Ψ0⟩

⟨Ψ0∣Ô2∣Ψ0⟩
, (1)

where ∣Ψ0⟩ is the ground-state, Ô is an (hermitian) ex-

citation operator describing the scattering vertex and Ĥ
is the nuclear Hamiltonian. Note that with this defini-
tion the density of states is normalized as ∫ dωS(ω) = 1.
For finite systems the Hamiltonian spectrum is discrete
by construction but here we consider ω as a continuous
variable by employing the Dirac delta function as follows

S(ω) =∑
n

∣⟨Ψ0∣Ô∣φn⟩∣
2

⟨Ψ0∣Ô2∣Ψ0⟩
δ (En − ω) =∑

n

snδ (En − ω) , (2)

with ∣φn⟩ energy eigenstates with eigenvalues En. Fur-
thermore, we will assume that the Hamiltonian has been
normalized so that the entire spectrum {En} is contained
in the interval [−1,1]. As explained in the introduction,
the main focus of this work will be an integral transform
Φ(ν) of the response function defined through an integral
kernel K(ν,ω) as

Φ(ν) = ∫
∞

−∞
dωK(ν,ω)S(ω) . (3)

In this work we will focus on translationally invariant
integral kernels that depend only on the absolute value of
the energy difference K(ν,ω) ≡K(∣ω−ν∣) but the results
described here can be easily extended to the general case.
For ease of derivation the limits of integration extend to
±∞, with the understanding that S(ω) = 0 for ∣ω∣ > 1.
In order to simplify the notation we will avoid to specify
these limits when there is no ambiguity. We are in general
interested in observables that can be expressed as energy
integrals of the local density of state S(ω) as

Q(S, f) = ∫ dωS(ω)f(ω) (4)

with a bounded function f(ω) defining the specific ob-
servable under consideration. Using the integral trans-
form Φ introduced in Eq. (3) we can define the quantity

Q(Φ, f) = ∫ dνΦ(ν)f(ν)

= ∫ dν ∫ dωK(∣ω − ν∣)S(ω)f(ν)

= ∫ dω (∫ dνK(∣ω − ν∣)f(ν))S(ω)

= ∫ dωf̃(ω)S(ω) = Q(S, f̃) .

(5)

Our goal is to determine the conditions for which the
latter is a good approximation to the original observable

∣Q(Φ, f) −Q(S, f)∣ = ∣Q(S, f̃) −Q(S, f)∣ ≤ ε , (6)
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with bounded error ε > 0. For this purpose, it is con-
venient to define integral kernels to be Σ-accurate with
resolution Λ (see also Ref. [39]) if the following holds

inf
ω0∈[−1,1]

∫

ω0+Λ

ω0−Λ
dνK(ν,ω0) ≥ 1 −Σ . (7)

As shown in Ref. [39], for this class of kernels we have

ε ≤ fΛ
max + 2Σ sup

ω∈[−1,1]

∣f(ω)∣ , (8)

with fΛ
max the modulus of continuity given by

fΛ
max = sup

ω∈[−1,1]

sup
x∈[−Λ,Λ]

∣f(ω + x) − f(ω)∣ . (9)

In this work we will consider two types of translation-
ally invariant integral kernels with an energy resolution
controlled by an external parameter λ:

• the Lorentzian kernel describing the Lorentz Inte-
gral Transform (LIT) from Ref. [16]

K(L)
(ν,ω;λ) =

1

πλ

λ2

(ω − ν)2 + λ2
, (10)

• the Gaussian kernel giving the Gaussian Integral
Transform (GIT) from Ref. [39]

K(G)
(ν,ω;λ) =

1
√

2πλ
exp(−

(ω − ν)2

2λ2
) . (11)

In order to evaluate the integral transform Φ(ν) using
a suitable many-body method, we will consider an expan-
sion of these kernels into a complete basis of orthogonal
polynomials {Tk(ω)} as

K(ν,ω;λ) =
∞

∑
k

ck(ν;λ)Tk(ω) , (12)

with real coefficients ck(ν;λ) depending both on the lo-
cation in energy ν and the kernel resolution λ. With this
representation we can now express the integral transform
as a linear combination

Φ(ν;λ) = ∫ dωK(ν,ω;λ)S(ω) =
∞

∑
k

ck(ν;λ)mk (13)

with generalized moments defined as

mk = ∫ dωTk(ω)S(ω) =
⟨Ψ0∣ÔTk (Ĥ) Ô∣Ψ0⟩

⟨Ψ0∣Ô2∣Ψ0⟩
(14)

and independent on the specific integral kernel employed
in the construction. This property is particularly ad-
vantageous since, once the moments {mk} are computed
with the many-body method of choice, it allows to con-
sider a variety of integral transforms in post-processing.

In practice, only a limited number N of moments will
be available with a finite computational effort. Their cal-
culation – in the case of many-body systems governed by
complicated dynamics – is very challenging and requires
powerful supercomputer due to high time and memory
consumption. This cost can however be substantially
lower than what would be required to calculate the full
energy spectrum. In the latter case, for an M ×M Hamil-
tonian matrix, the cost is O(M3) while for the moment
calculation only O(NM2). Using instead quantum com-
puting, as originally proposed in Ref. [39], the cost can
be made to scale as O(Npolylog(M)) for large classes
of interacting Hamiltonians (e.g. Hamiltonian operators
in second quantization describing two and three-body in-
teractions). We will then consider approximations to in-
tegral transforms obtained by a finite truncation of the
series expansion

ΦN(ν;λ) =
N

∑
k

ck(ν;λ)mk , (15)

leading to a finite approximation accuracy

sup
ν∈[−1,1]

∣Φ(ν;λ) −ΦN(ν;λ)∣ ≤ β , (16)

with constant β > 0. Ideal kernels, like the Gaussian,
have a fast (i.e. exponential) convergence of β with the
number of terms N . Note that this is not the approxi-
mation error of S(ω) by Eq. (15) but the approximation
error of Φ(ν, λ). The former cannot be known without
additional information about S while the latter can be
controlled independently and only depends on the re-
quired resolution and the choice of kernel. The choice
of the polynomial basis {Tk} influences this convergence
rate. In this work we use the Chebyshev polynomials
of the first kind thanks to their quick convergence for
smooth functions and we will refer to our method as
CheET (Chebyshev Expansion of integral Transform).
An explicit derivation of the coefficients ck(ν;λ) for both
the Lorentzian and Gaussian kernels can be found in Ap-
pendix A.

A. Evaluation of Chebyshev moments

Chebyshev polynomials of the first kind are defined in
the interval [−1,1] as Tk(ω) = cos[k arccos(ω)]. They
follow a recursive relation

T0(x) = 1; T−1(x) = T1(x) = x;

Tn+1(x) = 2xTn(x) − Tn−1(x) .
(17)

The moments of the expansion mk from Eq. (14) can be
retrieved using this relation:

∣Ψ1⟩ ≡ Ô∣Ψ0⟩ , ∣Ψn⟩ = Ĥ ∣Ψn−1⟩

m0 = ⟨Ψ1∣Ψ1⟩ , m1 = ⟨Ψ1∣Ψ2⟩ ≡ ⟨Ψ2∣Ψ1⟩

mn+1 = 2⟨Ψ1∣Ψn+1⟩ −mn−1 ≡ 2⟨Ψn+1∣Ψ1⟩ −mn−1 ,

(18)



4

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
S(

)
ref
KPM Jackson N=10
KPM Jackson N=20
KPM Jackson N=60

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
1

0

1

2

3

4

S(
)

ref
CheET Gauss N=10
CheET Gauss N=20
CheET Gauss N=60

FIG. 1. Reconstruction of a Gaussian signal S(ω) of a width Γ = 0.1 centered at η = 0.3. In the case of CheET method, λ = 0.01
is being used.

which is particularly suited to combine with the many-
body methods for which it is possible to iterate the action
of the Hamiltonian, Ĥ ∣Ψn⟩. From the point of view of
the numerical applications, a similar iteration has to be
performed in the Lanczos procedure [46]. Here, however,
no orthogonality restoration is needed at each step. Con-
sequently, at the n-th step only a single ∣Ψn⟩ state has
to be saved from the previous iterations. This makes the
procedure faster and less memory-consuming.

As has been mentioned, in our considerations we as-
sume that the Hamiltonian is normalized. In practi-
cal applications the range of the Hamiltonian spectrum
can be obtained, e.g., via Lanczos algorithm and then
rescaled so that [Emin,Emax]→ [−1,1].

B. Comparison with KPM

The KPM, described in details in Ref. [46], can be
understood as a specific approximation of Eq. (12) for
which

KKPM(ν,ω;λ) =
∞

∑
k

gk(λ)
Tk(ν)

π
√

1 − ν2
Tk(ω) , (19)

where the ν-dependence of the ck coefficients is approx-
imated by a single k-degree polynomial Tk(ν) times a

fixed weight factor 1/
√

1 − ν2. The coefficients gk are
chosen in such a way that Φ(ω) ÐÐÐ→

N→∞
S(ω) and to re-

duce Gibbs oscillations.
A variety of gk were proposed in the past, designed to

speed-up the convergance rate depending on the proper-
ties of the signal S(ω). Among them are the Jackson and
Lorentz kernels defined as

gJackson
k =

1

N + 1
[(N − k + 1) cos

πk

N + 1

+ sin
πk

N + 1
cot

π

N + 1
] ,

gLorentz
k = sinh (κ(1 − k/N)) / sinh(κ) ,

(20)

which aim at approximating the Gaussian and Lorentzian
shape of the kernel. It is important to notice that the
KPM coefficients gk do not depend on the resolution λ,
while they are a function of the total number of moments
N . (The parameter κ in the case of gLorentz

k is introduced
to mimic indirectly the λ dependence.) In other words,
λ and N -dependencies become entangled in a non-trivial
way. This complicates the error analysis, as we have
a different kernel for every choice of N , and ultimately
leads to less flexibility in balancing the computational
cost with the target accuracy. Although the KPM is a
powerful tool which proved useful in many applications,
it does not allow to control neither the resolution λ with
which we probe the spectrum, nor the errors depending
on the number of used moments.

III. ANALYSIS OF POINT-WISE
CONVERGENCE

To appreciate the differences between the CheET and
KPM approaches, let us at first consider a continuous
signal S(ω) being a single Gaussian of width Γ = 0.1 or
Γ = 0.01 centered at η = 0.3. We have checked that our
conclusions hold if the signal has a Lorentzian shape or
when it is composed of more than one peak (in this case
the convergence pattern depends on the narrowest peak
in the spectrum). Since the KPM method was primarily
developed for the signal reconstruction, we will analyse
the point-wise convergence. However, the main advan-
tage of the CheET method – the error bound – cannot
be appreciated in this case. For the comparison to be
meaningful, within the CheET we will use kernels of the
width λ≪ Γ.

Before discussing the results of this comparisons, it is
important to point out that the optimal (at least asymp-
totically) choice for performing an approximation of a
smooth signal S(ω) over the interval [−1,1] would be to
consider directly the Chebyshev expansion of S(ω) with-
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FIG. 2. Comparison of the point-wise convergence of CheET and KPM methods for a Gaussian signal of width Γ = 0.1(0.01)
on the left(right) panel. The measure of convergence ϑ is defined in Eq. (23). Solid lines correspond to CheET method with
the Gaussian kernel of λ resolution as labeled. The results for CheET Lorentzian kernel (dashed lines) have λ corresponding
to the Gaussian CheET. The dashed line with point-markers shows the convergence pattern when no kernel is used. The Inset
shows the behaviour of KPM (both Jackson and Lorentz) for a much larger number of moments.

out the use of any smoothing kernel. The reason for
this is a well known result by Jackson (see Ref. [50, 51])
stating that, if PN(ω) is the approximation obtained by
keeping the first N terms in the Chebyshev expansion of
S(ω) then

sup
ω∈[−1,1]

∣S(ω) − PN(ω)∣ ≤ CN6S1/N
max , (21)

with a Lebesgue constant CN ≤ (2+(2/π) log(N+1)) (see

Ref. [52]) and S
1/N
max the modulus of continuity of S(ω)

over an interval of size 1/N (see definition in Eq. (9)
above). This classic result shows that a bare Chebyshev
expansion for an analytic response S(ω), like the Gaus-
sian used for the examples in this section, will converge
super-exponentially in the order N of the expansion. In
order to estimate the error however, we need to be able

to estimate S
1/N
max or at least a reasonably tight upper-

bound for it. In the applications of interest for our study
we have access only to the first N moments of S(ω) and
this, alone, does not provide enough information to ob-
tain an error estimate from Eq. (21) directly. Further-
more, without prior information about the behavior of
the moments of S(ω) for n > N , we also cannot place a
rigorous error bound on the truncation error of the ex-
pansion. The adoption of a smoothing kernel K(ν,ω)
enables us instead to consider an approximation Φ(ω,λ)
to S(ω) with controllable smoothing properties (obtained
from the condition in Eq. (7)) for which we can compute
an upperbound β on the truncation error which converges
exponentially in the order N and which does not require
any knowledge about the target response S(ω). This can
be obtained, even without knowing the value of moments
mk for k > N , using the following bound

∣Φ(ν;λ) −ΦN(ν;λ)∣ = ∣
∞

∑
k=N+1

ck(ν;λ)mk∣

≤
∞

∑
k=N+1

∣ck(ν;λ)∣ ,

(22)

which, when maximized over ν, gives in turn an upper-
bound on the truncation error β defined in Eq. (16).

Due to the necessary smoothing, we cannot place di-
rectly a bound on the approximation error of S(ω) by
Φ(ω,λ) but for the applications described in Sec. IV
where we are interested in observables of the type shown
in Eq. (5) this is not needed. In the latter case, a useful,
and rigorous, error estimate can be obtained from the
properties of the function f alone. The purpose of this
section is to show that, empirically, the approximation
error is also very small and approaches the optimal re-
sult quickly for sufficiently small regularization width λ.
This is not the case for the procedure used in KPM where
the impact of regularization is orders of magnitude more
severe.

Let us first look at the reconstruction within each of
the considered methods in the case of the signal width Γ =

0.1. In Fig. 1, we show the results only for the Jackson
and Gaussian kernels, since the behaviour of the kernels
within each method (Jackson/Lorentz or Gauss/Lorentz)
is qualitatively the same. The first visible distinction
between the KPM and the CheET with λ = 0.01 results is
the fact that the Gibbs oscillation are suppressed for the
KPM approach. Still, the CheET Gauss is visibly better
converged at much lower number of moments (already
for N = 60).

To get a more quantitative insight into the convergence
pattern, in Fig. 2 we show the point-wise convergence as
a function of used moments (and λ for the CheET), for
the broad signal Γ = 0.1 and the narrow Γ = 0.01,

ϑ = max
ω∈[−1,1]

∣S(ω) −Φ(ω)∣ (23)

where Φ is an integral transform of the signal S, as in
Eq. (3). As a reference we plot a result with no kernel,
which – as explained above – converges faster than any
other smoothing method. We use κ = 3 for the Lorentz
KPM (see Eq. (20)). The CheET curves follow a charac-
teristic pattern: after the initial steep-slope convergence,
they reach a plateau. Further addition of moments would
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improve the kernel reconstruction (and thus diminish the
truncation error), however this does not affect the quality
of signal approximation. The exact number of moments
needed to reach the plateau, depends on the signal it-
self, in particular on the signal’s resolution Γ. This can
be seen when comparing both panels of Fig. 2. Using
kernels of the same resolution λ, not only a higher num-
ber of moments is needed for smaller Γ, but also the
plateau is reached with different accuracy. For λ = 0.001,
the CheET Gauss reaches an accuracy ∼ e−8(e−1) for
Γ = 0.1(0.01).

A direct comparison of CheET with the Lorentzian and
Gaussian kernels with the same width λ, clearly shows
that in the latter case the convergence is orders of mag-
nitude better. In order to obtain results of a similar
precision, we would need to use a Lorentzian of a much
smaller width. This consequently requires a larger num-
ber of moments, if we are to control the truncation error.

In the case of the point-wise error considered here, nei-
ther KPM nor CheET are able to give a full theoretical
uncertainty estimation. Using the KPM method has an
advantage that with the increasing number of moments
N , we converge to the original signal ΦNKPM(ω) ÐÐÐ→

N→∞

S(ω). However, the pace of convergence or the approx-
imation error is unknown. From our observations, the
CheET rate of convergence (before reaching a plateau) is
much faster than KPM. Although for a given resolution λ
the CheET method reaches a plateau, in the limit N →∞

the CheET predictions can also converge to the original
signal. In order to achieve this we should progressively
reduce the resolution λ of the kernel with the increas-
ing number of moments. We may do so by appropriately
scaling λ(N), e.g. by keeping fixed the truncation error
at a satisfactory low value. This behaviour can be actu-
ally observed in Fig. 2 when we compare various CheET
results with the reference curve without any smoothing
kernel. They initially follow the same steep-slope conver-
gence pattern, until the CheET curves reach the plateau.

For the CheET, we are still able to provide an esti-
mate for the truncation error β as a function of number
of moments used for the reconstruction of the kernel. In
Fig. 3, we show the bound obtained using the approxi-
mation in Eq. (22) for eight values of λ (see Appendix B
for closed-form expressions for these). As expected, the
Gaussian kernel performs better than the Lorentzian. For
the truncation error to be at the order of 0.1 and λ = 0.01
one needs N ≈ 900 moments. To go an order of magni-
tude further to λ = 0.001, the number of moments in-
creases correspondingly to N ≈ 10000. When comparing
these numbers with Fig. 2, we realize that the plateau
is reached much faster, even below N = 100. This dis-
crepancy is likely coming from the use of the bound in
Eq. (22) which erases structural information from the
moments and therefore assumes the truncation is for a
worse-case scenario signal of width ≈ λ instead.

Let us come back to a remark done in Sec. II B. While
in the case of KPM (at least for the Jackson kernel),
the only free parameter of the signal reconstruction is N ,
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FIG. 3. Truncation error as a function of number of mo-
ments. Solid(dashed) line corresponds to CheET Gaus-
sian(Lorentzian) for eight resolutions λ.

the number of moments used in the reconstruction, the
CheET method introduces explicitly a smoothing scale λ
which corresponds to the regularization parameters used
for the standard inversion techniques. When the signal
has structures of a higher resolution, we are not able
to resolve them. At first sight it might seem to be a
drawback. However, λ gives directly the scale at which
we can rely on the signal reconstruction. This is lacking
in the KPM, for which in the asymptotic regime we might
never see a uniform convergence of errors. Moreover,
in practical applications one has only a limited number
of moments available and would like to reconstruct the
signal controlling the approximation. This can be done
within CheET. The resolution scale can be set depending
on N to keep the truncation errors sufficiently low.

To further illustrate the differences between both ap-
proaches, we present yet another comparison, this time
taking as a signal a step function normalized to 1,

S(ω) = {
5 if ω ∈ [0.1,0.3]

0 otherwise
(24)

The point-wise convergence in this case is not a mean-
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FIG. 4. Reconstruction of a step function using KPM with
Jackson kernel and CheET Gaussian for four values of N =
1500,2000,2500,3000. In case of CheET the kernel width
λ = 0.001 was chosen.

ingful measure, since in the vicinity of the discontinuity
ω = 0.1 we have ∃∆ω S(ω +∆ω) −Φ(ω +∆ω) ≈ 2.5. Nev-
ertheless, we depict in Fig. 4 this region to see the con-
vergence behaviour of KPM Jackson and CheET Gaus-
sian methods. For the CheET we choose the resolu-
tion λ = 0.001, and for the number of moments between
N = 1500 − 3000 we observe nearly overlapping curves
which – for lower N – suffer from the Gibbs oscillations
(as shown in the inset). This again manifests that we
control the reconstruction through λ, not through the
number of moments (their number has to be sufficient
only to control the truncation error β). For the KPM
the increasing number of moments corresponds heuristi-
cally to smaller λ. The flexibility afforded by the CheET
strategy allows to obtain results qualitatively similar to
KPM with N = 3000 using only N ≈ 2500 moments.

IV. DIRECT APPROXIMATION OF THE
SPECTRAL DENSITY USING HISTOGRAMS

The results shown in the previous section are useful
to gain insights into the possible benefits of using differ-
ent kernel functions to study the local spectral density.
For a more realistic case when the target response is not
known, however, it will not be possible to compute di-
rectly the pointwise error from Eq. (23) and a different,
computable, error metric is needed. We achieve this by
explicitly introducing a target energy resolution scale ∆
and using the properties enjoyed by Σ-accurate with res-
olution Λ integral kernels to bound the error on a suitably
coarse-grained energy distribution. For this purpose, we
introduce an energy histogram as a frequency observable
like Eq. (5) by defining the following window function

f(ω, η; ∆) = {
0 ∣η − ω∣ > ∆
1 otherwise

. (25)

The histogram of the frequency signal S(ω), with asso-
ciated bin width equal to 2∆, is found by integrating
over the spectrum. Explicitly, the value of the histogram
centered at η is given by

h(η; ∆) = ∫

1

−1
dωS(ω)f(ω, η; ∆) = ∫

η+∆

η−∆
dωS(ω) . (26)

We now define an approximate histogram by taking
the convolution of the window function in Eq. (25) with
an integral kernel with resolution Λ

f̃Λ
(ω, η; ∆) = ∫

1

−1
dνK(ν,ω; Λ)f(ν, η; ∆)

= ∫

η+∆

η−∆
dνK(ν,ω; Λ) .

(27)

The resulting approximate histogram can be written as

h̃Λ
(η; ∆) = ∫

1

−1
dωf̃Λ

(ω, η; ∆)S(ω)

= ∫

1

−1
dω∫

η+∆

η−∆
dνK(ν,ω; Λ)S(ω) .

(28)

Finally, we will further approximate h̃Λ(η; ∆) as a
Chebyshev expansion truncated to order N introducing
an error bounded by

sup
η∈[−1,1]

∣̃hΛ
(η; ∆) − h̃Λ

N(η; ∆)∣ ≤ 2∆β . (29)

Using these quantities we can then approximate the his-
togram with bin size 2∆ at η using the following pair of
bounds

h̃Λ
N(η; ∆ −Λ) −Σ − 2β (∆ −Λ) ≤ h(η,∆)

h(η,∆) ≤ h̃Λ
N(η; ∆ +Λ) +Σ + 2β (∆ +Λ) .

(30)

The derivation of Eq. (30) can be found in Appendix C,

the truncation errors β(G,L) for the Gaussian and
Lorentzian are given in Eqs. (B5), (B22) in Appendix B.
Lastly, the tails Σ (see the definition in Eq. (7)) for the
Lorentz and Gaussian kernels are bounded by

Σ(L)
≤

2λ

πΛ
, Σ(G)

≤ exp ( −
Λ2

2λ2
) . (31)

The approximated histogram bin of Eq. (28) can be
expressed in terms of Chebyshev moments expansion

h̃Λ
(η; ∆) = ∫

η+∆

η−∆
dν∑

k

ck(ν, λ)mk

=∑
k

dk(η −∆, η +∆, λ)mk ,
(32)

with dk coefficients which can be obtained analytically
from the ck and are given in Eq. (A21) for the Gaussian
kernel. Through this procedure we do not introduce any
further numerical error and the calculation cost of ck and
dk coefficients is of the same order. On the other hand,
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using the KPM to calculate a histogram would more trou-
blesome, since in this case using the kernel of Eq. (19)
one gets

h̃Λ
(η; ∆) = ∫

η+∆

η−∆
dν∑

k

gk(λ)
Tk(ν)

π
√

1 − ν2
mk . (33)

The integral has no analytical closed form, therefore its
calculation has to be done numerically which is compu-
tationally more expensive.

A. Synthetic data

We will consider an example of the signal reconstruc-
tion of both a discrete and continuous spectrum, in terms
of a histogram. To generate the synthetic data we will
use a function

g(x) =
√
x − 0.8 exp [ −

x

0.35
] (34)

which is qualitatively similar to nuclear responses in the
quasi-elastic regime.

• Discrete signal

In this case we generate the synthetic data by mim-
icking a many-body calculation for which the spec-
trum has a discrete form as in Eq. (2). For this
study, the spectrum is generated as a uniform ran-
dom distribution of 500 delta peaks with strengths
taken from Eq. (34) (the total strength is normal-
ized to 1) in a range (−0.8,1).

• Continuous signal

We generated a continuous function using directly
Eq. (34), with the total strength normalized to 1.

In our example we take the width of histogram bins
to be 2∆ = 0.2. For the CheET method we set a de-
sired kernel resolution to be Λ = 0.01. This is driven
by the following observation. Looking at Eq. (30), we
see that when the kernel is accurate enough (Σ is small)
and we keep the truncation error β low (i.e. we use a
sufficient number of moments), the uncertainty is driven

by (h̃∆+Λ − h̃∆−Λ). Therefore we expect the error to be
roughly proportional to Λ/∆. For the chosen values of ∆
and Λ, we keep it at the order of ≈ 10%.

Having set Λ, we should choose λ, so that the tails
of the distributions Σ (see Eq. (31)) are small enough.
Finally, knowing λ, the truncation error β as a function
of number of moments N can be estimated. In Fig. 5,
we show the total truncation error 2β(∆ + Λ) and the
tail bound Σ in relation to (λ,N) for a chosen ∆ = 0.1
and Λ = 0.01, both for the Gaussian and Lorentz kernels.
The horizontal lines correspond to Σ(L,G). In the right
panel where λ = 0.001, Σ(G) is already negligibly small
and not visible. A compromise between the number of
used moments N and the desired accuracy λ has to be

found. From the central panel of Fig. 5, we conclude that
λ = 0.0025 is good enough to quench Σ(G), while keeping
the number of moments N = 4000. For this value of
N , and for the Lorentzian kernel the truncation error is
smaller than Σ(L).

The results for both discrete and continuous signals
for this setup are shown in Fig. 6. All the results, both
KPM and CheET, correspond to h̃Λ

N(η; ∆), i.e. trun-
cated expansion of Eq. (28) with the same number of
moments N = 4000. All the four predictions give similar
results which stay in agreement with the reference sig-
nal. However, the error estimation, given in Eq. (30), is
not available for the KPM approach. The large errors
for CheET Lorentz come mostly from Σ(L) ∝ λ/Λ. They
have been divided by factor 2 in Fig. 6, to fit them in the
plots. They could be diminished by improving the preci-
sion λ which would consequently require a larger number
of moments. From the right panel of Fig. 5 we see that di-
minishing this error by factor 2.5 would require λ = 0.001
and so over N = 10000 moments. At the same time, the
CheET Gaussian gives much better uncertainty estima-
tion. The tail bound Σ(G) and truncation error β are
negligible in this case, and the uncertainty is driven by
the difference h̃Λ(η,∆ +Λ) − h̃Λ(η,∆ −Λ).

B. Graphene in a magnetic field

As a proof of principle, we apply our method to obtain
the local density of states (LDOS) for graphene in a mag-
netic field. We choose a single layer of graphene with the
circular shape and radius of 30 nm in a magnetic field of
20 T. We use Pybinding [53] Python library to retrieve
the Chebyshev moments.

Within the KPM or the CheET method we would be
able to get the spectrum of single peaks (with a given
broadening), resolving the excitations in the vicinity of
E = 0 which correspond to Landau levels. However,
the density of states grows with energy so that the re-
construction of higher-lying states requires an increasing
number of Chebyshev moments. Instead, we create a his-
togram to show the LDOS in the whole range of energies
(−8.45,8.45) eV. For our simulation we set the histogram
width 0.4 eV, Λ = 0.05 eV and λ = 0.015 eV. The results
shown in Fig. 7 were performed using N = 5000 moments.
This number of moments corresponds to the broadening
of 5 meV in the Jackson KPM method, which allows
to distinguish the first 5 Landau levels, up to the energy
±0.3 eV. We plot as a reference f(E) ∝ E3/2, to show
that the distribution is in good approximation (up to
E ≈ 2 eV) related to the positions of Landau states, with

En ∝
√
n, since ∫

√
ndn = n3/2. The errorbars in Fig. 7

are mostly driven by h̃Λ
N(η; ∆ + Λ) − h̃Λ

N(η; ∆ − Λ) (see
Eq. (30)). In this case the spectrum is uniform, there-
fore we suspect the errors ≈ Λ/∆ = 0.05/0.2 = 25%, which
indeed is the case. This uncertainty could be quenched
by diminishing Λ, which would require a larger number
of Chebyshev moments.
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V. SUMMARY AND CONCLUSIONS

Predicting the dynamical response of strongly coupled
many-body systems is a problem of central importance in
nuclear physics since most of the experimental informa-
tion comes from scattering cross sections. A quantitative
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FIG. 7. Local density of states of the monolayer graphene in
a magnetic field of 20 T reconstructed using CheET method
with Gaussian kernel.

understanding of many-body dynamics is also crucial in
cold atoms experiments and quantum chemistry. In the
linear response regime, the scattering cross section is re-
lated to the local spectral density, a notoriously difficult
observable to evaluate in ab-initio methods. In this work
we have presented a method for the reconstruction of
the spectral density starting from an expansion in terms
of Chebyshev polynomials using earlier results discussed
in the context of quantum algorithms [39]. This idea is
similar in spirit to both the Kernel Polynomial Method
(popular in condensed matter) and to the Lorentz In-
tegral Transform method (employed in nuclear physics).
Importantly, the approach presented here allows for a
systematic control of the errors in the reconstruction, a
key ingredient which is in general not easily achievable
in both of the above mentioned techniques.

Our results are an important step which will directly
allow us to perform a full ab-initio calculation of dy-
namical response functions in many-body systems. In
particular, they pave the way to extend the LIT-CC cal-
culations [18–20] to compute observables for which the
inversion procedure may be numerically unstable. The
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approach presented in this work can also be beneficial as
an extension of KPM in applications using Tensor Net-
works [48, 49] and the new error bounds on the histogram
discretization will provide additional guidance for the de-
sign of quantum algorithms for the estimation of the spec-
tral density [39, 43],

In the future work we plan to address two further is-
sues. First of all, the error estimates derived here are not
necessarily tight (especially the truncation error for the
Gaussian kernel in Appendix B 2) and it will be benefi-
cial to improve the accuracy of the bounds. Secondly, the
present method does not allow to estimate another major
source of systematic bias in these calculations: the pres-
ence of an artificially discrete spectrum coming from the
need to carry the many-body simulation in a finite basis.
This is taken care of in the LIT framework by a careful
choice of the energy resolution of the kernel. Performing
a benchmark of these strategies in solvable models will

be an important step forward that we will address in the
future.
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Appendix A: Chebyshev moments for integral
kernels

In this Appedix we provide a complete derivation of the
Chebyshev moments ck for the Lorentzian and Gaussian
kernels defined in Eqs. (10) and (11),

K(G,L)
(ν,ω;λ) =

∞

∑
k=0

ck(ν, λ)Tk(ω) , (A1)

used in the main text.

1. Moments for Lorentzian kernel

Following Ref. [54] the Chebyshev expansion of the
Lorentzian can be written as

K(L)
(ν,ω;λ) =

1

π

∞

∑
k=0

(2 − δk,0)R [Dλ(ν)Zλ(ν)
k]Tk(ω)

(A2)

where R[z] is the real part of z and the two functions
are defined as

Dλ(ν)
−1

=
√

1 − (ν + iλ)2

Zλ(ν) = (ν + iλ) − iDλ(ν)
−1 .

(A3)

If we consider the situation where (ν2 +λ2) < 1 we can
express the second factor explicitly as

Zλ(ν) = −i exp (iarcsin(ν + iλ)) = −ie−λeiν . (A4)

If we also decompose the first factor in polar coordinates
Dλ(ν)

−1 = ρeiθ we can write compactly the coefficient in
the Chebyshev expansion as

c
(L)

k (ν;λ) =R [Dλ(ν)Zλ(ν)
k]

= ρ−1e−kλ cos(k (ν −
π

2
) − θ) .

(A5)

2. Moments for Gaussian kernel

We start the discussion by first recalling the Chebyshev
expansion of a Gaussian function

1
√

2πλ
e−

ω2

2λ2 =
∞

∑
k=0

ak (λ)Tk(ω) , (A6)

where the moments ak(λ) are given explicitly as

an =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γn
√

2πλ
i
n
2 exp(−

1

4λ2
)Jn/2 (

i

4λ2
) for even n

0 for odd n

(A7)

with γn = 2− δn,0 and Jn, the Bessel function of order n.

Using this expansion, the Gaussian kernel can be ex-
pressed as

K(G)
(ν,ω;λ) =

∞

∑
k=0

ak (
λ

2
)Tk (

ν − ω

2
) , (A8)

in terms of Chebyshev polynomials depending on both
variables ν and ω. Our goal is instead to find a de-
composition in terms of polynomials in ω of the form
of Eq. (A1)

The procedure proposed in Ref. [39] to obtain the mo-
ments ck(ν, λ) proceeds as follows: we first perform the
expansion

Tk (
ν − ω

2
) =

∞

∑
m=0

bkm(ν)Tm(ω) , (A9)

with expansion coefficients given by

bkm(ν) =
γm
π
∫

1

−1

dω
√

1 − ω2
Tk (

ν − ω

2
)Tm(ω) . (A10)

Apart from the weight factor 1/
√

1 − ω2, the integrand is
a polynomial in ω of maximum degree D = k +m. This
in turn implies that, if we can perform the integration
exactly using Gauss-Chebyshev quadrature as

bkm(ν) =
γm
π

L

∑
i=1

wiTk (
ν − ωi

2
)Tm(ωi) (A11)

with weights wi =
π
L

and Chebyshev nodes

ωi = cos(π
2i − 1

2L
) , (A12)

provided we choose L > (D + 1)/2. In the following we
will take L = Lm,k = ⌈(m + k + 1)/2⌉.

Now, by realizing that, for any choice of ν, the function
Tk((ν − ω)/2) is a polynomial of order k in ω, the sum
in Eq. (A9) can be truncated at order m ≥ k without
incurring in an approximation error. This implies that
we can take, for a given k, the truncation in Eq. (A11)
as

L = Lk,k = ⌈
2k + 1

2
⌉ = k + 1 . (A13)

Suppose now that we approximate the Gaussian kernel
with a truncated sum of the form

K(G),N
(ν,ω;λ) =

N

∑
k=0

ak (
λ

2
)Tk (

ν − ω

2
)

=
N

∑
k=0

∞

∑
m=0

ak (
λ

2
) bkm(ν)Tm(ω) ,

(A14)

with a corresponding truncation error β
(G)

N derived in
Ref. [39] and discussed in more detail in the next Ap-
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pendix. In the original derivation in Ref. [39] the expan-
sion in m was truncated at m = N ≥ k resulting in

K(G),N
(ν,ω;λ) =

N

∑
k=0

N

∑
m=0

ak (
λ

2
) bkm(ν)Tm(ω)

=
N

∑
m=0

(
N

∑
k=0

ak (
λ

2
) bkm(ν))Tm(ω)

=
N

∑
m=0

c̃m
[N]

(ν, λ)Tm(ω) ,

(A15)

with expansion coefficients given explicitly as

c̃m
[N]

(ν, λ) =
N

∑
k=0

Lk,k

∑
i=1

γm
Lk,k

ak (
λ

2
)Tk (

ν − ωki
2

)Tm(ωki ) ,

(A16)

with Chebyshev nodes ωki depending explicitly on k due
to the corresponding k dependence of the number of
terms Lk,k. As in Ref. [39] this can be removed by per-
forming a further simplification by choosing Lk,k = N + 1
independent on k. As the discussion on the Gaussian
quadrature formula provided above shows, this does not
introduce further errors and results in a modest O(N)

increase in number of summands. The final expression
for the expansion coefficients is then 1

c̃m
[N]

(ν, λ) =
γm
N + 1

N

∑
k=0

N+1

∑
i=1

ak (
λ

2
)Tk (

ν − ω̃i
2

)Tm(ω̃i) ,

(A17)
where we have defined the k-independent nodes

ω̃i = cos(π
2i − 1

2(N + 1)
) . (A18)

We will call the scheme presented so far method 1. It
has one main disadvantage with respect to the construc-
tion for the Lorentz kernel above: evaluation of the kernel
(or equivalently the integral transform) at different fre-
quencies ν incurs in a cubic cost with the number of terms
N whereas for the Lorentz kernel this cost is only linear
in N . Another drawback of the present construction is
that the coefficients c̃m(ν, λ) in the kernel expansion of
Eq. (A15) and provided explicitly in Eq. (A17) are not
the same as the ck(ν, λ) coefficients obtained from a di-
rect uni-variate expansion of the kernel in the ω frequency
as in Eq. (A1). As we will see below this might result
in a worse truncation error, at fixed N , than one could
obtain if the latter expansion coefficients were known an-
alytically (as in the case of the Lorentzian).

1 We note two typos in Ref. [39] with (N +1) being indicated as N
and the numerator in Eq. (A18) being quoted to be (effectively)
2i + 1 instead of 2i − 1. These do not affect any of the results
discussed there but are important for a correct implementation
of the expansion coefficients.

To address both of these problems, here we also con-
sider a second approach that directly estimates the “ex-
act” coefficients

ck(ν, λ) =
γk
π
∫

1

−1

dω
√

1 − ω2
K(G)

(ν,ω;λ)Tk(ω) . (A19)

by approximating the integral with a Gauss-Chebyshev
quadrature using a large number of nodes M > N for a
target truncation level N

c
[N,M]

k (ν, λ) =
M

∑
m=1

γk
M
K(G)

(ν,ωm;λ)Tk(ωm) (A20)

with ωm = cos(π 2m−1
2M

) the Chebyshev nodes as above.
This construction, method 2 has the main advantage of
resulting in a faster evaluation of the kernel and integral

transform. The coefficients c
[N,M]

k (ν, λ) converge close

to the exact ones c
(G)

k (ν, λ) in the large M limit and this
appears to considerably reduce the truncation error. For
the results presented in the main text we use method 2,
i.e. coefficients of Eq. (A20). To support our choice, in
Fig. 8 we present a simple comparison between the two
expansions, which shows a faster conversion of method 2.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0

5

10

15

20
reference
method 1
method 2; M=N
method 2; M=2N

0.10 0.15 0.20 0.25
2

1

0

1

FIG. 8. Reconstruction of the Gaussian signal (λ = 0.05, ν =
0.3) using two different sets of expansion coefficients given by
Eqs. (A17) (method 1) and (A20) (method 2). In all cases we
use N = 120 moments. For method 2 we show both M = 120
and M = 240 integration points.

The histogram calculation requires integration over the

c
[N,M]

k coefficients (see Eq. (32)). This can be done ana-
lytically

dk(a, b;λ) = ∫
b

a
dν c

[N,M]

k (ν, λ)

=
M

∑
m=1

γk
M
∫

b

a
dν K(G)

(ν,ωm;λ)Tk(ωm)

=
M

∑
m=1

γk
M

1

2
(erf(

b − ωm
√

2λ
) − erf(

a − ωm
√

2λ
))Tk(ωm)

(A21)
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Appendix B: Bounds on the truncation error

In this section we provide the proofs for the bounds on
the truncation error β from Eq. (16) of the main text.

1. Lorentz Kernel

Following the derivation in Appendix A 1, for the case
of the Lorentzian we have directly a closed-form expres-
sion for the expansion coefficients of the integral trans-
form. We can then estimate β by first using

δ
(L)

trunc = sup
ν∈[−1,1]

∣
∞

∑
k=N+1

ck(ν;λ)mk∣

≤ sup
ν∈[−1,1]

∞

∑
k=N+1

∣ck(ν;λ)∣

(B1)

and then using the expression for coefficients ck from
Eq. (A5):

δ
(L)

trunc ≤ sup
ν∈[−1,1]

2

πρ

∞

∑
n=N+1

e−λn ∣cos(n(ν −
π

2
) − θ)∣

≤
2

πρ

∞

∑
n=N+1

e−λn

≤
2

πρ
∫

∞

N
dxe−λx =

2e−λN

λρπ
.

(B2)

Note at this point that we have also

ρ = ((1 + ν2
+ λ2

)
2
− 4ν2

)
1/4

≥
√

1 − ν2 , (B3)

but this lower bound is not useful if we keep the spectrum
in [−1,1] as it approaches zero. One option is to rescale
the Hamiltonian operator in order to work in a smaller
interval, an alternative is to use instead the bound

ρ ≥ ((2 + λ2
)
2
− 4)1/4

=
√
λ(4 + λ2

)
1/4

≥
√

2λ (B4)

Using this we have the error bound used in the main text

β
(L)

N =

√
2e−λN

λ3/2π
. (B5)

2. Gaussian kernel Kernel

We first compute the bound for the method 1 approx-
imation in Eq. (A15). First note that we can directly
bound the error in the integral tansform in terms of the
error in the kernel using

∣Φ(ν;λ)−ΦN(ν;λ)∣

= ∣∫ dωS(ω)(K(ν,ω;λ) −KN(ν,ω;λ))∣

≤ ∫ dωS(ω) ∣K(ν,ω;λ) −KN(ν,ω;λ)∣

≤ sup
ω∈[−1,1]

∣K(ν,ω;λ) −KN(ν,ω;λ)∣

(B6)

where we used that S(ω) ≥ 0 and normalized to one.
Since we perform the exact expansion of the two-variable
Chebyshev polynomial Tk((ν−ω)/2) using Eq. (A9) trun-
cated at m = N ≥ k, we find directly that

δ
(G),N
trunc = sup

ν∈[−1,1]

sup
ω∈[−1,1]

∣K(G)
(ν,ω;λ) −K(G),N

(ν,ω;λ)∣

= sup
ν∈[−1,1]

sup
ω∈[−1,1]

∣
∞

∑
k=N+1

ak (
λ

2
)Tk (

ν − ω

2
)∣

≤
∞

∑
k=N+1

∣ak (
λ

2
)∣ .

(B7)

The sum on the last line was shown in Ref. [39] to be
bounded as

∞

∑
k=N+1

∣ak (
λ

2
)∣ ≤

1

2λ

√
π

κ(1)
erfc

⎛

⎝
(N + 1)λ

√
κ(1)

2

⎞

⎠
,

(B8)
where the function κ is given by

κ(x) =
log(x +

√
1 + x2)

2
−

1

4x

(x − 1 +
√

1 + x2)
2

x +
√

1 + x2
. (B9)

Therefore for method 1 the truncation error can be
bounded by

β
(G)

N =
1

2λ

√
π

κ(1)
erfc

⎛

⎝
(N + 1)λ

√
κ(1)

2

⎞

⎠
. (B10)

For the Gaussian kernel obtained with the method 2
coefficients from Eq. (A20) we can find a bound on the
truncation error (possibly very loose) as follows. First we
can use the expansion in Eq. (A8) to re-express the new
expansion coefficients as

c
[N,M]

k (ν, λ) =
M

∑
m=1

γk
M

∞

∑
n=0

an (
λ

2
)Tn (

ν − ωm
2

)Tk(ωm) .

(B11)

The full kernel can then be written as

K(G),N,M
=

N

∑
k=0

M

∑
m=1

γk
M

∞

∑
n=0

an (
λ

2
)

Tn (
ν − ωm

2
)Tk(ωm)Tk(ω) .

(B12)

At this point it is convenient to define a finite order ap-
proximation to the two-variable Chebyshev coefficient as

TN,Mn (ν,ω) =
N

∑
k=0

γk
M

M

∑
m=1

Tn (
ν − ωm

2
)Tk(ωm)Tk(ω) .

(B13)
Following the discussion used to obtain the Chebyshev
coefficients from method 1, we know that

TN,Mn (ν,ω) = Tn (
ν − ω

2
) for N ≥ n, M ≥ n+1. (B14)
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Using this notation we can write

K(G),N,M
(ν,ω;λ) =

∞

∑
n=0

an (
λ

2
)TN,Mn (ν,ω) , (B15)

while the exact kernel reads

K(G)
(ν,ω;λ) =

∞

∑
n=0

an (
λ

2
)Tn,n+1

n (
ν − ω

2
)

=
∞

∑
n=0

an (
λ

2
)Tn (

ν − ω

2
) .

(B16)

We can then write their difference as

K(G)
(ν,ω;λ) −K(G),N,M

(ν,ω;λ)

=
∞

∑
n=N+1

an (
λ

2
)(Tn (

ν − ω

2
) − TN,Mn (

ν − ω

2
)) ,

(B17)

provided we choose M ≥ N + 1.
In order to bound the difference between Tn and TN,Mn

defined as

δNn (ν,ω) = ∣Tn (
ν − ω

2
) − TN,N+1

n (ν,ω)∣ , (B18)

we first recall that, from theorem 2.1 of [55] we have, for
any ω ∈ [−1,1], that (see also [52])

δNn (ν,ω) ≤ (2 +
2

π
log(N + 1)) ∣Tn (

ν − ω

2
) − p∗N(ω)∣ ,

(B19)
where p∗N(ω) is the optimal approximating polynomial of
order at most N for a given fixed choice of ν (ie. we look
at Tn((ν − ω)/2) as a function of ω only). One option
is to now use Jackson’s theorems [51] to bound the right
hand side. However, owing to the fact that n≫ N for our
purposes, we weren’t able to obtain tight bounds in this
way. The alternative used to compute the error estimates
in the main text was instead to use

∣Tn (
ν − ω

2
) − p∗N(ω)∣ ≤ ∣Tn (

ν − ω

2
) − p∗0(ω)∣ , (B20)

with p∗0(ω) the optimal approximating constant. Using
the fact that ∣Tn(ω)∣ ≤ 1 together with Corollary 1.6.1
of [51] we have ∣Tn((ν − ω)/2) − p

∗
0(ω)∣ ≤ 1 so that

sup
ν∈[−1,1]

sup
ω∈[−1,1]

δNn (ν,ω) ≤ (2 +
2

π
log(N + 1)) . (B21)

In the main text we have then used the following trun-
cation bound for method 2

β
(G)

N,N+1 = (2 +
2

π
log(N + 1))β

(G)

N . (B22)

As evident by the results in Fig. 8, where we show a
comparison between the kernel function obtained using
both methods, this estimate for the truncation error of
method 2 is likely a very conservative upperbound and

we expect in general that β
(G)

N,M ≤ β
(G)

N . In future work
it would be valuable to find tighter error bounds as they
will impact the total error budget in the estimation of
histograms of the spectral density.

Appendix C: Error bound on histograms

We want to assess the error for h(η; ∆) defined in
Eq. (26). The error has two sources, coming from the
fact of using Σ-accurate kernel and from the truncation
of the kernel.

Starting from the definition of a histogram of Eq. (27),
let us first notice that

f̃Λ
(η, η; Λ) = ∫

η+Λ

η−Λ
dνK(η, ν; Λ) ≥ 1 −Σ . (C1)

This property also holds for larger intervals δ > Λ and for
energies ∣ω − η∣ ≤ δ −Λ as follows

f̃Λ
(ω, η; δ) = ∫

η+δ

η−δ
dνK(ω, ν; Λ) ≥ 1 −Σ .

This is obtained by realizing that f̃Λ(ω, η; δ) is at least
(1 −Σ) if we can find an interval of size 2Λ, centered in
η and contained in the full interval of size 2δ. Since the
kernel is normalized, this also implies

1 − f̃Λ
(ω, η; δ) = ∫

η−δ

−1
dνKΛ(ω, ν) + ∫

1

η+δ
dνKΛ(ω, ν)

≤ Σ for ∣ω − η∣ ≥ δ +Λ

(C2)

This condition allows us to construct an approximation
of the window function f using its transform. In fact we
have the following bound

sup
∣ω−η∣∈[0,δ−Λ]∪[δ+Λ,∞]

∣f(ω, η; δ) − f̃Λ
(ω, η; δ)∣ ≤ Σ . (C3)

The error in the two disjoint intervals has different
signs, more explicitly we have

sup
∣ω−η∣∈[0,δ−Λ]

(f(ω, η; δ) − f̃Λ
(ω, η; δ)) ≤ Σ . (C4)

since the approximation is always smaller that the indi-
cator function there, and

sup
∣ω−η∣∈[δ+Λ,∞]

(f̃Λ
(ω, η; δ) − f(ω, η; δ)) =

sup
∣ω−η∣∈[δ+Λ,∞]

f̃Λ
(ω, η; δ) ≤ Σ .

(C5)

Let us also notice that

f(ω, η; δ +Λ) ≥ f̃Λ
(ω, η; δ) for ∣ω − η∣ ≤ δ +Λ , (C6)

Combining Eqs. (C5), (C6) we find the following lower
bound for any ω

f(ω, η; δ +Λ) ≥ f̃Λ
(ω, η; δ) −Σ . (C7)

This immediately implies the following lower bound to
the histogram

h(η; ∆) ≥ h̃Λ
(η; ∆ −Λ) −Σ . (C8)
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For the upperbound we can use instead

f(ω, η; δ −Λ) ≤ f̃Λ
(ω, η; δ) for ∣ω − η∣ ≥ δ −Λ , (C9)

together with the (inner) tail condition from Eq. (C4)

f̃Λ
(ω, η; δ) ≥ 1 −Σ for ∣ω − η∣ ≤ δ −Λ . (C10)

Combining these two we find the following upper bound
for any ω

f(ω, η; δ −Λ) ≤ f̃Λ
(ω, η; δ) +Σ . (C11)

This immediately implies the following lower bound to
the histogram

h(η; ∆) ≤ h̃Λ
(η; ∆ +Λ) +Σ . (C12)

The final result is the following two sided bound on the
correct histogram

h̃Λ
(η; ∆ −Λ) −Σ ≤ h(η; ∆) ≤ h̃Λ

(η; ∆ +Λ) +Σ . (C13)

Including the truncation error, as in Eq. (29), we arrive
finally at Eq. (30).
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