
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Efficient math
xmlns="http://www.w3.org/1998/Math/MathML">mi>d/mi>

/math>-dimensional molecular dynamics simulations for
studies of the glass-jamming transition

Robert S. Hoy and Kevin A. Interiano-Alberto
Phys. Rev. E 105, 055305 — Published 16 May 2022

DOI: 10.1103/PhysRevE.105.055305

https://dx.doi.org/10.1103/PhysRevE.105.055305

Efficient d-dimensional molecular dynamics simulations for studies of the

glass-jamming transition

Robert S. Hoy∗ and Kevin A. Interiano-Alberto
Department of Physics, University of South Florida, Tampa, FL 33620 USA

(Dated: April 28, 2022)

We develop an algorithm suitable for parallel molecular dynamics simulations in d spatial dimen-
sions and describe its implementation in C++. All routines work in arbitrary d; the maximum
simulated d is limited only by available computing resources. These routines include several that
are particularly useful for studies of the glass/jamming transition, such as SWAP Monte Carlo
and FIRE energy minimization. Scaling of simulation runtimes with the number of particles N
and number of simulation threads nthreads is comparable to popular MD codes such as LAMMPS.
The efficient parallel implementation allows simulation of systems that are much larger than those
employed in previous high-dimensional glass-transition studies. As a demonstration of the code’s
capabilities, we show that supercooled d = 6 liquids can possess dynamics that are substantially
more heterogeneous and experience a breakdown of the Stokes-Einstein relation that is substantially
stronger than previously reported, owing at least in part to the much smaller system sizes employed
in earlier simulations.

I. INTRODUCTION

Molecular dynamics (MD) simulations have been an
essential part of statistical physicists’ toolbox for over
50 years [1–4]. Numerous open-source, highly-optimized
multipurpose parallel MD simulation packages are now
available [5–10]. These packages are designed to simu-
late systems embedded in the physically relevant spatial
dimensions 2 ≤ d ≤ 3; they cannot be used for d > 3 sim-
ulations without extensive modifications. Accordingly,
they employ parallelization algorithms that are efficient
in low d, e.g. spatial domain decomposition allowing
simulation of multibillion-atom systems on distributed-
memory supercomputers [11, 12]. These algorithms,
however, rapidly become less efficient as d increases. De-
veloping publicly available codes that allow efficient par-
allel MD simulations of higher-dimensional systems to be
performed may be a key step towards answering several
open questions in physics, particularly questions related
to supercooled liquids and the glass/jamming transition.
In this paper, we describe the first such code (hdMD) [13].
Then we use it to show that the dynamics of supercooled
d = 6 liquids at densities above the RFOT dynamical
glass transition density φd [14] can be substantially more
heterogeneous than previously reported.
Early simulations of high-dimensional supercooled liq-

uids employing systems of N = 103 − 104 particles in-
dicated that crystallization is strongly suppressed as d
increases beyond 3 [15–18]. Recent work, however, has
shown that (i) crystallization instabilities in glassforming
mixtures often appear only when larger N [19] or SWAP
Monte Carlo equilibration [20] are employed, and (ii)
hard-sphere crystals are thermodynamically stable for a
wide range of packing fractions φ < φd for all d ≤ 10 [21].
Both results suggest that the conclusions of many of the

∗ rshoy@usf.edu

early d > 3 studies need to be reexamined using larger
systems. Moreover, the N typically employed in recent
simulations of higher-d systems have remained small (e.g.
N < 104 in Refs. [22–24]), precluding robust investiga-
tion of how any static or dynamic length scales that grow
substantially as φd is approached [25–29] depend on d.

For example, simulation studies suggesting that dy-
namical heterogeneity weakens as d increases [30–32] can
be challenged on the grounds that heterogeneous dynam-
ics in these studies are suppressed not (or not primarily)
by the increase in spatial dimension, but instead by their
use of periodic boundary conditions with simulation cell
side lengths L that decrease rapidly with increasing d.
This is a reasonable concern given the tendency of the
least mobile particles in glassforming liquids to remain
near their initial positions after time intervals over which
the most mobile particles have hopped by several times
their diameter [33, 34] and the fact that L drops as low as
∼ 2 particle diameters for the highest studied d [30–32].
Resolving this issue requires performing analogous simu-
lations with larger L, and completing such simulations in
a reasonable amount of time requires an efficient parallel
implementation of high-dimensional MD.

Simulating supercooled liquids in high d presents sev-
eral challenges. One of the most difficult involves
neighbor-list construction. If one wishes to simulate sys-
tems with a given number of particles N , the cell side
length L ∼ N1/d, and thus the number of linked (fixed-
size) subcells along each axis of the simulation cell is
ncell ∼ N1/d. The total number of subcells is Nsc = nd

cell,
and the number of these which must be searched over
for each atom during a typical Verlet list (VL) build is
3d. The total number of atoms in these neighboring cells
is Nnc = (3d/Nsc)N ≡ (3/ncell)

dN ∼ 3d, so the total
number of pair distances which must be evaluated to
rebuild all atoms’ Verlet lists is NVl ∼ 3dN . In other
words, the effort required to maintain the neighbor lists
increases exponentially with increasing d because build-
ing each atom’s VL requires searching over a exponen-

2

tially increasing fraction of the system’s volume.
Avoiding strong finite-size effects requires simulating

systems of a minimum spatial extent L; typically L & 10
particle diameters. If L is taken to be L, the mini-
mum number of particles simulations must include to
avoid such affects is Nmin ∼ Ld. While characteris-
tic packing fractions φ scale across dimensions roughly
as 2−d or d2−d [35, 36], hypersphere volumes decrease
faster than this, so the corresponding particle number
densities ρ increase with increasing d. For example,
the dynamical-glass-transition number densities for hard
spheres, ρd ≃ 1.78− .5d+ .095d2 [30], nearly triple as d
increases from 3 to 7. Taking Nmin = ρdL

d, the compu-
tational effort to build the VL for a d-dimensional super-
cooled liquid scales roughly as ρd(3L)

d.
This rapidly becomes prohibitive as d increases, but it

can be overcome for intermediate d using efficient par-
allel algorithms. In this paper, we describe our newly
developed hdMD code, which employs several such algo-
rithms and is capable of simulating much larger high-d
systems than have been studied previously. hdMD includes
several routines commonly employed in studies of the
glass/jamming transition [37–39], such as SWAP Monte
Carlo [20, 40], FIRE energy minimization [41, 42], and
calculation of the overlap parameter fov(t) and van Hove
correlation function Gs(r, t). Here we use it to simulate
3 ≤ d ≤ 6 supercooled liquids of up to 107 particles
over short timescales, and 105 particles over the much
longer timescales typically employed in modern glass-
transition studies [20]. The latter simulations show that
strongly heterogenous dynamics [as indicated by large
non-Gaussian parameters] can persist to very long times
in deeply supercooled liquids for d up to at least 6. By
contrasting results for N = 105 to those for N = 5000
liquids at the same φ and T , we provide initial evidence
that some of the conclusions of Refs. [30–32] – at least
in terms of their quantitative details – would have been
different had these studies considered larger systems.
The outline of the rest of this paper is as follows. Sec-

tion II describes hdMD’s algorithmic implementation. Sec-
tion III presents performance benchmarks for simulations
at packing fractions φ ≃ φd for 3 ≤ d ≤ 6, focusing on
the code’s parallel efficiency and the scaling of simulation
runtimes with N and d. Section IV includes an origi-
nal analyisis of the dynamics of supercooled d = 6 liq-
uids and serves as a demonstration of hdMD’s suitability
for state-of-the-art glass-transition-related studies. Fi-
nally, in Section V, we discuss our results and conclude.
Readers more interested in the code’s performance than
its algorithmic implementation are urged to skip to Sec.
III, while readers primarily interested in our supercooled-
liquid physics results are urged to skip to Sec. IV.

II. ALGORITHMIC IMPLEMENTATION

Most previous simulations of liquids in d > 3 have em-
ployed hard spheres. This is sensible given that hard-core

interactions dominate liquids’ structure [2] and polydis-
perse hard-sphere liquids are excellent glassformers [20].
However, hard-particle techniques are inherently limited
in the range of physical phenomena they can capture.
The lack of finite interparticle forces makes it difficult for
them to accurately model the collective rearrangements
which increasingly dominate liquids’ relaxation mecha-
nisms as the glass transition is approached [26, 27]. They
cannot, for example, capture the long-range elastically-
mediated dynamical facilitation that has recently been
shown to arise below the mode-coupling temperature
TMCT [43]. While attractive forces are well known to
exert a strong and nonperturbative influence on 3D glass-
forming liquids’ dynamics [44] and to increase their ten-
dency to crystallize [45], the variation of these effects with
increasing d remains unexplored and cannot be explored
using hard-particle models. Therefore we employ a soft-
particle MD approach that can treat both repulsive and
attractive forces.

Parallelizing a MD simulation requires devising a
method of distributing the computation across its nthreads

concurrent threads. Modern MD packages, most of
which are optimized for large-nthreads simulations on
distributed-memory machines [5–10], typically parallelize
via spatial domain decomposition of simulation cells [11].
In this scheme, different CPU cores “own” geometrically
distinct regions, and information that needs to be passed
across the boundaries of these regions is typically passed
via intercore communication, usually implemented us-
ing MPICH. For example, a typical nthreads = 8 simu-
lation employing a cubic simulation cell divides it into
2 × 2 × 2 domains, each of which is a cube with ncell/2
subcells along each edge. The intercore communication
that is necessary for force evaluation and Verlet list (VL)-
building is only required between subcells on the surfaces
of these domains [11].

Codes that operate this way work very well for d ≤ 3.
For example, simulations of million-atom liquids have
been shown to exhibit nearly-optimal scaling (runtimes
∼ n−1

threads) for nthreads up to ∼ 102 [46]. As d increases,
however, the spatial-domain-decomposition method loses
its effectiveness for reasons comparable to those outlined
above for VL-building. Therefore we respectively employ
per-atom, per-atom, and per-subcell parallelization for
force evaluation, time integration of equations of motion,
and VL-building. In this scheme, each thread is responsi-
ble for N/nthreads atoms and Nsc/nthreads subcells rather
than a spatial domain, and intercore communication is
avoided entirely by using OpenMP rather than MPICH
to parallelize the code. While the latter choice limits
our code to shared-memory (as opposed to distributed-
memory) machines, it makes it far more efficient.

Table I lists hdMD’s principal routines. All of these rou-
tines work in arbitrary d; the maximum simulated d is
limited only by available computing resources. Our im-
plementation of these routines will be described in detail
in the following sections.

3

TABLE I. Principal routines (C++ functions) included in
hdMD. Additional standard functions involving I/O and mem-
ory allocation are present in the code but are not listed here.

Name Purpose

main Control program operation

leapfrog Integrate Newton’s EOM

getforce Calculate force on atom i

Berendsen Berendsen thermo/barostat

getthermo Calculate thermodynamic quantities

getvanHove Calculate van Hove corr. function

initRMSE Initialize {~ri}, {mi}, {ǫi}, {σi}

setupcell Initialize simulation cell

needsrebuild Check if VLs need to be rebuilt

buildneighborlist Build/rebuild the VLs

FIRE Control FIRE energy minimization

FIREintegrate Integrate FIRE EOM

steepest Steepest-descent energy minimization

buildswapNLs Generate SWAP-attempt VLs

swapmove Attempt SWAP moves

writerestart Write restart files to disk

writecoords Write {~ri} and image flags to disk

A. Particle model and initial state generation

Here, for simplicity, we present results for a single
hard-sphere-like pair potential, the truncated and shifted
Morse potential given by

Ua(ǫij , σij , rij) = ǫij

[

exp[−2a(rij−σij)]−2 exp[−a(rij−σij)]+1

]

(1)

for rij ≤ σij and zero for rij ≥ σij , where rij is
the center-to-center distance between particles i and
j. We use the standard Lorentz-Berthelot MD mix-
ing rules for particle diameters and force prefactors,
i.e. σij = (σi + σj)/2 and ǫij =

√
ǫiǫj . Longer-range

interactions including attractive terms can be imple-
mented by adjusting main()’s “cut” parameter. The
Morse parameter a can be adjusted by editing a single-
line in getforce(); all results presented below are
for a = 30σ̃−1. More generally, hDMD can be easily
generalized to arbitrary radial force laws and mixing
rules (incorporating, e.g., nonadditivity [20]) by edit-
ing a few lines of code in the getforce(), thermo(),
and swapmove() routines. In particular, switching
the stock code from the Morse to the Mie potential
Un(ǫij , σij , rij) = ǫij [(

σij

r)2n − 2(
σij

r)n], which reduces
to the widely employed Lennard-Jones/WCA potential
for n = 6, requires only commenting/uncommenting-out
a few lines of code in these routines.
The volume of a d-dimensional spherical particle with

diameter σ is

v(d, σ) =
πd/2σd

2dΓ(1 + d/2)
, (2)

where Γ is the gamma function. For all simulations
discussed in Section III, we set particles’ mass density
ρm = [v(d, σ)σ−d]−1 = π−d/22dΓ(1 + d/2) so particles
have mass mi = σd

i and typical particles with σ = 1
have unit mass. Correspondingly, we set ǫi = σd

i so
repulsive interactions also scale with particle volumes
[47]. During MD simulation, Newton’s equation of mo-
tion are integrated using the standard leapfrog algo-
rithm with a timestep dt = 6τ/(125a) = .0016τ , where

τ =
√

m̃σ̃2/ǫ̃ is the unit of time. Here m̃, σ̃, and ǫ̃ are the
mass, diameter and force prefactor for typical particles:
m̃ = σ̃ = ǫ̃ = 1 in dimensionless units.
Polydispersity is one of the most important factors con-

trolling glassforming ability in molecular simulations [48].
We use the particle-diameter distribution

P (d,R, σ) =

{

(d− 1)σ−d

R d−1

2d −R−
d−1

2d

, R−
1

2d ≤ σ ≤ R 1

2d

0 , σ < R−
1

2d or σ > R 1

2d

,

(3)
where R = (σmax/σmin)

d is the ratio of maximum to
minimum particle volumes. The total volume V(σ) =
NP (d,R, σ)v(d, σ) occupied by particles of diameter σ

is σ-independent over the entire range R−
1

2d ≤ σ ≤ R 1

2d ;
this choice apparently optimizes glass-formability for a
wide range of force laws [20]. Preventing crystalliza-
tion also requires a sufficiently large polydispersity index
∆ = [〈σ2〉 − 〈σ〉2]1/2/〈σ〉, with the minimum ∆ decreas-
ing with increasing d [20]. Here we choose R = d, which
gives ∆ = 0.107, 0.099, 0.091, 0.083 in d = 3 − 6. We
find that these parameter choices are sufficient to prevent
both crystallization and phase separation in all systems
discussed below.
To generate N -particle initial states with packing frac-

tion φ, we first define the particle diameters {σi} by
randomly sampling the distribution P (d,R, σ), using the
function initRMSE(). This function also sets the particle
masses {mi} and force prefactors {ǫi}. The total volume
occupied by these particles is

Vpart =

N
∑

i=1

v(d, σi); (4)

thus the total simulation cell volume must be V =
Vpart/φ. We employ hypercubic simulation cells of this

volume (and side length L = V 1/d), centered at the
origin; initRMSE() assigns all particles random initial
positions {~ri} within these cells. After initializing the
linked-subcell data structures using setupsupercell(),
we populate the subcells and initialize all particles’ Ver-
let lists using buildneighborlist(). These two routines
will be described in detail in Section II C.
The randomly generated positions lead to severe par-

ticle overlap that must be reduced before the simulation
can begin. We accomplish this “pushoff” using a partial
FIRE minimization (Section II B). During this minimiza-
tion and throughout the rest of the simulation, periodic

4

boundary conditions are applied along all d directions.
After the pushoff is complete, we give particles random
initial velocities corresponding to the desired target tem-
perature Ttarg. Alternatively, the abovementioned initial-
state-generation-and-pushoff procedure may be skipped
by reading initial states (e.g. restart files written during
a previous simulation) in from an ASCII file. This is
also handled using initRMSE(), with the relevant restart
file names passed to hdMD as command-line arguments as
discussed below. Then the linked-subcell data structures
are initialized, the subcells are populated and all parti-
cles’ VLs are initialized as outlined above. Once either
of these options is completed, the MD simulation begins.

B. Program control, force evaluation and

integration of equations of motion

In this section, we outline hdMD’s usage and large-
scale structure. Entering the command ./hdMD d N
φ T nsteps nthreads p resfilename rinitfilename
nmsdstart starts a d-dimensional MD simulation with N
particles at packing fraction φ and target temperature
T . The fifth and sixth command-line parameters specify
the number of MD timesteps and the number of parallel
OpenMP threads. p is the SWAP attempt fraction, i.e.
the fraction of particles for which swaps are attempted
every time swapmove() gets called. resfilename is the
name of the file containing the initial particle {mi},
{σi}, {ǫi}, positions, velocities, and image flags. Such a
file is unnecessary (and resfilename should be “null”)
if these are to be generated as outlined above. Finally,
rinitfilename is the name of the file containing an ear-

lier set of particle positions and image flags to be used as
the reference configuration for calculations of particles’
mean-squared displacement, etc. as outlined in Section
II E. Such a file is unnecessary and rinitfilename

should be “null” if the initial particle positions are to
be used for this reference configuration. In addition
to the abovementioned command-line parameters, a
number of other runtime parameters are defined in
hdMD’s main.cpp file and summarized in Table II.
Once a simulation is running, it dumps ther-

modynamic data every nthermo MD timesteps to
a file named thermodata.dd.NN.phiφ.pp, energy-
minimization data every nmin timesteps to a file named
mindata.dd.NN.phiφ.pp (if minflag = true), restart
files including all particles {mi}, {σi}, {ǫi}, posi-
tions, velocities, and image flags every nrestart timsteps
to files named restart.dd.NN.phiφ.pp.stepstep, van
Hove correlation function data every nvhc timesteps
to a file named vanHoveCorr.dd.NN.phiφ.pp (if
vhcflag = true), and the particle positions and
image flags at step nmsdstart to a file named
Rinit.dd.NN.phiφ.pp.stepstep (and also every ndump

timesteps to a file named coords.dd.NN.phiφ.pp).
Italicized quantities indicate the numerical values of the
various parameters.

TABLE II. Principal user-adjustable parameters defined in
hdMD. Each of these may be adjusted by editing one line of
code in main(). Alternatively, they may be straightforwardly
converted to command-line parameters.

Name Definition

nthermo Steps between getthermo() calls

nvhc Steps between getvanHove() calls

nbaro Steps between Berendsen() calls

nrestart Steps between writerestart() calls

ndump Steps between writecoords() calls

nbet Steps between needsrebuild() calls

nmin Steps between FIRE() calls

nswap Steps between swapmove() calls

nmsdstart Steps before MSD calculation begins

nchunk Chunk size for integration of EOM

Ttarg, Ptarg Target temperature and pressure

τtemp, τpress Temperature and pressure damping times

Ethres, Fthres Convergence criteria for FIRE()

maxiter Maximum number of FIRE iterations

∆max Maximum particle displacement/timestep

baroflag True (false) for NPT (NVT) simulations

minflag True (false) if performing (not performing)

periodic energy minimization

vhcflag True (false) if performing (not performing)

van Hove correlation function calculations

After initial states are prepared using either of the two
methods outlined above, hdMD’s main loop (i.e. time inte-
gration for nsteps MD timesteps) begins. Before describ-
ing the structure of this main loop, however, we discuss
some implementation details particular to hdMD that we
found optimize its performance. First, rather then em-
ploying three 2D arrays of format r[N][d], v[N][d], and
f[N][d] for the positions, velocities and forces as is done
in (e.g.) LAMMPS [5], we store all three in a single 1D ar-
ray (rvf) of length 3dN . Second, for all parallel for loops
of length ∼ dN , we employ the OpenMP scheduling di-
rective schedule (static,nchunk) with nchunk = 100.
Both of these choices speed up the code by improving its
cache locality; see Section III B.
hdMD’s main loop is structured as follows:

• needsrebuild() is called once every nbet timesteps
to determine whether particles’ VLs need to be re-
built (Section II C).

• On timestep nmsdstart, the positions rinit that will
be used as the reference state for followup calculca-
tions of particles’ mean-squared displacement, van
Hove correlation function, etc. (Section II E) are
stored in memory and written to rinitfile.

• getthermo() is called once every nthermo timesteps.

• If vhcflag is set to true and and step ≥ nmsdstart,
getvanHove() is called once every nvhc timesteps.

5

• writerestart() is called once every nrestart

timesteps.

• If minflag is set to true and step ≥ nmsdstart,
FIRE() is called once every nmin timesteps.

• swapmove() is called once every nswap timesteps
provided p > 0 (Section IID).

• Newton’s equations of motion are integrated for-
ward in time by the increment ∆t = nbetdt by call-
ing leapfrog() nbet times.

Here step indicates the timestep #. nbet is analogous
to LAMMPS’ “delay” parameter [5]; large values re-
duce simulation runtimes slightly but run the risk of
insufficiently-frequent VL builds that lead to lost-atom
crashes. For the T = 0.25ǫ̃/kB runs described below,
we found that nbet = 5 was sufficiently low to ensure
stability of the runs. Lower T allow larger nbet values.
Newton’s equation of motion are integrated via the

“kick-drift-kick” variant of the leapfrog method [49].
For maximum efficiency, thermostatting in NVT sim-
ulations (see Section II E) is implemented as part of
leapfrog()’s second kick (i.e. its second velocity up-
date); this improves cache locality. Force evaluation
within getforce() is handled in standard fashion, with
one exception; for d > 5, the pair distance calculation

rij =

d
∑

k=1

(~rj − ~ri) · x̂i, (5)

where x̂i is the unit vector pointing along the ith spatial
axis, is truncated before its completion if the partial sum
exceeds the cutoff radius.
Efficient energy minimization is implemented using the

semi-implicit Euler variant of the “FIRE 2.0” update
[42] to the original FIRE algorithm [41]. hdMD’s FIRE()
routine takes two arguments: Ethres and Fthres. Mini-
mization stops when the average pair energy drops below
Ethres, the fractional pair energy drop

F =

∣

∣

∣

∣

Ei+1 − Ei

Ei

∣

∣

∣

∣

(6)

is smaller than Fthres for ten consecutive iteration
steps, or the iteration count reaches maxiter. Dur-
ing the abovementioned “pushoff”, complete energy
minimization is unnecessary, so we set Ethres = ǫ.
hdMD also includes steepest(), a standard adapative-
timestep gradient-descent energy minimization routine
which stops when the average pair energy drops below
Ethres (its only argument).

C. Cell setup and Verlet-list building

As discussed above, hdMD’s simulation cells are hyper-
cubes of side length L, divided into Nsc = nd

cell cubic

subcells with side length Lsc ≡ L/ncell. Here

ncell = floor

(

L

R 1

2d σ̃ + s

)

, (7)

where R 1

2d σ̃ is the diameter of the largest particles, s is
the skin depth, and floor[x] rounds x downward to the
nearest integer, e.g. floor[12.3] = 12. All particles’ VLs
are rebuilt any time needsrebuild() finds that at least
0.1% of particles have moved by at least s/2 or any par-
ticles have moved by at least s since the previous build.
Partial VL builds wherein only the VLs of particles that
have moved by at least s/2 and those in neighboring sub-
cells are rebuilt [50] increased runtimes for simulations
like those reported below, so this capability was not in-
cluded in the final code. We found that s = .25σ̃ works
well for a wide range of conditions and use this value in
all simulations reported below.
The maximum cutoff radius for inclusion in any parti-

cle’s VL, rmax
c = R 1

2d σ̃ + s, is the maximum interaction
range, (i.e. the maximum interparticle distance for which
nonzero forces can arise) plus s. Thus Lsc is equal to or
slightly larger than rmax

c . Many modern MD codes em-
ploy smaller subcells of side length equal to or slightly
larger than rmax

c /2 and link each subcell to its 5d−1 near-
est neighbors (as opposed to its 3d−1 adjacent neighbors
as discussed above). Implementing these smaller subcells
multiplies the number of pair distances which must be
evaluated during VL builds by a factor ∼ (5/6)d and
often speeds up VL building [11, 51]. However, it also
leads to increased overhead because Nsc increases by a
factor ∼ 2d. We find that for the short-ranged inter-
actions employed here, the reduction in the number of
pair-distance calculations is outweighed by the increased
overhead. However, the smaller-subcell approach is likely
faster for sufficiently-long-ranged interactions and can be
implemented by editing two lines of code in main().
The linked subcells and machinery for VL-building are

set up at the beginning of any simulation. Subcells cen-
tered at

~R =
d

∑

i=1

(

−1

2
+

Ci + 1/2

ncell

)

Lx̂i, (8)

where Ci is an integer satisfying 0 ≤ Ci < ncell, and
the −1/2 term is present because the simulation cell is
centered at the origin, are given the index

I =

d
∑

i=1

Cin
d−i
cell . (9)

Thus each subcell has a unique I ∈ {0, 1, 2, ...,Nsc−1} as
well as a unique set of {Ci : i = 1, 2, ..., d}. These are de-
fined when setupsupercell() is called at the beginning
of a simulation.
Building the VL for any given atom requires calculat-

ing the distances between it and all other atoms in its
subcell as well as the 3d − 1 neighboring subcells. This

6

FIG. 1. Basic structure of the buildneighborlist() rou-
tine. Parallelization is achieved by dividing its outermost loop
equally amongst the nthreads concurrent threads.

can be accomplished in many different ways. After con-
siderable trial and error, we found that the fastest algo-
rithm is schematically described by Figure 1. The basic
features of this algorithm are standard for molecular sim-
ulations [4], but we found several details of this approach
that are standard and work well for d ≤ 3 perform poorly
in higher d and needed to be modified as detailed below.
First, implementing the outer single loop over all cells

I = 0, 1, ...,Nsc − 1 rather than a d-deep loop over the
{Ci} both provided a substantial speedup and allowed
construction of a buildneighborlist() routine in which
d is a parameter and thus works for arbitrary d ≥ 2.
A comparable speedup was achieved by implementing
a single second-from-outer loop over each subcell’s 3d

linked subcells rather than the more geometrically intu-
itive approach of a d-deep loop over the linked subcells’
∆Ci = −1, 0, 1 for each i = 1, 2, ..., d.
Second, while the most intuitively obvious way of han-

dling the linked-subcell structure is to store it in static
memory by identifying each subcell’s 3d − 1 neighbor-
ing subcells at the start of the simulation and including
pointers to each neighbor in each subcell’s data structure
(e.g. as a private variable in a “subcell” class object in
C++) works well for d ≤ 3, this approach has a substan-
tial memory cost that significantly increases simulation
runtimes in larger d. We found that substantially better
perfomance is achieved when each subcell’s neighboring
subcells are identified in the first step of the outermost
loop in Fig. 1, i.e. each time the VL is built.
Third, we found that implementing the outer double

loop over subcells and inner double loop over particles
in these cells provides a substantial speedup relative to
alternative loop orderings, and this speedup increases
rapidly with increasing d. For example, we found that

the runtimes of simulations like the d = 6 φ = φd runs
discussed in Sections III-IV are ∼ 40% larger when the
order of the second and third loops in Fig. 1 is reversed.
The procedure described above requires ncell ≥ 3 to

function correctly, and has an O(N2) computational cost
when ncell = 3. Therefore we also included a more ef-
ficient O(N2) VL-building routine buildNsq() that re-

places it whenever floor(L[R 1

2d σ̃+s]−1) ≤ 3. buildNsq()
eliminates the subcells entirely and performs only the
bottom three steps depicted in Fig. 1. For the remainder
of this paper, we focus on larger systems where ncell > 3.

D. SWAP Monte Carlo

Over the past decade, SWAP Monte Carlo, which
speeds equilibration of deeply supercooled liquids by
many orders of magnitude by exchanging particles’ di-
ameters [20, 40], has revolutionized simulations of the
glass/jamming transition. For example, showing that
SWAP allows equilibration of hard-sphere liquids with
φ > φMRJ [52] proved that φMRJ is not the endpoint
of the equilibrium-liquid branch of their phase diagram
[53]. The algorithm was recently extended to d > 3; Ref.
[22] showed that while the dynamical speedup it produces
decreases exponentially with increasing d, it remains sub-
stantial for d as large as 8. Therefore we included SWAP
capability in hdMD, and describe it here.
Once every nswap timesteps, the main() routine calls

swapmove(). This function controls all aspects of SWAP-
ping. First it generates lists of the atom indices {i}
and {j} for which the swaps σi ↔ σj , ǫi ↔ ǫj , and
mi ↔ mj will be attempted. Both {i} and {j} are of
length pN (Sec. II B); the included indices are chosen
randomly. Next it generates the VLs for these sets using
the subroutine buildNLs(). This routine operates differ-
ently than buildneighborlist() for two reasons. First,
to properly calculate potential energy changes, full VLs
(as opposed to the half-VLs outlined in Section II C) are
required. Second, there is no reason to loop over all Nsc

subcells during this process. Instead, the subcell indices
{Ii} and {Ij} are identified in advance. This process,
as well as the actual population of the VLs {Li} and
{Lj}, are parallelized. Specifically, the VL-building loops
of length pN over the {i} and {j} are divided equally
amongst the nthreads threads.
After the VLs are built, the actual swapping is exe-

cuted serially, by the master thread. The total potential
energy associated with interactions involving particles i
and j is initially

Eb =
∑

k

Ua(ǫik, σik, rik) +
∑

l

Ua(ǫjl, σjl, rjl), (10)

where the sums are respectively over the particles {k}
and {l} neighboring them. This energy becomes

Ea =
∑

k

Ua(ǫjk, σjk, rik) +
∑

l

Ua(ǫil, σil, rjl). (11)

7

if the swap is accepted, and the particles’ velocities are
rescaled to conserve kinetic energy. Swaps are accepted
or rejected using the standard Metropolis criteria.

E. Temperature and pressure control,

thermodynamics metrics

While the results presented below are all from NVT
simulations, hdMD also includes a Berendsen barostat
[54] that allows NPT simulations to be performed.
The target pressure Ptarg and target temperature Ttarg

can be set at the initiation of the MD run, or can
be ramped by resetting them within main()’s main
loop. Every time Berendsen() is called, it checks
whether ncell (Eq. 7) has changed since the last time it
was called, and if it has, calls setupsupercell() and
then buildneighborlist() to repopulate the subcells.
As mentioned above, for NVT simulations (i.e. when
baroflag is set to false), Berendsen thermostatting is
implemented within leapfrog().
hdMD’s getthermo() routine calculates standard ther-

modynamic quantities like the temperature, pair energy
Epair from Eq. 1 or its user-defined replacement, pres-
sure P , and average coordination number Z. Calculation
and output of these quantities is performed once every
nthermo steps. Since hdMD will likely be used primarily
for glass/jamming-transition-related studies, it also (by
default) calculates particles’ mean squared displacements
〈(∆~r)2〉 and mean quartic displacements 〈(∆~r)4〉 since
step nmsdstart, the non-Gaussian parameter

α2 =
d〈(∆~r)4〉

(d+ 2)〈(∆~r)2〉2 − 1 (12)

and overlap function

fov = N−1

N
∑

i=1

Θ(0.1dσ̃ − |∆~ri|) (13)

Eq. 12 is the d-dimensional generalization [30] of the
usual 3D expression for α2 (3〈(∆~r)4〉/5〈(∆~r)2〉2 − 1). In
Eq. 13, Θ is the Heaviside step function, and fov is a
simple, commonly used metric for particle relaxation in
deeply supercooled liquids. It varies continuously from
1 to zero as particles hop away from their initial posi-
tions, and provides roughly the same information as the
self-intermediate scattering function Fs(q, t) evaluated at
q = 2π/σ̃ [20]. Finally, hdMD’s getvanHove() routine cal-
culates the self part of the van Hove correlation function

Gs(r, t) =
1

N

N
∑

i=1

δ (|~ri(t)− ~ri(0)| − r) , (14)

where δ(x) is the Dirac delta function. Note that hdMD’s
main loop is structured in such a way that additional
periodic calculations of other thermodynamic quantities
can easily be added by the user.

III. PERFORMANCE OF SIMULATIONS AT

φ ≃ φd FOR 3 ≤ d ≤ 6

A. Theoretical Background

The dynamical glass transition packing fraction φd is
defined as the packing fraction at which a supercooled d-
dimensional hard-sphere liquid’s diffusivity would drop
to zero if there were no hopping motion [14]. Hopping
makes the actual packing fraction at which diffusivity
drops to zero substantially higher, but examining systems
with φ ≃ φd has proven very fruitful [30, 55] for under-
standing the ways in which finite-d supercooled liquids
and glasses differ from their exactly-solvable, mean-field
counterparts [36, 56]. In this section, we examine hdMD’s
scalability and parallel efficiency for simulations of sys-
tems at packing fractions and temperatures that map
to φd but have orders-of-magnitude-larger N than have
been employed in previous d > 3 studies [15, 17, 18, 21–
24, 30–32, 55–58]. We show that its performance (as
judged by these metrics) is comparable to those achieved
by popular d = 3 MD codes [5–10]. Then we examine
how hdMD’s performance varies with d. We show that in
the large-N limit it is nearly optimal, i.e. the runtime per
pair distance calculation is nearly d-independent.

Results from simulations employing the Morse poten-
tial can be compared to hard-sphere results by con-
sidering systems at the same effective packing fraction
φeff = φσd

eff , where the temperature-dependent effective
hard-sphere diameter [2] is

σeff(a, T) =

∫ σ̃

0

[1− exp (−Ua(r)/kBT)] dr. (15)

More accurate mapping to hard sphere results can be
achieved using a refined version of this method [59], but
since the primary focus of this paper is demonstrating
the utility of hdMD rather than precisely matching hard-
sphere results, we use Eq. 15 to estimate the dynamical-
glass-transition packing fractions φ∗

d for a = 30 and T =
0.25ǫ/kB (Table III).

TABLE III. Dynamical-glass-transition packing fractions φd

for hard-spheres [30], the associated σd
eff values for a = 30

and T = 0.25ǫ/kB (Eq. 15), and the packing fractions
φ∗

d = [σeff (30, 0.25ǫ/kB)]−dφd employed in the simulations
discussed in this section.

d φd [σeff (30, 0.25ǫ/kB)]d φ∗

d

3 0.5770 0.9650 0.5980

4 0.4036 0.9536 0.4232

5 0.2683 0.9423 0.2847

6 0.1723 0.9312 0.1850

8

B. Scaling of runtimes with N , nthreads, and d

Figure 2 summarizes hdMD’s scalability and parallel ef-
ficiency for short (100τ) simulations of supercooled liq-
uids at this temperature and φ = φ∗

d for 3 ≤ d ≤ 6. All
simulations include 10 FIRE energy minimizations and
100 SWAP-MC passes, respectively performed once ev-
ery 10τ and once every τ after the simulation begins.
The FIRE minimizations employ Ethres = 10−25ǫ̃, and
the SWAP passes employ p = 0.1, which is close to the
optimal value [20]. For a = 30, dt = 0.0016τ , so there are
625 MD timesteps per τ and thus 62500 total timesteps
in each simulation.
Panels (a-b) show how runtimes increase with N for

103.5 ≤ N ≤ 107 for 3 ≤ d ≤ 4 and 105 ≤ N ≤ 107

for 5 ≤ d ≤ 6. For N ≤ 105, runtimes scale as Ny with
y ≃ 1.04, which is very close to the optimal linear scaling.
As dN increases beyond ∼ 106, the particles’ rvf array
(Sec. II B) can no longer easily fit within the CPU’s L3
cache, and calls to getforce() produce more and more
cache misses. This worsens the runtime scaling to 1.1 .
y . 1.15, which is suboptimal, but only slightly so. Some
standard (d = 3) MD codes that are optimized for large
N (e.g. LAMMPS [5]) periodically re-order particle ids
by the particles’ positions along one dimension [50, 60].
This improves their large-N scaling by improving cache
locality. Since N = 105 should be large enough for most
glass-transition-related studies likely to be conducted in
the next few years, we have not yet implemented this
feature in hdMD, but it can easily be added; we may do
so in the near future.
Panel (c) shows how parallel efficiency (PE) decreases

as nthreads increases for N = 106 simulations on a typi-
cal mid-2010s dual-socket cluster node. For nthreads = 2,
PE values are ∼ 85%. This is typical for numerical ap-
plications of OpenMP; PE is never 100% because there
is a ∼ 10µs overhead associated with parallelizing any
for loop. As discussed above, some of the tasks exe-
cuted during these simulations, e.g. the assignment of
particles to subcells and the SWAP moves, are not par-
allelized or readily parallelizable. Fortunately, PE drops
only slowly as nthreads increases. As shown in the figure, a
very loose lower bound for PE is (83−1.5nthreads)%, and
higher-d simulations have considerably larger PE. For
large N , hdMD’s efficiency-limiting factor appears to be
the memory-bound force-evaluations; increasing nthreads

increases the rate of cache misses in getforce(). Thus
PE(nthreads) might also be improved by implementing
particle-id reordering. We leave this for future work, but
emphasize that since VL-building is less memory-bound
than integration of the EOM, PE(nthreads) actually in-
creases with increasing d.

Next we discuss how runtimes for fixed N and nthreads

vary with d. In general, runtimes for fixed φ̂ = 2dφ
must increase with d for two reasons. First, the effort re-
quired for VL building scales with NVl ∼ 3d as discussed
above. Second, the size of particles VLs in these runs
scales as ρdv(d, σ + s) (Eq. 2). For these φ = φ∗

d runs,

d = 3

d = 4

d = 5

d = 6

104 105 106 107
1

10

100

1000

104

105

106

N

t (

s

)

(a)

1�-3N

1�-2N1.15

106 107 108 109
10-3

10-2�5

10-2

10-��5

10-1

���� o� RVF (b�	��)
t(

s

)/

(b)

0 5 10 15 20 25

0.5

0.6

0.7

0.8

0.9

1.0

n��
����

E
��
��
��
�
�
�

(c)

�0�� - 0�1.nthr

�0�. - 0����nthr

FIG. 2. Scaling of performance with N and nthreads for
3 ≤ d ≤ 6. Runtimes for panels (a-b) are for nthreads = 8
simulations run on an iMac with a single 10-core Intel Core
i9 CPU (3.6GHz). Results for N < 105 and d > 4 are not
shown here because these N give ncell ≤ 4 and the scaling
of the time devoted to VL builds is closer to O(N2) than
O(N). Runtimes for panel (c) are for N = 106 simulations
on cluster nodes with two 12-core Intel Xeon E5-2650 CPUs
(2.2GHz). The larger efficiencies for nthreads > 12 probably
arise from distributing the computational effort to more than
CPU socket. Solid lines in panels (a, c) are guides to the eye,
and the dotted vertical line in panel (b) indicates the iMac’s
L3 cache size (20MB).

NVl = 11.0, 19.4, 31.9, and 50.4 in d = 3 − 6. Thus
the runtime per pair distance calculation in getforce(),
i.e. t/[nstepsNVl], is a good metric for comparing run-
times across different d. Results for all N ≥ 105 systems
are shown in Figure 3. For the smaller N , t/NVl in-
creases rapidly with d because ncell drops to low values
(e.g. ncell = 4 for N = 105 and d = 6) and thus a large

9

� = 105

� = 105.5

� = 106

� = 106.5

� = 107

3 4 5 6
1.5

3.0

6.0

12

��

d

R
�
�
 !
"
#

/N

V
$

(�
n

)

FIG. 3. Scaling of performance with d. Runtimes are for
nthreads = 8 simulations run on an iMac with a single 10-core
Intel Core i9 CPU (3.6GHz).

fraction of the N particles must be searched over during
the building of each particle’s VL. For N ≥ 106, however,
t/NVl increases far slower, only increasing by a factor of
∼ 2 as d increases from 3 to 6. This indicates that for
large simulations the scaling of hdMD runtimes with d is
nearly optimal given that pair-distance calculations are
the rate-limiting factor.

TABLE IV. Runtime percentages for nthreads = 8 simulations
with N = 105 (top rows) and N = 107 (bottom rows).

d Leapfrog VL-building Minimizations SWAP Other

3 83.9 11.1 2.1 1.2 1.7

4 72.0 22.4 1.5 2.9 1.2

5 47.5 45.9 1.0 4.6 1.0

6 26.0 67.2 0.7 5.3 0.7

3 90.6 5.5 1.5 0.6 1.7

4 88.2 7.6 1.5 1.4 1.4

5 72.2 20.1 1.3 3.5 3.0

6 42.8 43.5 0.8 4.2 1.8

The trends shown in Fig. 3 can be understood by ex-
amining in greater detail how simulation runtimes are
divided among hdMD’s various routines. Table IV lists
the runtime percentages devoted to leapfrog integra-
tion, VL building, energy minimizations, and SWAP for
N = 105 and N = 107, which are representative of sim-
ulations of moderately-sized and very-large systems. For
both N , the percentage of simulation runtimes spent in
VL-building (leapfrog integration) increases (decreases)
rapidly with increasing d. However, the fractional in-
creases/decreases in these percentages as d increases from
3 to 6 are far greater for N = 105 than for N = 107. This
explains why the runtimes per pair distance calculation
increase faster with d when N is smaller and vice versa.
Taken together, the above results show that hdMD

makes large-N simulations practical in d up to 6, even
with modest computational resources. In the following

section, we demonstrate how this feature can be exploited
to obtain novel physics results.

IV. HETEROGENEOUS DYNAMICS IN

DEEPLY SUPERCOOLED d = 6 LIQUIDS

A. Breakdown of the Stokes-Einstein relation

Three recent simulation studies [30–32] of dynamical
heterogeneity in supercooled liquids in 3 ≤ d ≤ 10 have
reported that it weakens with increasing d. However,
as mentioned in the Introduction, it may be that the
heterogeneous dynamics in these simulations artificially

weakened with increasing d because they employed small
fixed N < 104 and periodic boundary conditions with
L ∼ N1/d that may have dropped below the charac-
teristic size L of the liquids’ spatial heterogeneities [61].
Whether this is so can be determined by simulating liq-
uids with fixed L rather than fixed N over a compara-
ble range of d, taking care that L > L for all d [62].
As described above, hdMD’s efficient parallel implemen-
tation makes it well suited to doing so. Here we moti-
vate such studies by showing that d = 6 supercooled liq-
uids can be substantially more heterogeneous that previ-
ously reported, and provide some initial evidence that the
strengths of the Stokes-Einstein-relation (SER) break-
downs reported in Refs. [30–32] were artificially sup-
pressed by the small system sizes they employed.
Figure 4 shows dynamical results for supercooled d = 6

liquids with 1.02φ∗

d ≤ φ ≤ 1.05φ∗

d (Section III A, Table
III). To obtain a cleaner comparison to the results of
Refs. [30–32], all particles in these simulations were given
equal masses (mi = m̃ = 1). All systems have N = 105

and were SWAP-equilibrated at kBT = 0.25ǫ̃ for at least
1.75×104τ . Following the equilibration runs, SWAP was
turned off and systems were evolved forward in time for
another T = 105τ (also at kBT = 0.25ǫ̃). No ensemble
or time averaging was performed.
Panel (a) shows particles’ mean squared displacements

〈[∆~r(t)]2〉. The increasing MSD plateau length with in-
creasing φ is typical for supercooled liquids [63], as is the
gradual increase in the slope ζ(t) ≡ d ln[〈∆~r(t)]2〉]/d ln(t)
towards 1 as systems approach the Brownian-diffusive
regime. All systems reach this regime well before t = T ,
and the values of 〈[∆~r(T)]2〉/σ̃2 are all well above 1, indi-
cating that typical particles have hopped multiple times
by the end of these simulations even for φ = 1.05φ∗

d.
Panel (b) shows particles’ overlap parameter fov(t).

Again, all results are typical for supercooled liquids. Fol-
lowing Refs. [20, 32], we define the alpha relaxation times
(τα) for these liquids using the criterion fov(τα) = e−1.
Numerical results for τα, the diffusion coefficients D =
limt→∞〈[∆~r(t)]2〉/2dt, and several related quantities are
shown for a wider range of φ in Table V. As shown in the
inset, the fov(t) curves do not collapse when plotted vs.
τ/τα, indicating that time-density superposition breaks
down in these systems. fov(t/τ) decreases faster as φ in-

10

ϕ = 1.02ϕd
*

ϕ = 1.03ϕd
*

ϕ = %&'(ϕd
*

ϕ = 1.05ϕd
*

1 10 100 1000 104 105

0.05

0.10

0.50

1

5

10

50

t

<
(Δ
r
)2

>

/σ˜
2

(a)

10
-)
t

2.5·10
-3
t

1 10 100 1000 104 105
0.0

0.2

*+,

0.6

0.8

1.0

t

f /
6

(b)

10-3 10-2 10-1 100 101
0.0

0.2

789
0.6

0.8

1.0

t/τα

f :
;

1 10 100 1000 104 105
0

1

2

3

,

t

2

(<)

FIG. 4. Dynamics of supercooled d = 6 liquids for 1.02φ∗

d ≤
φ ≤ 1.05φ∗

d and kBT = 0.25ǫ̃. Panels (a-c) respectively show
the mean-squared displacement, overlap parameter fov (Eq.
13), and non-Gaussian parameter (Eq. 12). Straight gray lines
in panel (a) are guides to the eye, and dotted vertical lines in
panels (b-c) indicate t = τα. All times are given in units of

τ =
√

m̃σ̃2/ǫ̃ (Sec. II A).

creases because the dynamics of small and large particles
have decoupled; larger particles’ mobility is decreasing
faster with increaing φ than that of their smaller coun-
terparts. Such decoupling has long been associated with
dynamical heterogeneity [63–65].

Panel (c) shows results for the non-Gaussian parameter
α2(t). As expected from previous d = 3 studies [63], re-
sults for different φ fall on a common curve at small t and
exhibit maxima α2,max(φ) at times τ∗(φ) that increase
with φ slower than τα(φ). As expected for relatively-low-
temperature liquids, α2,max ∼ τxα with x ≃ 0.3 [66–68].

Intriguingly, the α2(τα) values increase roughly logarith-
mically with τα as φ increases rather than as a power
law, i.e. α2(τα) ∼ ln(τα).
At longer times, rather than trending back to zero

as is the case when monodisperse systems are consid-
ered or α2 is calculated using only one component of a
bidisperse mixture [30–32, 63], all systems’ α2(φ, t) decay
very slowly (over timescales of order 102τα) towards finite
plateau values α2,∞ that increase rapidly with φ. Finite
α2,∞ are expected since smaller particles have larger dif-

fusion coefficients Di = D̃(σi), where D̃ is an a priori

unknown function that captures the particle-size depen-
dence of diffusivity. Quantitatively, one expects [69]

α2,∞ =
〈D̃2〉
〈D̃〉2

− 1, (16)

where

〈D̃n〉 =
∫ σmax

σmin

P (σ)[D̃(σ)]ndσ. (17)

For the particle-size distribution employed here [i.e.
P (σ) ≡ P (6, 6, σ) from Eq. 3], assuming all particles obey

the classical relation D̃(σ) ∝ kBT (ησ)
−1 [where η is vis-

cosity] predicts α2,∞ ≃ .047. Actual α2,∞ values are
much larger and increase rapidly with increasing φ, con-
sistent with the well-known result that deviations of D̃(σ)
from this formula strengthen with increasing φ or de-
creasing T [70]. This contributes to the abovementioned
breakdown of t-φ superposition. One expects, based on
previous studies of polydisperse d = 3 supercooled liquids
performed as far back as the mid-2000s [71, 72], that it
will also contribute to the SER breakdown, indicated by
the increase in Dτα with increasing φ, that occurs as par-
ticle motion becomes increasingly hopping-dominated.
While the qualitative behaviors summarized in Figure

4(c) and Table V are unremarkable in and of themselves,
they are noteworthy because they show in two distinct
ways that high-d supercooled liquids can be more hetero-
geneous than previously reported. First, the α2,max val-
ues are substantially higher than any reported in Refs.
[30, 32], neither of which showed any α2,max > 1.6 for
d = 6 liquids at any T or φ. The recently demon-
strated one-to-one correspondence between α2,max and
the kinetic fragility m∗ [66] implies that these liquids are
also more fragile than any d = 6 liquids studied in Refs.
[30, 32]. Second, they show that the SER violations in
these liquids (as quantified via the relation Dτα ∼ τωα)
can be much stronger than observed in Refs. [31, 32].
The quantity ω is of particular interest for its abil-

ity to shed light on the d-dependence of dynamical het-
erogeneity in supercooled liquids [62]. D is dominated
by the fastest (smallest) particles, while τα is primarily
set by the slowest (largest) particles [72]. Since τα in-
creases with φ faster than D decreases, the product Dτα
increases with both φ and τα, implying ω > 0. The
strength of this effect should decrease with increasing
d because particles’ cages become more mean-field-like

11

TABLE V. Measures of mobility and dynamical heterogeneity
in supercooled d = 6 liquids. τα and τ∗ are given in units of
τ =

√

m̃σ̃2/ǫ̃ (Sec. IIA). Results for φ ≤ 1.04φ∗

d are well

fit by D ∼ (φ̃d − φ)γD and τα ∼ (φ̃d − φ)−γτ , with φ̃d =
1.068φ∗

d = .1976, γd ≃ 8/3, and γτ ≃ 10/3. α2,∞ values are
given only for systems in which α2(t) has clearly reached its
plateau value by t = 105τ .

φ/φ∗

d Dσ̃−2τ τα α2,max τ∗ α2(τα) α2,∞

1.00 4.11×10−3 2.09×102 1.06 30 0.735 0.41

1.005 3.40×10−3 2.63×102 1.15 32 0.769 0.45

1.01 2.67×10−3 3.58×102 1.24 59 0.847 0.49

1.015 2.13×10−3 4.77×102 1.40 66 0.898 0.54

1.02 1.62×10−3 6.57×102 1.54 75 0.992 0.59

1.025 1.22×10−3 9.92×102 1.79 91 1.079 –

1.03 8.72×10−4 1.54×103 2.00 127 1.154 –

1.035 6.09×10−4 2.58×103 2.40 126 1.321 –

1.04 4.02×10−4 4.63×103 2.93 158 1.455 –

1.045 2.52×10−4 1.03×104 3.56 295 1.613 –

1.05 1.46×10−4 2.67×104 4.44 598 1.770 –

[30]. Mean-field theories predict D ∼ (φd − φ)γ and
τα ∼ (φd − φ)−γ as φ approaches φd from below, imply-
ing ω = 0. Additional theoretical analyses predict that ω
should vanish above the upper critical dimension du = 8
[73]. Numerical results in Refs. [31, 32] were consistent
with this hypothesis, and suggested ω ∼ (du − d). On
the other hand, studies of the mean-field Mari-Kurchan
model [55] showed ω ≃ .22 for all 2 ≤ d ≤ 6, while a
recent study of the kinetically constrained East model
showed [74] that ω remains finite for all d ≤ 10 and may
remain finite in the d → ∞ limit, suggesting that this
issue has not yet been resolved.

The D(φ) and τα(φ) data shown in Table V are qual-
itatively consistent with those reported in many previ-
ous studies. For φ not too close to the packing fraction
φ̃d where diffusive motion ceases, D ∼ (φ̃d − φ)γD and

τ ∼ (φ̃d − φ)−γτ , where φ̃d is several percent above φ∗

d
[55] and (in contrast to mean field theories) γτ > γD.

Thus Dτα ∼ (φ̃d − φ)γD−γτ ∼ τωα with ω = 1 − γD/γτ .
Figure 5 shows Dτα vs. τα for these systems. Lower-
density (φ . 1.02φ∗

d) liquids’ results fall on a common
curve Dτα ∼ τωα with ω ≃ 0.2. At higher densities, a
crossover to a stronger dependence Dτα ∼ τyα is observed
as systems become sluggish, consistent with Fig. 7(b) of
Ref. [31]. Overall, the trends are the same as found in
Refs. [31, 32], but the ω value is more than twice as large
as in these studies, which respectively found ω ≃ .09 [31]
and ω ≃ .083 [32] in comparable d = 6 liquids.

There are multiple potential reasons for this difference.
For example, here we have employed a moderate-stiffness
(a = 30) Morse pair potential and moderate tempera-
ture. In contrast, Refs. [30, 31] employed hard spheres
while Ref. [32] employed soft harmonic spheres at very
low T . Thus our liquids experience thermal activation

ω = .19

y = =?@

102 103 10A 5·10A

1

2

B

τα

D

τ
α

102 103 10C 5·10C

1

2

F

τα

G

τ
α

FIG. 5. Breakdown of the Stokes-Einstein relation in super-
cooled d = 6 liquids at kBT = 0.25ǫ̃. Symbols show MD
data while lines show fits to Dτα ∼ τω

α and Dτα ∼ τy
α.

The inset contrasts results for N = 105 (same symbols
shown in the main panel) to N = 5000 results for selected
1.01φ∗

d ≤ φ ≤ 1.055φ∗

d (open circles); all results for N = 5000
are averaged over ten independently prepared systems. Note
that the range of τα depicted here is almost identical to that
considered in Ref. [32].

over energy barriers (absent from [30, 31]) and substan-
tially higher mobilities than those of [32].

Another potential reason is that our systems are much
larger, with N = 105 rather than N = 5000−8000 as was
the case in Refs. [30–32]. As discussed above, one expects
dynamical heterogeneity to increase with system size. To
investigate this possibility, we characterized the dynam-
ics of N = 5000 systems at the same {φ} and T . We
found that D decreases with φ slightly slower in these
liquids than in their N = 105 counterparts, but τα in-
creases substantially slower, particularly for φ & 1.03φ∗

d.
Results for Dτα for these liquids are shown in the inset
to Fig. 5. Plainly Dτα grows slower with increasing φ
than in the N = 105 liquids, and as a consequence, the
apparent breakdown of the SER is weaker. This differ-
ence presumably arises because periodic boundary con-
ditions cap the characteristic size of cooperatively rear-
ranging regions within a model supercooled liquid at L;
theN = 5000 liquids’ smaller L reduces the characteristic
size of their cooperatively rearranging regions and hence
their τα [28]. If true, this would explain these liquids’
delayed crossover to the stronger Dτα ∼ τyα scaling.

It is reasonable to suppose that when comparing sys-
tems with fixed N and φ/φ∗

d across multiple d as was
done in Refs. [30–32], the decrease in L with increasing d
produces a comparable (artificial) reduction in the mea-
sured Dτα and perhaps also in the inferred ω [75]. As
mentioned above, this hypothesis could be tested using
simulations where L rather than N is fixed [62]. Our
present focus is not to resolve this issue – finite-size ef-
fects on the dynamics of supercooled liquids are decidedly
nontrivial [61] – but rather to demonstrate that hdMD is
well-suited to doing so.

12

B. Comparison to bidisperse systems

A third potential reason for the larger α2,max and ω re-
ported above is our use of continuously-polydisperse P (σ)
(Eq. 3). To investigate this possibility, we repeated the
N = 105 studies highlighted in Figs. 4-5, using the 50:50
1:1.4 bidisperse P (σ) employed in Ref. [32] and many
other studies of the glass-jamming transition [38]. For
maximal consistency with Ref. [32] and other previous
studies, we set ǫsmall = ǫlarge = ǫ̃ [47].

ϕ = 1.03ϕd
*

ϕ = HIJKϕd
*

ϕ = 1.05ϕd
*

ϕ = 1.06ϕd
*

ϕ = 1.07ϕd
*

1 10 100 1000 104 105
0.0

0.5

1.0

1.5

2.0

t

α
2

(a)

1 10 100 1000 104 105
0.0

0.2

LMO

0.6

0.8

1.0

t

f P
Q

(b)

FIG. 6. Heterogenous dynamics of supercooled 50:50 1:1.4
bidisperse d = 6 liquids. Following Refs. [32, 63], we calcu-
lated α2(t) and fov(t) separately for small and large particles.
Panel (a) shows α2(t) for the large particles, while panel (b)
shows fov(t) for all particles.

Figure 6 illustrates two aspects of these bidisperse liq-
uids’ heterogeneous dynamics. Panel (a) shows the large
particles’ α2(t) for selected φ. The finite-α2,∞ plateaus
vanish, as expected [63]. Compared to results shown in
Fig. 4(c), the α2,max are lower for systems with compa-
rable τ∗. While they are substantially higher than those
reported in Ref. [32], they are comparable to those re-
ported in Ref. [30]. For φ . 1.06φ∗

d, if only large particles

are used to estimate both D and τα, these systems have
Dτα ∼ τωα with ω ≃ 0.1, consistent with Refs. [30–32],
Other metrics, however, indicate that dynamics in

these liquids are in fact far more heterogeneous than their
P ∝ σ−d counterparts, as might have been expected from
their larger size asymmetry. For example, their fov(t)
[panel (b)] indicate a decoupling of large and small parti-

cles’ dynamics that is much stronger than that shown in
Fig. 4(b). These data raise the question: which method
of averaging dynamics results from polydisperse super-
cooled liquids best captures their essential physics?

C. Non-Gaussian particle caging

Closely related to the above discussion is the issue of
caging. The probability P (~r, t) that a particle initially
located at the origin is at position ~r at time t is P (r, t) =
Gs(r, t)/A(d, r), where

A(d, r) =
dπd/2rd−1

Γ(1 + d/2)
(18)

is the area of a d-dimensional hyperspherical shell of ra-
dius r; here we have assumed isotropy in rewriting P (~r, t)
as P (r, t). Einstein’s theory of Brownian motion predicts
that P (r, t) is Gaussian, and the central limit theorem
requires that it become Gaussian after sufficiently long
times. At shorter times, however, P (r, t) is non-Gaussian
in a very wide variety of systems, including systems near
glass and jamming transitions [33, 34]. Exponential tails
of form PE(r, t) ∝ exp[−r/Λ(t)] are universal in systems
where particles have hopped a random number of times
[34, 76], with λ(t) typically growing either as t1/2 or as
t1/d [34, 76–81]. In a dynamically heterogeneous liquid,
these tails correspond to the high-mobility particles.
Quantitatively predicting how P (r, t) varies with φ

and/or T in arbitrary d is an obvious goal for any the-
ory of liquid-state dynamics. Replica theory [35, 36] and
dynamic DFT [82] assume that it is Gaussian. MCT
[83, 84], RFOT [85], the nonlinear Langevin equation
theory [65, 86], dynamical-facilitation-based theories [87],
and CTRW-based theories [34, 76–78] all predict non-
Gaussian P (r, t), with varying degrees of success. One
might expect from the increase in the number of near
neighbors and the simplification of liquids’ local structure
as d increases [15] that P (r, t) will converge to a Gaus-
sian form even at short times if d is sufficiently large.
Ref. [30] showed that in fact no such convergence occurs
for t . τα over the range 3 ≤ d ≤ 8, but did not examine
any t ≫ τα. In light of the results presented in Figs.
4-6, it is worthwhile to examine how our larger systems’
P (r, t) behave in this long-time limit.
Figure 7 shows P (r, t) for the bidisperse liquids dis-

cussed above. Data shown in panel (b) are for a density
at which the glassy dynamics are about about ten times
slower than those illustrated in panel (a). Both panels
show the same trends observed in d = 3 [34, 79–81]: the
P (r, t) are initially dominated by their exponential tails
but then slowly cross over towards a Gaussian form as t
increases. Two notable features are apparent.
First, contrary to what might be expected in higher-d

liquids but consistent with the slow decays of α2(t) il-
lustrated in Fig. 6(a), substantial exponential tails are
evident even for t = 10τα. CTRW-based theories of dif-
fusion [76–78] predict that P (r, t) converges to a fully

13

t = .3τα

t = τα

t = 3.3τα

t = 10τα

0 1 2 3 S 5
10-9

10-7

10-5

10-3

10-1

101

r/σ
˜

T

(U

)
(a)

0 1 2 3 S 5
10-9

10-7

10-5

10-3

10-1

101

r/σ
˜

T

(U

)

(b)

FIG. 7. Non-Gaussian caging in supercooled 50:50 1:1.4 bidis-
perse d = 6 liquids. Panels (a-b) show results for φ = 1.03φ∗

d

and φ = 1.06φ∗

d; these systems respectively have τα ≃ 7.8×102

and τα = 7×103. The dashed lines show fits to exponential
tails with λ = 0.301σ̃ and λ = 0.363σ̃.

Gaussian form only after all (or nearly all) particles
have hopped multiple times. For φ & φ∗

d, where mo-
bility is hopping-dominated and times between hops are
broadly distributed, this convergence should occur only
for t ≫ τα, independent of d. Second, although P (r, t) for
fixed t/τα and different φ are qualitatively similar, they
do not collapse. The exponential-tail lengths λ(t/τα)
clearly increase faster for φ = 1.06φ∗

d than for φ = 1.03φ∗

d.
This result is consistent with the decoupling illustrated
in Figs. 4(b) and 6(b); λ(t/τα) grows faster in the higher-
φ system because the disparity in mobility between large
and small particles is greater.

Since the slow crossovers to Gaussian P (r, t) have been
interpreted [79, 80] as a slow approach to ergodicity, sug-
gesting that they provide a useful metric for understand-
ing how ergodicity breaks, it would be very interesting
to quantitatively compare them across multiple d. While
we leave this as a challenge for future work, we empha-
size here that quantitative analyses of these crossovers
are likely to suffer from spurious finite-size effects if the
crossovers are not complete by the time the most mobile
particles have traveled distances & L. Taken together,
the results shown in Figs. 5 and 7 suggest that avoiding
such effects requires L & 5σ, again emphasizing the need
for an efficiently parallelized code like hdMD.

V. DISCUSSION AND CONCLUSIONS

In this paper, we described a new public-domain, open-
source parallel molecular dynamics simulation package
(hdMD) that is optimized for high spatial dimensions.
Four aspects of hdMD’s algorithmic implementation dif-
fer from those employed in most standard MD codes [5–
10]. First, since parallelization of the force evaluations
by spatial domain composition works less well in large
d than it does in d ≤ 3 (owing to the larger fraction of
any spatial domain that is within a distance σ̃ + s of its
surface), hdMD instead employs per-atom parallelization.
Second, to further reduce interprocessor communication,
hdMD uses a shared-memory OpenMP-based paralleliza-
tion strategy rather than the more commonly employed
distributed-memory MPICH-based approach. Third, to
avoid the large-for-high-d memory overhead associated
with storing pointers to each linked subcell’s 3d−1 neigh-
boring subcells, these subcells are instead efficiently iden-
tified on the fly each time the VLs are built. Fourth, d is
a parameter rather than a fixed quantity in hdMD’s var-
ious subroutines, all of which have been tested for all
2 ≤ d ≤ 10 and (in principle) work in arbitrary d.
hDMD is designed for maximum flexibility and exten-

sibility. For example, while above we presented results
for a single (stiff repulsive Morse) pair potential, using
a different potential or interaction cutoff radius requires
only editing a few lines in getforce(), getthermo(),
and swapmove(). Incorporating additional diagnostics,
e.g. calculation of the self-intermediate scattering func-
tion Fs(q, t), is intended to be comparably straightfor-
ward. For this reason, hdMD is written in “plain vanilla”
C++, and software tricks like advanced vectorization
techniques, SIMD or AVX intrinsics [88], and GPU of-
floading of the type used in several popular MD packages
[5, 9, 89], all of which can substantially increase a code’s
speed but often severely reduce its legibility, have not yet
implemented. Adding any of these could substantially
accelerate the code.

By examining the scalings of parallel simulation run-
times with the number of particles N and the number of
simulation threads nthreads, we showed that three aspects
of hdMD’s performance are already nearly optimal. First,
the runtimes scale as t ∼ N when N is small enough
for the particles’ position-velocity-force (rvf) array to fit
in the CPU’s L3 cache. Second, for large N , the run-
times per force evaluation increase only slowly with in-
creasing d, e.g. by only a factor of ∼ 2 over the range
3 ≤ d ≤ 6 for simulations of N = 106 supercooled liquids
at φ = φ∗

d. Since the computational effort to rebuild all
particles’ Verlet lists scales as 3dN , this small increase
is a major strength of the code. Third, hdMD’s parallel
efficiency is comparable to that of popular public-domain
MD codes (at least for selected problems [46, 90]), and
actually increases with increasing d owing to its efficiently
parallelized VL-building.

The total “size” of each simulation described in Section
IV (as defined by the number of particles times the dura-

14

tion of of the simulation) was NT = 1010τ , making them
among the largest d > 3 supercooled-liquid simulations
ever performed. We found that dynamical heterogeneity
in supercooled d = 6 liquids can be substantially greater
than previously reported [30–32]. In particular, we found
that the Dτα ∼ τωα scaling in continuously-polydisperse
systems with ∆ = .083 has ω ≃ 0.2, which is about
twice the value previously reported [31, 32] for d = 6.
Simulations of bidisperse systems showed ω ≃ 0.1, but
also demonstrated that particle caging can remain sub-
stantially non-Gaussian [as indicated by long exponen-
tial tails in particles’ displacement-probability distribu-
tions P (r, t)] for times as large as 10τα. These dynamics
appear to be consistent with recently proposed, CTRW-
based theories of diffusion in systems for which the ex-
ponential tails of P (r) correspond to particles that have
hopped a random number of times [76–78].

We also showed that the crossover to the stronger
Dτα ∼ τyα scaling that occurs as the continuously-
polydisperse systems become sluggish [31] occurs at a
density that decreases substantially when N is increased
from 5000 to 105. This decrease may arise from larger
systems’ ability to accommodate larger cooperatively re-
arranging regions (CRRs). Specifically, our results are
consistent with the hypothesis that for φ > φc(N), τα
grows faster with φ in larger systems of size N ′ > N
than in smaller systems of size N ′′ < N because the
former can accommodate larger CRRs which have a cor-
respondingly larger τα [28]. While the validity of this hy-

pothesis can depend on both temperature and the model
employed [61], our results nonetheless suggest that the
conclusions of many previous studies of supercooled liq-
uids in d > 3 which employed fixed N < 104 and L
that decrease as N−1/d (e.g. Refs. [15, 17, 18, 22–24, 30–
32, 55–57]) may have been substantially influenced – at
least in their quantitative details – by finite-size effects.
We have demonstrated that hdMD is well-suited to deter-
mining whether this is so.
Finally we emphasize that hdMD is also well-suited to

studying open problems that are less directly related to
the glass-jamming transition. For example, studies of
melting dynamics across multiple d can shed light on how
melting is affected by the symmetries of the crystal lattice
and by decorrelation [15] of the liquid state. Previous
studies of melting in d > 4 (e.g. [21, 91–93]) have all
employed N < 6×104, and most have employed much
smaller systems; this has severely limited the accessible
size range of any crystal-fluid interfaces. We have used
hdMD to simulate the (nonequilbrium) melting of an N =
6.25 · 105-atom E7 crystal (the densest lattice in d = 7)
subjected to a temperature ramp at constant pressure
and will report our results elsewhere.
The hdMD source code is publicly available

and can be downloaded from our group website
(http://labs.cas.usf.edu/softmattertheory/hdMD.html).
We are grateful to Patrick Charbonneau for numer-

ous helpful discussions. This material is based upon
work supported by the National Science Foundation un-
der Grant No. DMR-2026271.

[1] W. G. Hoover and F. H. Ree, “Melting transition and
communal entropy for hard spheres,” J. Chem. Phys. 49,
3609 (1968).

[2] J. D. Weeks, D. Chandler, and H. C. Andersen, “Role
of repulsive forces in determining equilibrium structure
of simple liquids,” J. Chem. Phys. 54, 5237 (1971).

[3] M. P. Allen and D. J. Tildesley, Computer Simulation of

Liquids (Clarendon Press, Oxford, 1987).
[4] D. Frenkel and B. Smit, Understanding Molecular Simu-

lations, 2nd edition (Academic Press (San Diego), 2002).
[5] LAMMPS: https://www.lammps.org/.
[6] GROMACS: https://www.gromacs.org/.
[7] NAMD: https://www.ks.uiuc.edu/Research/namd/.
[8] AMBER: https://ambermd.org/.
[9] HOOMD: http://glotzerlab.engin.umich.edu/hoomd-

blue/.
[10] RUMD: http://rumd.org/.
[11] S. Plimpton, “Fast parallel algorithms for short-range

molecular dynamics,” J. Comp. Phys. 117, 1 (1995).
[12] J. N. Glosli, K. J. Casperson, J. A. Gunnels, D. F.

Richards, R. E. Rudd, and F. H. Streitz, “Extending
stability beyond CPU millennium: a micron-scale atom-
istic simulation of Kelvin-Helmholtz instability,” SC ’07:
Proceedings of the 2007 ACM/IEEE Conference on Su-
percomputing (2007), 10.1145/1362622.1362700.

[13] The publicly available pyCudaPacking package

(https://github.com/SimonsGlass/pyCudaPacking)
implements GPU-parallelized energy minimization,
but not standard molecular dynamics routines,
for d-dimensional systems. During revision of this
manuscript, we learned of a publicly-available, open-
source, GPU-parallelized, d-dimensional MD code
(https://doi.org/10.5281/zenodo.6368329) that has not
yet been described or employed in any published studies.

[14] T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes,
“Scaling concepts for the dynamics of viscous liquids near
an ideal glassy state,” Phys. Rev. A 40, 1045 (1989).

[15] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato,
“Packing hyperspheres in high-dimensional euclidean
spaces,” Phys. Rev. E 74, 041127 (2006).

[16] R. Brüning, D. A. St-Onge, S. Patterson, and W. Kob,
“Glass transitions in one-, two-, three-, and four-
dimensional binary Lennard-Jones systems,” J. Phys.
Cond. Matt. 21, 035117 (2009).

[17] J. A. van Meel, B. Charbonneau, A. Fortini, and P. Char-
bonneau, “Hard-sphere crystallization gets rarer with in-
creasing dimension,” Phys. Rev. E 80, 061110 (2009).

[18] P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi,
“Glass transition and random close packing above three
dimensions,” Phys. Rev. Lett. 107, 185702 (2011).

[19] T. S. Ingebrigtsen, J. C. Dyre, T. B. Schrøder, and C. P.
Royall, “Crystallization instability in glass-forming mix-

15

tures,” Phys. Rev. X 9, 031016 (2019).
[20] A. Ninarello, L. Berthier, and D. Coslovich, “Models

and algorithms for the next generation of glass transition
studies,” Phys. Rev. X 7, 021039 (2017).

[21] P. Charbonneau, C. M. Gish, R. S. Hoy, and P. K. Morse,
“Thermodynamic stability of hard sphere crystals in di-
mensions 3 through 10,” Eur. Phys. Journ. E 44, 101
(2021).

[22] L. Berthier, P. Charbonneau, and J. Kundu, “Bypass-
ing sluggishness: Swap algorithm and glassiness in high
dimensions,” Phys. Rev. E 99, 031301 (2019).

[23] L. Berthier, P. Charbonneau, and J. Kundu, “Finite
dimensional vestige of spinodal criticality above the dy-
namical glass transition,” Phys. Rev. Lett. 125, 108001
(2020).

[24] P. Charbonneau and P. K. Morse, “Memory formation
in jammed hard spheres,” Phys. Rev. Lett. 126, 088001
(2021).

[25] L. Berthier, G. Biroli, J. P. Bouchaud, M. Cipelletti,
D. El Masri, D. L’Hote, F. Ladieu, and M. Pierno,
“Direct experimental evidence of a growing length scale
accompanying the glass transition,” Science 310, 1797
(2005).

[26] W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and
S. C. Glotzer, “Dynamical heterogeneities in a super-
cooled Lennard-Jones liquid,” Phys. Rev. Lett. 79, 2827
(1997).

[27] C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H.
Poole, and S. C. Glotzer, “Stringlike cooperative mo-
tion in a supercooled liquid,” Phys. Rev. Lett. 80, 2338
(1998).

[28] F. W. Starr, J. F. Douglas, and S. Sastry, “The relation-
ship of dynamical heterogeneity to the Adam-Gibbs and
random first-order transition theories of glass formation,”
J. Chem. Phys. 138, 12A541 (2013).

[29] S. Karmakar, C. Dasgupta, and S. Sastry, “Growing
length scales and their relation to timescales in glass-
forming liquids,” Ann. Rev. Cond. Matt. Phys. 5, 255
(2014).

[30] P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi,
“Dimensional study of the caging order parameter at
the glass transition,” Proc. Nat. Acad. Sci. 109, 13839
(2012).

[31] B. Charbonneau, P. Charbonneau, Y. Jin, G. Parisi, and
F. Zamponi, “Dimensional dependence of the StokesEin-
stein relation and its violation,” J. Chem. Phys. 139,
164502 (2013).

[32] M. Adhikari, S. Karmakar, and S. Sastry, “Spatial di-
mensionality dependence of heterogeneity, breakdown of
the Stokes-Einstein relation, and fragility of a model
glass- forming liquid,” J. Phys. Chem. B 125, 10232
(2021).

[33] E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield,
and D. A. Weitz, “Three-dimensional direct imaging of
structural relaxation near the colloidal glass transition,”
Science 287, 627 (2000).

[34] P. Chaudhuri, L. Berthier, and W. Kob, “Universal na-
ture of particle displacements close to glass and jamming
transitions,” Phys. Rev. Lett. 99, 060604 (2007).

[35] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and
F. Zamponi, “Glass and jamming transitions: From ex-
act results to finite-dimensional descriptions,” Ann. Rev.
Cond. Matt. Phys. 8, 265 (2017).

[36] G. Parisi and F. Zamponi, “Mean-field theory of hard

sphere glasses and jamming,” Rev. Mod. Phys. 82, 789
(2010).

[37] P. G. Debenedetti and F. H. Stillinger, “Supercooled liq-
uids and the glass transition,” Nature 410, 259 (2001).

[38] A. J. Liu and S. R. Nagel, “The jamming transition and
the marginally jammed solid,” Ann. Rev. Cond. Matt.
Phys. 1, 347 (2010).

[39] L. Berthier and G. Biroli, “Theoretical perspective on the
glass transition and amorphous materials,” Rev. Mod.
Phys. 83, 587 (2011).

[40] T. S. Grigera and G. Parisi, “Fast Monte Carlo algorithm
for supercooled soft spheres,” Phys. Rev. E 63, 045102
(2001).

[41] E. Bitzek, P. Koskinen, F. Gähler amd M. Moseler, and
P. Gumbsch, “Structural relaxation made simple,” Phys.
Rev. Lett. 97, 170201 (2006).

[42] J. Guénolé, W. G. Nöhring, A. Vaid, F. Houllé, Z. Xie,
A. Prakash, and E. Bitzek, “Assessment and optimiza-
tion of the fast inertial relaxation engine (FIRE) for en-
ergy minimization in atomistic simulations and its imple-
mentation in LAMMPS,” Comp. Mat. Sci. 175, 109584
(2020).

[43] R. N. Chacko, F. P. Landes, G. Biroli, O. Dauchot, A. J.
Liu, and D. R. Reichman, “Elastoplasticity mediates
dynamical heterogeneity below the mode coupling tem-
perature,” Phys. Rev. Lett. 127, 048002 (2021).

[44] L. Berthier and G. Tarjus, “Nonperturbative effect of at-
tractive forces in viscous liquids,” Phys. Rev. Lett. 103,
170601 (2009).

[45] S. Toxvaerd, “Role of the attractive forces in a super-
cooled liquid,” Phys. Rev. E 103, 022611 (2021).

[46] S. J. Plimpton and A. P. Thompson, “Computational
aspects of many-body potentials,” MRS Bull. 37, 513
(2012).

[47] The more common σi-independent ǫi [63] can be imple-
mented by editing a single line in initRMSE().

[48] S. R. Williams, I. K. Snook, and W. van Megen, “Molec-
ular dynamics study of the stability of the hard sphere
glass,” Phys. Rev. E 64, 021506 (2001).

[49] https://en.wikipedia.org/wiki/Leapfrog integration.
[50] Z. Yao, J.-S. Wang, G.-R. Liu, and M. Cheng, “Improved

neighbor list algorithm in molecular simulations using
cell decomposition and data sorting method,” Comp.
Phys. Comm 161, 27 (2004).

[51] U. Welling and G. Germano, “Efficiency of linked cell
algorithms,” Comp. Phys. Comm. 182, 611 (2011).

[52] S. Torquato, T. M. Truskett, and P. G. Debenedetti,
“Is random close packing of spheres well defined?” Phys.
Rev. Lett. 84, 2064 (2000).

[53] L. Berthier, D. Coslovich, A. Ninarello, and M. Ozawa,
“Equilibrium sampling of hard spheres up to the jam-
ming density and beyond,” Phys, Rev. Lett. 116, 238002
(2016).

[54] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gun-
steren, A. DiNola, and J. R. Haak, “Molecular dynamics
with coupling to an external bath,” J. Chem. Phys. 81,
3684 (1984).

[55] P. Charbonneau, Y. Jin, G. Parisi, and F. Zamponi,
“Hopping and the Stokes-Einstein relation breakdown in
simple glass formers,” Proc. Natl. Acad. Sci. U.S.A. 111,
15025 (2014).

[56] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and
F. Zamponi, “Fractal free energy landscapes in structural
glasses,” Nat. Comm. 5, 3725 (2014).

16

[57] L. Lue and M. Bishop, “Molecular dynamics study of
the thermodynamics and transport coefficients of hard
hyperspheres in six and seven dimensions,” Phys. Rev. E
74, 021201 (2006).

[58] J. A. van Meel, D. Frenkel, and P. Charbonneau, “Ge-
ometrical frustration: A study of four-dimensional hard
spheres,” Phys. Rev. E 79, 030201(R) (2009).

[59] M. Schmiedeberg, T. K. Haxton, S. R. Nagel, and A. J.
Liu, “Mapping the glassy dynamics of soft spheres onto
hard-sphere behavior,” Europhys. Lett. 96, 36010 (2011).

[60] S. Meloni, M. Rosati, and L. Colombo, “Efficient particle
labeling in atomistic simulations,” J. Chem. Phys. 126,
121102 (2007).

[61] L. Berthier, G. Biroli, D. Coslovich, W. Kob, and
C. Tonelli, “Finite-size effects in the dynamics of glass-
forming liquids,” Phys. Rev. E 86, 031502 (2012).

[62] J. D. Eaves and D. R. Reichman, “Spatial dimension and
the dynamics of supercooled liquids,” Proc. Nat. Acad.
Sci. 106, 15171 (2009).

[63] W. Kob and H. C. Andersen, “Testing mode-coupling
theory for a supercooled binary Lennard-Jones mixture.
i. the van Hove correlation function,” Phys. Rev. E 51,
4626–4641 (1995).

[64] Y. Ding and A. P. Sokolov, “Breakdown of time-
temperature superposition principle and universality of
chain dynamics in polymers,” Macromolecules 39, 3322
(2006).

[65] E. J. Saltzman and K. S. Schweizer, “Non-Gaussian ef-
fects, space-time decoupling, and mobility bifurcation in
glassy hard-sphere fluids and suspensions,” Phys. Rev. E
74, 061501 (2006).

[66] L. Wang, N. Xu, W. H. Wang, and P. Guan, “Reveal-
ing the link between structural relaxation and dynamic
heterogeneity in glass-forming liquids,” Phys. Rev. Lett.
120, 125502 (2018).

[67] This value x ≃ 0.3 is not universal; for example, Ref. [68]
found x ≃ 0.4.

[68] U. K. Nandi, W. Kob, and S. M. Bhattacharya, “Con-
necting real glasses to mean-field models,” J. Chem.
Phys. 154, 094506 (2021).

[69] T. Abete, A. de Candia, E. Del Gado, A. Fierro, and
A. Coniglio, “Dynamical heterogeneity in a model for
permanent gels: Different behavior of dynamical suscep-
tibilities,” Phys. Rev. E 78, 041404 (2008).

[70] E. Rössler, “Indications for a change of diffusion mecha-
nism in supercooled liquids,” Phys. Rev. Lett. 65, 1595
(1990).

[71] R. K. Murarka and B. Bagchi, “Diffusion and viscosity
in a supercooled polydisperse system,” Phys. Rev. E 67,
051504 (2003).

[72] S. K. Kumar, G. Szamel, and J. F. Douglas, “Nature
of the breakdown in the Stokes-Einstein relationship in a
hard sphere fluid,” J. Chem. Phys. 124, 214501 (2006).

[73] G. Biroli and J. P. Bouchaud, “Critical fluctuations and
breakdown of the StokesEinstein relation in the mode-
coupling theory of glasses,” J. Phys. Cond. Matt. 19,
205101 (2007).

[74] S. Kim, D. G. Thorpe, C. Noh, J. P. Garrahan, D. Chan-
dler, and Y.-J. Jung, “Study of the upper-critical dimen-
sion of the East model through the breakdown of the
Stokes-Einstein relation,” J. Chem. Phys. 147, 084504
(2017).

[75] Indeed, Ref. [74] implied that this effect may have been
the origin of Ref. [31]’s conclusion that ω → 0 as d → 8.

[76] E. Barkai and S. Burov, “Packets of diffusing particles ex-
hibit universal exponential tails,” Phys. Rev. Lett. 124,
060603 (2020).

[77] A. V. Chechkin, F. Seno, R. Metzler, and I. M. Sokolov,
“Brownian yet non-Gaussian diffusion: From superstatis-
tics to subordination of diffusing diffusivities,” Phys.
Rev. X 7 (2017).

[78] J. M. Miotto, S. Pigolotti, A. V. Chechkin, and
S. Roldán-Vargas, “Length scales in Brownian yet non-
Gaussian dynamics,” Phys. Rev. E 11, 031002 (2021).

[79] B. Wang, S. M. Anthony, S. C. Bae, and S. Granick,
“Anomalous yet Brownian,” Proc. Nat. Acad. Sci. 106,
15160 (2009).

[80] B. Wang, J. Kuo, S. C. Bae, and S. Granick, “When
Brownian diffusion is not Gaussian,” Nat. Mat. 11, 481
(2012).

[81] J. Guan, B. Wang, and S. Granick, “Even hard-sphere
colloidal suspensions display Fickian yet non-Gaussian
diffusion,” ACS Nano 8, 3331 (2014).

[82] T. R. Kirkpatrick and P. G. Wolynes, “Connections be-
tween some kinetic and equilibrium theories of the glass
transition,” Phys. Rev. A 35, 3072 (1987).

[83] E. Flenner and G. Szamel, “Relaxation in a glassy bi-
nary mixture: Comparison of the mode-coupling theory
to a Brownian dynamics simulation,” Phys. Rev. E 72,
031508 (2005).

[84] B. Schmid and R. Schilling, “Glass transition of hard
spheres in high dimensions,” Phys. Rev. E 81, 041502
(2010).

[85] S. M. Bhattacharyya, B. Bagchi, and P. Wolynes, “Sub-
quadratic wavenumber dependence of the structural re-
laxation of supercooled liquid in the crossover regime,”
J. Chem. Phys. 132, 104503 (2010).

[86] E. J. Saltzman and K. S. Schweizer, “Large-amplitude
jumps and non-Gaussian dynamics in highly concen-
trated hard sphere fluids,” Phys. Rev. E 77, 051504
(2006).

[87] L. Berthier, D. Chandler, and J. P. Garrahan, “Length
scale for the onset of Fickian diffusion in supercooled liq-
uids,” Europhys. Lett. 69, 320 (2005).

[88] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuz-
maul, B. W. Lampson, D. Sanchez, and T. B. Schardl,
“There’s plenty of room at the top: What will drive com-
puter performance after Moore’s law?” Science 368, 1079
(2020).

[89] J. A. Anderson, J. Glaser, and S. C. Glotzer, “HOOMD-
blue: A Python package for high-performance molecular
dynamics and hard particle Monte Carlo simulations,”
Comp. Mat. Sci. 173, 109363 (2020).

[90] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga,
J. A. Millian, D. C. Morse, and S. C. Glotzer, “Strong
scaling of general-purpose molecular dynamics simula-
tions on GPUs,” Comp. Phys. Comm..

[91] L. Lue, M. Bishop, and P. A. Whitlock, “The fluid to
solid phase transition of hard hyperspheres in four and
five dimensions,” J. Chem. Phys. 132, 104509 (2010).

[92] C. D. Estrada and M. Robles, “Fluid-solid transition in
hard hypersphere systems,” J. Chem. Phys. 134, 044115
(2011).

[93] L. Lue, M. Bishop, and P. A. Whitlock, “Molecular dy-
namics study of six-dimensional hard hypersphere crys-
tals,” J. Chem. Phys. 155, 144502 (2021).

