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Spectral line broadening by plasmas can be computed by solving the equation of motion for the dipole of the
radiating system perturbed by a fluctuating potential obtained from computer simulations. Such calculations
have relied on the multipole expansion of the radiator–plasma interaction often keeping only the dipole term.
With increasing density, however, higher multipoles as well as plasma perturbers overlapping the bound electron
wavefunctions are expected to become important. For hydrogenic systems, the atomic matrix elements of the full
Coulomb and screened Coulomb interactions are given by analytical formulas. Using these results, a computer
simulation approach that accounts for the full radiator–plasma interaction is developed. One benefit is the
removal of inherent strong collision divergences in the multipole expansion approximation. Furthermore, it
yields the plasma polarization shift produced by perturbers penetrating the wavefunction of the radiator bound
electrons. The model was applied to hydrogenic argon Ly-α, Ly-β, and Ly-γ spectral lines in a dense argon
plasma at free electron densities of 1024 or 1025 cm−3 and temperature of 800 eV relevant to plasma diagnostic
techniques for inertial confinement fusion implosions.

I. INTRODUCTION

Computer simulations of spectral line broadening by plas-
mas have been performed for several decades [1–4]. Since
the dipole interaction often dominates line broadening in plas-
mas [5], an essential ingredient for such calculations is time
sequences of the fluctuating plasma electric field generated
with molecular dynamics simulations. Given a field history,
the Heisenberg equation of motion provides the time depen-
dent dipole of the radiating system used to compute the light
amplitude correlation function.

In computer simulations for spectral line broadening the
plasma perturbers move in classical trajectories. This semi-
classical approach neglects quantum effects. For example,
detailed balance is not satisfied for inelastic collisional ex-
citation and deexcitation rates between atomic levels. This
error is mitigated for plasma temperatures much larger than
the energy level differences [3]. Nevertheless, even for degen-
erate systems detailed balance can impact line shift calcula-
tions [6]. Also neglected is exchange between perturbing and
atomic electrons, which would tend to weaken the interaction
between the plasma and the atomic system (henceforth the
radiator) emitting or absorbing a photon.

Computer simulations of spectral line broadening have also
assumed that on average the perturbers do not approach within
the spatial radiator size. Hence, the radiator–perturber in-
teraction is approximated by a multipole expansion typically
retaining only the dipole interaction and in some cases the
quadrupole term [7, 8]. This approximation was tested for
electron collisions with highly charged ions in laser implo-
sion experiments using full Coulomb radiator–perturber in
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perturbation theory [9]. The fortuitous overestimate of the
dipole term simulating the full interaction only occurred at the
lower densities and significant discrepancies were reported for
denser plasmas. More recently the effect of penetrating col-
lisions (perturbers significantly overlapping with bound elec-
tron wavefunctions) was considered for a large range of plasma
densities in perturbation theory [10, 11] and non-perturbative
treatment [12] of electron impact broadening. Although the
semi-classical and quantummechanical treatmentsmoderately
disagree, both show significant differenceswith the dipole term
in the multipole expansion at higher plasma densities. Finally,
even though hydrogen spectral lines have been extensively
studied, the subject is not closed. Unresolved inconsistencies
have been reported in the Balmer series [13]. A possible issue
is the assumed dipole only approximation for the radiator–
plasma interaction [14, 15].

Thus, extending the computer simulation approach by re-
moving the multipole expansion approximation has been con-
sidered a priority development [16]. This is the goal of the
present work. For non-relativistic hydrogenic radiators the
necessary matrix elements of the radiator–plasma interaction
are analytic. Benefits of the full interaction are the removal of
inherent strong collision divergences in multipole expansions
and accounting for the monopole term [17] natively. A draw-
back is increased computational demands. Also discussed are
similar formulations for the Debye screened radiator–perturber
interaction often used to accelerate computer simulations by
neglecting the mutual interaction between plasma particles.

The method is demonstrated for hydrogenic argon Ly-α,
-β, and -γ spectral lines used to diagnose laser driven hot,
dense plasmas relevant to inertial confinement experiments.
Comparisons are made to calculations with a second-order
perturbation treatment of the full-Coulomb interaction [9].
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II. LINE SHAPE FUNCTION

The line shape function for a radiator emitting or absorbing
a photon of energy ~ω is given by [5]

I(ω) = π−1 Re
∫ ∞

0
dteiωt 〈C(t)〉 . (1)

For dipole allowed radiative transitions the correlation function
of the light amplitude is

C(t) = Tr
{
ρ ®d(0) · ®d(t)

}
, (2)

where ®d and ρ are the dipole and density matrix for the radiator
internal states, respectively, Tr denotes a trace over those states,
and the brackets 〈 〉 represent a statistical plasma average.
The line shape function here assumes independent Stark and

Doppler broadening. Thus, it refers only to Stark broadening
and the operators are independent of the radiator center-of-
mass variables. It is then convenient to place the origin of the
coordinate system at the radiator nucleus. That is, the radiator
is assumed to move at a constant velocity during the radiation
process providing an inertial reference frame leading to the
reduced mass model [18]. This approximation is convenient
but not essential to computer simulations [19].

The time evolution of the radiator dipole operator is de-
scribed by the Heisenberg equation,

− i~
∂

∂t
®d(t) =

[
H(t), ®d(t)

]
(3)

with [· · · , · · · ] a commutator and the time dependent Hamil-
tonian

H(t) = H0 + VI (t), (4)

where H0 is the Hamiltonian for the unperturbed radiator and
VI (t) is the time dependent interaction produced by the perturb-
ing plasma. Computer simulations provide the time dependent
interaction, and the resulting correlation function is averaged
over time sequences [1].

The equation of motion represents a system of simultaneous
equations for the matrix elements of the dipole operator. It is
readily shown [20] that the matrix elements of the multipole
expansion approximation for the radiator–plasma interaction
can be expressed in terms of reduced matrix elements for
electric multipole radiative transitions available from atomic
packages [21, 22]. Here, analytical expressions are obtained
for the full Coulomb and screened Coulomb interaction of
non-relativistic hydrogenic radiators.

III. COULOMB INTERACTION

The radiator–plasma interaction for a one-electron radiator
is given by

VRP =
∑
p

Zp

{
ZN

rp
−

1��®ra − ®rp ��
}
, (5)

where the sum is over all plasma particles, ZN is the radiator
nuclear charge, ®ra is the position of the bound electron, and
®rp is the position of the pth perturber with electric charge Zp .
Atomic units are used henceforth with energy in hartree and
length in Bohr radius.
The interaction can be separated as VRP = Vnet + VI , where

the first term represents the plasma interacting with the net
radiator point charge located at the origin,

Vnet = (ZN − 1)
∑
p

Zp

rp
. (6)

The second term is the interaction of the plasma with the
radiator internal states,

VI =
∑
p

Zpu(®ra, ®rp) (7)

with

u(®ra, ®r) =
1
r
−

1
|®ra − ®r |

=
∑̀
m

4π
2` + 1

{
δ`0
r
−

r`<
r`+1
>

}
Y ∗`m(r̂)Ỳ m(r̂a),

(8)

where r< (r>) is the smaller (larger) of ra = |®ra | and rp =
��®rp ��,

Ỳ m(x̂) is a spherical harmonic with x̂ a unit vector in the di-
rection of ®x, and the superscript ∗ denotes complex conjugate.
The potential Vnet is typically grouped with the Hamiltonian
for the plasma since it is independent of the radiator internal
states. Thus, it commutes with the radiator dipole and does not
explicitly appear in the dipole equation of motion in Eq. (3).
For charged radiators, however, it does affect the relative mo-
tion of the perturbers about the radiator.

A. Multipole expansion

The multipole expansion always assumes r > ra and the
matrix elements simplify to

〈α |VI | β〉 −−−−→
r>ra

(−1)Jα−Mα

∑̀
≥1

∑
m

(
Jα ` Jβ
−Mα m Mβ

)
q(`)αβΦ

∗
`m

(9)

that factors into separate radiator and plasma contributions
with J and M the total and magnetic quantum numbers of the
internal radiator state, respectively. Note that the ` = 0 term is
absent in the multipole expansion approximation since the net
radiator charge is treated through Vnet. The plasma dependent
factor is given by

Φ
∗
`m = −

√
4π

2` + 1

∑
p

Zp

r`+1
p

Y ∗`m(r̂p) (10)

and conforms with usual electrodynamics convention (e.g.,
electric field lines flow away from positive charges). Note that

Φ
∗
`,−m = (−1)mΦ`m. (11)
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Therefore, there are 2` + 1 independent real quantities for
each multipole: ` complex numbers for the m > 0 terms plus
one real number for the m = 0 term. For example, the 3
components of the plasma electric field, 5 elements of the
symmetric traceless ®∇ ®F tensor (the total plasma electric field
®F at the origin satisfies the Laplace equation), and so on for
higher multipoles.

The radiator moments are independent of plasma variables
and given in terms of atomic reduced matrix elements of the
Wigner–Eckart theorem [21],

q(`)αβ =

√
4π

2` + 1
〈
ΓαJα



r`aỲ m(r̂a)


 Γβ Jβ

〉
= A(`)αβR(`)αβ

(12)

with Γ the remaining quantum numbers to identify the internal
radiator state |ΓJM〉. The angular integration results are in
A(`)αβ and the radial integrals are given by

R(`)αβ =
∫ ∞

0
draPα(ra)r`aPβ(ra) (13)

withPα(r) the reduced radialwavefunction for radiator internal
state |α〉. The reduced matrix elements in Eq. (12) are the
same as those for electric multipole radiative transitions [21].
For hydrogenic radiators, the angular contribution is given in
Appendix A and the radial integrals yield analytical results
provided in Appendix B for cases used in the present work.

B. Full Coulomb interaction

In contrast to the multipole expansion approximation, the
full Coulomb radiator–plasma interaction includes penetration
of the radiator by a plasma perturber. In this case, the matrix
elements no longer factor into independent radiator and plasma
contributions,

〈α |VI | β〉 =

(−1)Jα−Mα

∑̀
m

(
Jα ` Jβ
−Mα m Mβ

)
A(`)αβΞ

∗
αβ;`m ,

(14)

where

Ξ
∗
αβ;`m =

∑
p

ZpU(`)αβ(rp)

√
4π

2` + 1
Y ∗`m(r̂p) (15)

also satisfying a relation like Eq. (11). For the reduced matrix
elements (see Appendix A)√

4π
2` + 1

〈
ΓαJα





{ δ`0r
−

r`<
r`+1
>

}
Ỳ m(r̂a)





 Γβ Jβ

〉
= A(`)αβU(`)αβ(r)

(16)

with radial matrix elements

U(`)αβ(r) =
∫ ∞

0
draPα(ra)

{
δ`0
r
−

r`<
r`+1
>

}
Pβ(ra). (17)

Contrary to the long-ranged multipole expansion with radiator
moments q(`)αβ , the radiator radial matrix elements U(`)αβ(r) de-
pend on the perturber radial positions. For hydrogenic systems
the matrix elements have analytical results [23] and examples
are given in Appendix B.
It is possible to rewrite Eq. (17) for ` ≥ 1 as

U(`)αβ(r) = −
R(`)αβ
r`+1

{
1 − e−(na+nb )ZN r/(nanb )p(`)αβ(r)

}
, (18)

where p(`)αβ(r) is a polynomial in r . The first term represents the
long-ranged contribution of the ` multipole. The second term
accounts for penetrating collisions, which vanish exponentially
with the perturber radial position. This suggests that the sum
over perturbers in Eq. (15) can be separated into near and
far perturbers. That is, only the long-ranged multipoles are
needed for perturbers far from the radiator.

C. Strong collisions for ` ≥ 1

As shown previously for ` ≥ 1 [9–11, 24], the radiator–
plasma interaction is softened by penetrating collisions relative
to the multipole expansion approximation. The monopole
term, however, requires special attention and is discussed in
Sec. III D.
The radial matrix elements for ` ≥ 1 are given by

U(`≥1)
αβ (r) = −

1
r`+1

∫ r

0
draPα(ra)r`aPβ(ra)

−r`
∫ ∞

r

dra
r`+1
a

Pα(ra)Pβ(ra)
(19)

and, therefore,∝ r` for r → 0 except for special caseswhen the
second integral vanishes [25]. Using Pµ(x → 0) ∝ x`µ+1 [26]
and the triangle inequality

��`α − `β �� ≤ ` ≤ `α + `β [imposed
by the 3 j symbol in Eq. (A2)],

U(`≥1)
αβ (r → 0) ∝

{
r`α+`β+2 , nα = nβ, ` =

��`α − `β ��
r` , otherwise

(20)

and vanish with decreasing radial distance. Consequently, the
full Coulomb interaction eliminates divergences from strong
collisions for ` ≥ 1 in the long-ranged multipole expansions.
Plots of the radial integrals for n = 2 of hydrogen are pre-
sented in Fig. 1. The figure shows the multipole expansion
in agreement with the full Coulomb results at larger distances
but diverging at small radii. It also shows the full Coulomb
interaction softening the multipole expansion approximation
avoiding the divergence at small radii. Note that the radial
matrix elements from ` = 1 and ` = 2 are comparable in mag-
nitude except the latter decays faster with radial separation.

D. Strong collisions for monopole

The ` = 0 matrix elements of VI are diagonal in orbital
angular momentum (see Appendix A) and for hydrogenic ra-
diators can only differ in principal quantum number. Thus,
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FIG. 1. Plots of the radial integrals U(`)
αβ
(r) and their multipole

equivalents −R(`)
αβ
/r`+1(r) for the n = 2 levels in hydrogen. The

divergent 1/r term subtracted from the ` = 0 integrals. Axes labeled
in the atomic units.

Eq. (17) yields

U(0)
nα`α,nβ`β

(r → 0) = δnαnβ

(
1
r
−

ZN

n2
α

)
− (1 − δnαnβ )×∫ ∞

0

dra
ra

Pnα`α (ra)Pnβ`α (ra) + O(r
2`α+2)

(21)

and the diagonal matrix elements diverge at the origin; a con-
sequence of the 1/r term in Eq. (8).
To proceed, consider the coupled equations of motion in

matrix notation,

−i
∂

∂t
®dαβ =

〈
α

���[H0, ®d]
��� β〉 +∑

µ

{
〈α |VI | µ〉 ®dµβ − ®dαµ 〈µ |VI | β〉

}
.

(22)

When a perturber is very close to the radiator nucleus at radial
position rNN with charge ZNN , the interaction is dominated by
the divergent term in Eq. (21). Thus, Eq. (22) can be written
as

−i
∂

∂t
®dαβ =

〈
α

���[H0 + V ′I , ®d]
��� β〉 +

ZNN

∑
µ

{〈
α

��r−1
NN

�� µ〉 ®dµβ − ®dαµ 〈
µ
��r−1
NN

�� β〉}
=

〈
α

���[H0 + V ′I , ®d]
��� β〉

(23)

using the orthogonality condition 〈α |β〉 = δαβ with V ′I the re-
maining contributions to the interaction. Thus, the divergent
terms from close collisions cancel in the time development
of the radiator dipole. Note that the no-lower-state broaden-
ing approximation common in many calculations cannot be
applied to the monopole term in the full Coulomb radiator–
perturber interaction and avoid the divergence in Eq. (21).
Although the discussion about divergences was applied to the

equation of motion for dipole allowed transitions in Eq. (2),
the cancellation of the divergence is general and applies to any
transition.

IV. SCREENED COULOMB INTERACTION

In trivial molecular dynamics (TMD) simulations, the mu-
tual interaction between plasma particles is neglected signifi-
cantly accelerating the computer simulations [27]. To mimic
plasma effects, a Debye screened radiator–perturber interac-
tion is introduced. Thus,

VRP → V s
RP =

∑
σ

Zσ
∑
p∈σ

{
ZN e−κσr

rp
−

e−κσ |®ra−®rp |��®ra − ®rp ��
}
. (24)

This expression accounts for different inverse screening Debye
lengths κσ for different plasma species σ with charge Zσ .

A. Partial wave expansion

The separation of the interaction has V s
RP = V s

net +V s
I where

V s
net = (ZN − 1)

∑
σ

Zσ
∑
p∈σ

e−κσr

rp
(25)

and

V s
I =

∑
σ

∑
p∈σ

Zpu(®ra, ®rp; κσ) (26)

with

u(®ra, ®r; κ) =
e−κr

r
−

e−κ | ®ra−®r |

|®ra − ®r |
=

∑̀
m

{
δ`0

e−κr

r

−
4π
√

rar
I`+1/2(κr<)K`+1/2(κr>)Y ∗`m(r̂)Ỳ m(r̂a)

}
.

(27)

Here, I and K are modified Bessel functions of the first and
third kind [26]. It is emphasized that the partial wave expan-
sion is exact and contrary to previouswork [7, 8, 28, 29] that as-
sumed κra � 1 does not neglect radiator size effects [20, 30].
The full screened Coulomb radiator–plasma interaction in-

cludes penetration of the radiator by a plasma perturber, and
as in the unscreened case, the matrix elements do not factor
into independent radiator and plasma contributions,〈

α
��V s

I

�� β〉 = (−1)Jα−Mα×∑̀
m

(
Jα ` Jβ
−Mα m Mβ

)
A(`)αβΞ

s∗
αβ;`m,

(28)

where

Ξ
s∗
αβ;`m =

∑
σ

Zσ
∑
p∈σ

U(`)αβ(rp; κσ)
√

4π
2` + 1

Y ∗`m(r̂p) (29)
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which also satisfy a relation like Eq. (11). The radial matrix
elements are defined by

U(`)αβ(r; κ) = δαβδ`0
e−κr

r
−

2` + 1
√

r
×∫ ∞

0

dra
√

ra
Pα(ra)I`+1/2(κr<)K`+1/2(κr>)Pβ(ra).

(30)

Using expansions for the modified Bessel functions [26], it is
readily shown that

U(`)αβ(r; κ → 0) = U(`)αβ(r), (31)

reproducing the Coulomb interaction result. The integrals in
Eq. (30) converge for κ ≥ 0 and for non-relativistic hydrogenic
systems yield analytic results. The results, however, are more
complicated than for the Coulomb interaction in Sec. III.

B. Separation of multipole expansion

For expediency in trivial computer simulations following
the discussion after Eq. (18), the long-ranged multipole con-
tribution is explicitly separated,

U(`)αβ(r; κ) = R(`)αβ(κ)G`(r; κ) + B(`)αβ(r; κ), (32)

valid for ` ≥ 0. The κ-dependent radiator radial moments are
given by

R(`)αβ(κ) = −δαβδ`0 +
(2` + 1)!!

κ`
×∫ ∞

0
draPα(ra)

√
π

2κra
I`+1/2(κra)Pβ(ra)

(33)

and plasma fields

G`(r; κ) = −
κ`+1

(2` − 1)!!

√
2
πκr

K`+1/2(κr), (34)

where (−1)!! = 1. These definitions are chosen so that the no
screening limit, obtained by expanding the Bessel functions to
lowest non-vanishing order, yields

R(`)αβ(κ → 0) =

κ2

6
R(2)αβ + O(κ

4) , ` = 0

R(`)αβ + O(κ
2) , ` ≥ 1

(35)

and

G`(r; κ → 0) = −
1

r`+1 , (36)

reproducing the Coulomb results. As discussed in [30], the ` =
0 term does not vanish in the long-ranged multipole expansion
of the screened Coulomb radiator–perturber interaction due
to the radiator finite size and the cloud associated with the
screening of each plasma particle.

The short-ranged contributions are defined by

B(`)αβ(r; κ) = (2` + 1)
∫ ∞

r

dra
√

rar
Pα(ra)Pβ(ra)×{

I`+1/2(κra)K`+1/2(κr) − I`+1/2(κr)K`+1/2(κra)
}
.

(37)

Note that the separation in Eq. (32) requires

κ < ZN

nα + nβ
nαnβ

(38)

to avoid divergences. This constrain is satisfied except for ex-
treme plasma conditions when the screening length is smaller
than the atomic state effective size. For non-relativistic hy-
drogenic systems the radial integrals yield analytic results and
examples are provided in Appendix C.

C. Weak collisions

The contributions from penetrating collisions in Eq. (37)
decay exponentially with the perturber distance to the radiator
nucleus (see Appendix D),

B(`)αβ(r; κ) ∝ e−(nα+nβ )r/(nαnβ ). (39)

Consequently, for distant perturbers it is possible to neglect
B(`)αβ(r; κ) and only retain the multipole expansion term in
Eq. (32),

M (`)αβ(r; κ) = R(`)αβ(κ)G`(r; κ). (40)

In the Coulomb interaction limit, the expression reduces to

M (`)αβ(r; κ = 0) = −
R(`)αβ
r`+1 , ` ≥ 1 (41)

and the sum over partial waves ` converges rapidly for suffi-
ciently large radii.
For the screened Coulomb interaction, the large radii limit

of Eq. (40) is given by

M (`)αβ(r →∞; κ) =
e−κr

r

{
δ`0 − (2` + 1)×∫ ∞

0
draPα(ra)

√
π

2κra
I`+1/2(κra)Pβ(ra)

} (42)

and the partial waves do not display the r−(`+1) behavior in the
pure Coulomb case. Typically, the plasma conditions are such
that the effective radiator size is much smaller than the plasma
screening length and expanding the Bessel function leads to a
power series,∑̀

=0
M (`)αβ(r →∞; κ) −−−−−→

κra�1

e−κr

r

∞∑
j=1

cj

∫ ∞

0
draPα(ra)(κra)jPβ(ra)

(43)
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with cj an expansion constant and the sum over j (not the same
as partial waves `) converges since effectively κra � 1. For
example, for n = 2 levels of a hydrogenic ion (see Appendix C)

lim
r→∞

M (2)2p,2p(r; κ)

M (1)2s,2p(r; κ)
=

10Z2
N

3
√

3
(
Z2
N + κ

2) {
ZN κ −

2
ZNr

+ O
(
r−2

)}
.

(44)

This ratio goes as r−1 for κ → 0 and the interaction approaches
the pure Coulomb potential but goes to ∼0.962Z2

N as κ ap-
proaches the maximum value ZN [see Eq. (38)]. The present
work (see Sec. V) is consistent to order κ2r2

a [11] retaining up
to the quadrupole term in the multipole expansion.

D. Strong collisions

The screening of the radiator–plasma interaction has neg-
ligible effect on close collisions. As such, the small r de-
pendence of the radial integrals for the screened Coulomb
radiator–plasma interaction follows closely those for the un-
screened results again leading to vanishing terms for ` ≥ 1 and
canceling divergences for the monopole term.

E. Comparison of monopole terms

The radial integrals for the monopole terms are presented in
Fig. 2 for the 1s level of neutral hydrogen with κ = 0.1 for the
screened matrix elements. In addition, the figure displays the
screening function

S(r) = 1 −
∫ r

0
dra [P1s(ra)]2

= e−2r
(
1 + 2r + 2r2

) (45)

which represents the screening of the nucleus by the bound
electron. As shown in Fig. 2, the ` = 0 matrix element for
the Coulomb interaction vanishes outside the effective size
of the radiator because the bound electron fully screens the
nucleus. There is, however, a significant different behavior
for U(0)1s,1s(r; κ). This difference is due to the screening cloud
associated with the perturber in the screened interaction. Far
away the radiator does not interact with the perturber through
the monopole term. As an unscreened perturber approaches
within the extent of the radiator, the bound electron screening
of the nucleus decreases, and the interaction increases diverg-
ing at the origin. On the other hand, as a screened perturber
approaches, the screening cloud penetrates the radiator before
the perturber. Since the cloud has opposite charge to the per-
turber, it yields a negative contribution as shown in Fig. 2. As
the screened perturber gets closer to the nucleus, the bound
electron and screening cloud shield less effectively and the
interaction approaches the unscreened result. This description
applies to neutral and charged radiators since the perturbers
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FIG. 2. Plots of the radial integrals U(0)1s,1s(r; κ) and
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as well as the screening function (logarithmic right y-axis) as func-
tion of radius.

are interacting only with the radiator internal states. There
is, of course, the Vnet interaction in either Eq. (6) or Eq. (25)
describing the center-of-mass motion, which does not affect
the arguments.

V. NUMERICAL METHODS

A variant of computer simulations (CS) described in
Ref. [27] is used. Briefly, Eq. (3) is numerically solved by
introducing the time-development operator U(t) in the inter-
action representation,

i~
dU(t)

dt
= V̂I (t)U(t) (46)

with

V̂I (t) = eiH0t/~VI (t)e−iH0t/~ (47)

The time evolution of the dipole operator is then given by

®d(t) = U†(t)eiH0t/~ ®de−iH0t/~U(t) (48)

with Fourier transform

®d(ω) =
∫ ∞

0
dteiωt ®d(t). (49)

Assuming the radiator density matrix is diagonal, which is
customary in line shape broadening calculations [5], together
with the Wiener–Khinchin theorem, Eq. (2) can be written as

C(t) =
∑
i f

ρi

∫ ∞

0
dω e−iωt

〈
| ®dfi(ω)|

2
〉
. (50)

Finally, Eq. (1) becomes

I(ω) ∝
∑
i f

ρi

〈
| ®dfi(ω)|

2
〉
, (51)
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where the sums are over initial and final states i and f , respec-
tively, and the plasma average denoted by the angle brackets is
accomplished by averaging over CS runs.

A. TMD simulations

The motion of the plasma quasiparticles (both plasma elec-
trons and ions) is described by the screened monopole inter-
action in Eq. (25) using a velocity Verlet algorithm [31]. The
simulation follows the reduced-mass model [18] with a fixed,
static radiator at the center of a spherical box of radius several
times the electron Debye length to ensure convergence [32].
Whenever a perturber exits the simulation volume, it is rein-
jected at a random point on the sphere surface with a velocity
randomly chosen according to the 2D Gaussian distribution
in the tangential plane and Rayleigh distribution in the radial
direction. Therefore, the available phase-space is well repre-
sented in spite the relatively small number of perturbers. If an
electron becomes “bound” (negative kinetic plus potential en-
ergy), then it is replaced according to the reinjection procedure
above.

Each ion species σ is assigned a different screening length.
For a weakly coupled plasma, the inverse screening length κσ
includes screening by all other charged particles with the same
or lesser mass,

κ2
σ =

∑
σ′(mσ′ ≤mσ )

4πnσ′Z2
σ′

T
, (52)

with mσ and nσ the mass and number density of species σ
in the plasma and T the plasma temperature in hartree energy
units. When the plasma coupling is significant (as in the cases
considered below) the screening is chosen to reproduce the
electric microfield distribution obtained from a fully interact-
ing N-body CS or from the APEX model [33]. For electrons,
the Debye screening length is always assumed,

κ2
e =

4πne
T

(53)

and dynamic screening is neglected, which is known to be
negligible except for a minor effect at detuning energies near
the plasma frequency [34, 35].

The TMD simulations are verified to be thermodynamically
sound. For example, the simulated ion and electron radial
distributions functions about the radiator are compared against
exact analytical result,

gσ(r) = exp
{
−

ZnetZσ
T

e−κσr

r

}
(54)

(recall that Zσ includes the sign of the perturber charge), which
for a finite volume V is rescaled by

g′σ(r) = gσ(r)
V∫

V
dVgσ(r)

. (55)

The comparisons in Fig. 3 show good agreement. It is empha-
sized that in the electron case, the results in Fig. 3 retain the

0.2

0.4

0.6

0.8

1.0

g i(r)
0 2×10−8 4×10−8 6×10−8

r (cm)

1.0

1.5

2.0

2.5

g e(r)

(a)

(b)

FIG. 3. Examples of radial distribution functions around the radiator
(Znet = 17). Upper panel: 100 ions, Zi = 17, ni = 5.9 × 1022 cm−3,
Ti = 800 eV, κi = 5.3 × 107 cm−1. Lower panel: 1700 electrons,
ne = 1024 cm−3, Te = 800 eV, κe = 4.8 × 107 cm−1. The solid lines
are analytical results of Eq. (54). Circles are results of TMD, box
symbols represent results of simulations with the “bound” electrons
allowed.

“bound” electrons. That is, the analytic expression in Eq. (54)
accounts for all possible states of the electrons including reso-
nant and bound orbits. Results excluding the “bound” electrons
from the simulations, used in the line shape calculations, are
also plotted in Fig. 3 and not surprisingly deviate from Eq. (54)
at short distances. Interesting treatments of bound electrons as
well as electron recombination and ionization processes using
classical MD simulations have been attempted [36–38] but are
beyond the scope of the present work.
The Debye potentials are also used to calculate V̂I (t) in

Eq. (46). There are several possible approaches to store time
sequences and solve the Heisenberg equation for the radia-
tor dipole. The most general saves the position of all per-
turbers at every time step demanding substantial storage and
I/O resources. Alternatively, a more efficient method separates
perturbers into “exact” and “multipole” groups. The scheme
only stores the position of “exact” perturbers within a sphere
of radius Rexact dictated by the requirement of accurate radial
integrals (e.g., see Fig. 1 for the Coulomb potential). The num-
ber of “exact” perturbers (mostly electrons) is therefore time
dependent and in the numerical examples below varies from
a few to several tens still constituting a small fraction of the
total perturber number. The remaining “multipole” perturbers
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outside the sphere are treated in the multipole expansion ap-
proximation and the electric field and field gradients are stored
as in the usual simulations. In the case where the radiator ef-
fective size is much smaller than the plasma screening length
(applies to cases considered here), the radiator–perturber in-
teraction reduces to

VI = ®ra · ®F +
1
6

∑
i j

dFi

dxj
Qi j +

r2
a

6
®∇ · ®F (56)

with ®F the electric field produced by the “multipole” perturbers
at the radiator nucleus, xi the ith Cartesian component of ®ra,
and Qi j the traceless quadrupole radiator moment. The last
term has long been a subject of debate but is present in a
consistent expansion [11].

B. Time intervals

Sufficiently small-time intervals are crucial to track accu-
rately strong radiator–electron collisions in the simulation his-
tories and the differential equation. Although an adaptive
time-step has long been used for solving the differential equa-
tion in the CS simulations [27], interpolation is still necessary
to obtain VI (t) between the fixed time-step provided by the
CS. The problem becomes acute for close collisions when the
electron kinetic energy greatly exceeds the typical thermal en-
ergy. Although such collisions are rare, they are important for
line broadening and the usual fixed time-step proportional to
n−

1/3
e

√
me/Te is highly inefficient or inaccurate depending on

the proportionality constant. Instead, an adaptive time-step is
adopted to represent the time histories from the CS.

The criterion requires that the position vector of any per-
turber not rotate by more than π/2 radians during a time step
as predicted by the Verlet algorithm. If the criterion is not
satisfied, the time step is halved until met. An interpolation
is performed for values at times between the variable time
steps. For “exact” perturbers the position vectors are interpo-
lated. For “multipole” perturbers the quantity ®f = ®F/F3/2 is
interpolated. That is, for tN ≤ t ≤ tN+1

®f (t) = ®f (tN ) +
t − tN

tN+1 − tN

[
®f (tN+1) − ®f (tN )

]
(57)

followed by ®F = ®f / f 3. If the field magnitude is much larger
than the typical Holtsmark value, the nearest neighbor approx-
imation with ®f ∝ ®r is valid and, as shown below, provides a
better estimate of the field.

The procedure is demonstrated in Fig. 4 with a strong colli-
sion event. In the figure, the minimal approach distance (and
maximum electric field) occurs between the N + 4 and N + 5
timestep with the electron nearly backscattering. The danger
of using large time intervals is clear, potentially producing or-
ders of magnitude error. On the other hand, adding only two
additional time steps the electron trajectory around the peri-
helion splits into arcs of less than π/2 radians and suffices to
generate good interpolation results.

N + 2 N + 3 N + 4 N + 5 N + 6
Time step

10

100

1000

10000

|F
|/F

0

N + 4¼
N + 4½

Exact solution
Fixed  ∆t
Linear interpolation
r-interpolation
Fractional ∆t
r-interpolation with fractional ∆t

FIG. 4. Magnitude of the dipole electric field (in units of the Holts-
mark field F0) as a function of time during a strong electron collision
event using different interpolation approaches. The time scale is in
units of the base TMD time step. The small circles indicate time
steps of the adaptive ODE solver of Eq. (46), becoming denser for a
stronger perturbation.

VI. NUMERICAL RESULTS

Line shape function calculations using the TMDsimulations
were performed for the lowest members of the Lyman series of
hydrogenic Ar at the plasma conditions considered by Woltz
and Hooper [9] (hereafter WH); namely, ne = 1024 cm−3 and
1025 cm−3, T = 800 eV, and ion perturbers with Zi = 17.
For the sake of comparisons, some simplifying assumptions
in WH were adopted: the non-quenching approximation and
neglected spin–orbit coupling. For these calculations, the ef-
fective screening parameter for the ions was chosen to achieve
the best match with the peak of the APEX distribution.
Line shapes from CS for Ly-α, Ly-β, and Ly-γ are offered in

Figs. 5, 6, and 7, respectively, in the “standard” dipole radiator–
perturber interaction approximation, which only keeps the first
term in Eq. (56) for all perturbers. These are compared with
the corresponding electron second-order collision theory and
quasi-static ion results fromWH. The agreement is reasonable
at the lower density but worsens at the larger density, particu-
larly about the central part of Ly-α dominated by electrons. To
eliminate contribution of ion dynamics, CS calculations were
repeated with stationary ions, resulting in minor changes only.
Thus, a cause of this discrepancy remains unknown.
For purpose of analysis, it is possible to perform calcula-

tions retaining only a subset of the terms in the expansion of
the full interaction and results for Ly-α are given in Fig. 8.
It follows from the figure that the “standard” dipole approx-
imation overestimates the broadening compared to the full
interaction. This is due to a partial cancellation of effects in
the latter calculation: (i) reduction of the interaction at small
radii and (ii) additional broadening from the monopole and
quadrupole terms. Similar conclusions were drawn by WH
for the lower density case, except they reported a minor in-
crease in line width for the full Coulomb calculation. The
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FIG. 5. Shapes of Ar xviii Ly-α calculated in the dipole approximation assuming ne = 1024 cm−3, T = 800 eV (a) and ne = 1025 cm−3,
T = 800 eV (b). Results of the present work (red solid lines) are compared to those of Ref. [9] (black dashed lines). Also shown are CS results
without ion dynamics (blue dot-dashed lines).
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FIG. 6. Same as Fig. 5, but for Ar xviii Ly-β.
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FIG. 7. Same as Fig. 5, but for Ar xviii Ly-γ.
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non-dipole terms are also responsible for a line shift, explic-
itly neglected by WH. The major contribution is a red shift
by the monopole term of penetrating electrons screening the
bound electron from the nuclear charge [17] often called the
plasma polarization shift (PPS). The PPS is partly offset by
the quadrupole contributions, which do not lead to an overall
line shift [39], but rather a line asymmetry due to the central
and side components shifting in opposite directions. For these
and consequent calculations, Rexact (the radius within which
electron penetration is treated exactly) is set to be 10−8 cm,
which is further discussed below.

The Ar xviii Ly-β line results presented in Fig. 9 are un-
surprisingly dominated by the ion microfield displaying the
characteristic double peak shape. Consequently, the effects
of electron penetrating collisions are less pronounced. Nev-
ertheless, the same qualitative conclusions can be drawn; the
standard dipole approximation overestimates the broadening.

These effects are amplified for higher line series members
but without changing the qualitative picture as shown in Fig. 10
for the Ly-γ line. One notable difference is the pronounced
asymmetry at the higher density due to the differential shifts
from the ` = 0 and ` = 2 terms. The effects discussed above
are visible in the far line wings and cannot be solely described
by the ion electric microfield distribution. Although less pro-
nounced in the Ly-α and Ly-β lines, the differences can be
seen in the logarithmic scale used in Fig. 11. Firstly, the
standard dipole approximation substantially overestimates the
wings. Secondly, an accurate description of the far wing re-
quires both the ` = 0 and ` = 1 terms in the expansion of the
full interaction with negligible contributions from the higher
poles.

The dependence of the width and shift for the Ly-α line on
Rexact is shown in Fig. 12. The line width diverges since the
quadrupole term goes to infinity for vanishing Rexact. This
divergence is absent in the ` = 2 term in the expansion of
the full interaction. Since most of the shift is due to the
PPS, which vanishes without penetrating collisions, the shift
requires larger Rexact than the width before it converges.

The choice of Rexact = 10−8 cm is justified for the Ly-β line
in Fig. 13, which shows the line shape converged. Since only
the ` ≤ 2 terms are considered for the “multipole” electrons
outside Rexact, the convergence in Fig. 13 also demonstrates
that higher multipoles are negligible at large radii. Note that
calculations neglecting the ` > 2 terms for “exact” electrons
inside Rexact resulted in nearly indistinguishable results. Thus,
keeping only the ` ≤ 2 terms, which significantly reduces the
computational complexity, suffices to produce accurate line
shapes.

VII. CONCLUSION

Past calculations of spectral line broadening by plasmas
using molecular dynamics have relied on the multipole expan-
sion of the radiator–plasma interaction often only keeping the
dipole term. The present work shows how to extend the com-
puter simulations to account for the full Coulomb or screened
Coulomb radiator–plasma interactions for hydrogenic systems.

The full interaction treatment removes inherent strong collision
divergences in the multipole expansion approximation previ-
ously avoided with ad hoc cutoffs [7]. Furthermore, the full
interaction includes the plasma polarization shift produced by
perturbers penetrating the wavefunction of the radiating bound
electrons.
A scheme was developed to avoid the extensive I/O require-

ments in a brute force approach to describe the time dependent
positions of all plasma particles. Instead, a relatively few per-
turbers near the radiating atomic system need be described in
detail while the remaining vast majority are accurately treated
by the usual multipole approach only requiring the electric
field and field inhomogeneities at the radiator nucleus.
The computer simulation with non-interacting plasma

quasiparticles and screened Coulomb radiator–plasma inter-
actions was applied to the hydrogenic Ar Ly-α, Ly-β, and
Ly-γ spectral lines in a dense argon plasma at free electron
densities of 1024 and 1025 cm−3 and temperature of 800 eV.
The results were compared to earlier calculations using full
Coulomb radiator–electron interactions in second-order the-
ory and the standard dipole interaction for quasistatic ions [9].
The results are in reasonable agreement at the lower density but
significantly differ at the higher one in the case of Ly-α. It was
found, in qualitative agreementwith the previouswork, that the
“standard” dipole approximation overestimates the broadening
compared to the dipole term in the exact interaction but con-
tribution of the ` , 1 poles, mostly monopole and quadrupole,
roughly compensates for the difference. Furthermore, it was
shown that the far line wings are not accurately described by
the standard dipole approximation. Instead, the wings depend
on both the ` = 0 and ` = 1 terms in the partial wave expansion
of the full radiator–perturber interaction. The monopole term
also contributes to a significant shift and a lineshape asymme-
try. To a lesser extent, the quadrupole interaction is another
source of asymmetry, resulting in an apparent minor shift of
lines with a central component (Ly-α, Ly-γ) in the direction
opposite to that of the monopole PPS.
With the line shape, including the shift, obtained with min-

imal approximating assumptions, the present approach is im-
portant for diagnostics of various plasmas, including cases
where a precise relation between the width and shift is cru-
cial [40] or presents a challenge [41]. A few possible direc-
tions for extending the approach exist. One is using full MD
(FMD) accounting for the Coulomb interactions between all
particles, eliminating the Debye quasiparticle approximation
of TMD. The significantly increased computational costs im-
posed by FMDwould be partly offset by the simpler calculation
of VI (cf. expressions in Appendices B and C). Note that the
optimization techniques used in this study (separation of the
perturbers into “exact” and “multipole” groups, and adaptive
time-steps for storing field and perturber coordinate histories)
are equally applicable to FMD. In any variant of MD, the mo-
tion of a perturber penetrating the bound electron cloud of
the radiator is governed by the monopole interaction with an
effective Z∗(r), in general ZN < Z∗ < ZN + 1. For ZN � 1,
as in the present work, this correction is largely unimportant.
However, for neutral or weakly ionized radiators this effect
should be investigated. Application to non-hydrogenic, multi-
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FIG. 8. Shapes of Ar xviii Ly-α calculated in various schemes for ne = 1024 cm−3, T = 800 eV (a) and ne = 1025 cm−3, T = 800 eV (b)
assumed. Multipole terms retained in Hamiltonian are indicated in the legend. For comparison, shown also are results of the standard dipole
approximation (these are the lineshapes shown by the solid lines in Fig. 5).
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FIG. 9. Same as Fig. 8, but for Ar xviii Ly-β.
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12

−600 −400 −200 0 200 400 600
∆E (eV)

10−6

10−5

10−4

10−3

10−2 Standard dipole
Full
l = 1
l = 1,2
l = 0,1
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sion sizes of the n = 1 and n = 2 electron-shell clouds are indicated,
in units of the ZN -scaled (ZN = 18) Bohr radius.
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(indicated in the legend) assuming ne = 1024 cm−3 and T = 800 eV.

electron radiators will require numerical evaluation of matrix
elements on a grid of r with the radial functions provided
by an atomic structure package (e.g., [21, 22]) and using in-
terpolation. Even for hydrogenlike radiators, more complex
calculations may be required for accurate lineshape modeling.
For example, the spin–orbit coupling, neglected in the present
calculations, is substantial for theAr xviii Ly-α line, exceeding
the width of its central Stark component at the lowest density
considered here. Furthermore, inelastic (“quenching”) colli-
sions between states with different n’s also contribute to the
line width and shift. A comparison made in Ref. [9] with ear-
lier full-Coulomb calculations [42] indicated a modest effect
(10–20%) of the quenching collisions on the Ly-α and Ly-β
broadening at 1024 cm−3. On the other hand, towards higher
density the Ly-γ shape will likely be strongly affected, en-
tirely disappearing at 1025 cm−3 due to the ionization potential
depression [43].
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Appendix A: Reduced matrix elements for hydrogenic radiators

For hydrogenic systems the reduced matrix elements are
written in terms of 3n- j symbols [21]. For arbitrary radial
function f (ra)√

4π
2` + 1

〈α ‖ f (ra)Ỳ m(r̂a)‖ β〉 =

A(`)αβ

∫ ∞

0
draPα(ra) f (ra)Pβ(ra),

(A1)

where Pα(r) is the hydrogenic reduced radial wavefunction for
the isolated radiator state |α〉.

For states including fine structure, that is, |α〉 =
|nα`αsα jαmα〉 with nα, `α, and sα respectively the princi-
pal, orbital, and spin quantum numbers, plus jα and mα the
total angular momentum and magnetic quantum numbers, the
angular factors are given by

A(`)αβ = δsαsβ (−1)jβ+1/2×√
(2 jα + 1)(2 jβ + 1)(2`α + 1)(2`β + 1)×{
`α sα jα
jβ ` `β

} (
`α ` `β
0 0 0

)
.

(A2)

If neglecting spin, then the state is described by |α〉 =
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|nα`αmα〉 and

A(`)αβ = (−1)`α
√
(2`α + 1)(2`β + 1)

(
`α ` `β
0 0 0

)
. (A3)

It follows from the 3- j symbol that for ` = 0 the reducedmatrix
elements are diagonal in orbital angular momentum quantum
numbers.

Appendix B: Atomic integrals for Coulomb interaction

The radial contribution to the atomic matrix elements for
the full Coulomb radiator–perturber interaction in Eq. (17) is
given by

U(`)αβ(r) =
∫ ∞

0
draPα(ra)

{
δ`0
r
−

r`<
r`+1
>

}
Pβ(ra), (B1)

where Pα(ra) is the reduced radial wavefunction for radiator
internal state |α〉. These integrals yield analytical results for
hydrogenic wavefunctions [23] and scale as [21]

U(`)αβ(r; ZN ) = ZNU(`)αβ(r → ZNr; ZN = 1) (B2)

with ZN the radiator nuclear charge. In addition, for ` ≥ 1 the
radial matrix elements can be expressed in the form

U(`)αβ(r; ZN = 1) =

−
R(`)αβ
r`+1

{
1 − e−(na+nb )r/(nanb )p(`)αβ(r)

} (B3)

with p(r) a polynomial in r . As mentioned in Sec. III B,
for perturbers sufficiently distant from the radiator a simplified
treatment is possible by neglecting the second term in Eq. (B3).

Expressions are provided for the hydrogen Ly-α line. These
were generated using an algebraic language [44], which also
generates FORTRAN or C forms minimizing errors in coding.
The r → 0 limits are useful for numerical calculations. There
are respectively 10 and 20 terms for the Ly-β and Ly-γ lines
and the expressions are lengthy and consequently not included
but available on request.

1. Principal quantum number n = 1

The angular factors constrain the calculations to one radial
integral,

U(0)1s,1s(r) =
e−2r

r
(1 + r)

=
1
r
− 1 +

2r2

3
+

2r3

3
+ O(r4).

(B4)

2. Principal quantum number n = 2

The angular factors constrain the calculations to only 4 radial
integrals,

U(0)2s,2s(r) =
e−r

8r
(8 + 6r + 2r2 + r3)

=
1
r
−

1
4
+

r2

12
−

r3

12
+ O(r4),

(B5)

U(0)2p,2p(r) =
e−r

24r
(24 + 18r + 6r2 + r3)

=
1
r
−

1
4
+

r4

480
−

r5

720
+ O(r6),

(B6)

U(1)2s,2p(r) =
3
√

3
r2

1 − e−r
4∑
j=0

r j

j!


=

√
3

40
r3

[
1 −

5r
6
+

5r2

14

]
+ O(r6),

(B7)

and

U(2)2p,2p(r) = −
30
r3

1 − e−r


4∑
j=0

r j

j!
+

r5

144




= −
r2

24

[
1 −

5r2

14
+

5r3

24

]
+ O(r6).

(B8)

Appendix C: Atomic integrals for screened Coulomb interaction

The radial matrix elements for the screened Coulomb po-
tential are defined in Eq. (30) as

U(`)αβ(r; κ) = δαβδ`0
e−κr

r
−

2` + 1
√

r
×∫ ∞

0

dra
√

ra
Pα(ra)I`+1/2(κr<)K`+1/2(κr>)Pβ(ra)

(C1)

with Iµ(x) and Kµ(x)modified Bessel functions of the first and
third kind, respectively [26]. These integrals scale as

U(`)αβ(r; κ; ZN ) = ZNU(`)αβ
(
ZNr; Z−1

N κ
)

(C2)

for nuclear charge ZN . The separation in Eq. (32) has the
short-ranged contribution B(`)αβ(r; κ) that scales the same as
Eq. (C2). The long-range contribution in Eq. (32) scales as

R(`)αβ(κ; ZN )G`(r; κ) =

ZN R(`)αβ
(
Z−1
N κ

)
G`

(
ZNr; Z−1

N κ
) (C3)

and is consistent with Eq. (C2). As for the Coulomb case, only
results for the Ly-α line are provided below.
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1. Principal quantum number n = 1

The angular factors limit the matrix elements to the
monopole term,

R(0)1s,1s(κ) =
κ2(8 − κ2)

(4 − κ2)2
(C4)

and

B(0)1s,1s(r; κ) = 4
e−2r

r
4(1 + r) − κ2r
(4 − κ2)2

, (C5)

conditional on a screening length sufficiently large to make
κ < 2 (recall length units are in Bohr radius) or the integral
diverges. This restriction on κ is a result of the separation into
short- and long-ranged contributions. That is, Eq. (C1) yields

U(0)1s,1s(r; κ) =
1

(4 − κ2)2r
×{

(κ2 − 8)κ2e−κr + 4
[
1 + (4 − κ2)r

]
e−2r }

=
1
r
−

(
κ +

4
(2 + κ)2

)
+
κ2r
2
+

16 + 16κ − κ3(2 + κ)2

6(2 + κ)2
r2 + O(r3),

(C6)

which is valid for all κ ≥ 0. Furthermore,

U(0)1s,1s(r; κ → 2) =
e−2r

r

(
1 −

r
4
−

r2

2

)
(C7)

and does not diverge despite the denominator in Eq. (C6).

2. Principal quantum number n = 2

There are 4 terms. The radiator moments are

R(0)2s,2s(κ) =
κ2(7 − 4κ2 + 4κ4 − κ6)

(1 − κ2)4
, (C8)

R(0)2p,2p(κ) =
κ2(5 − 6κ2 + 4κ4 − κ6)

(1 − κ2)4
, (C9)

R(1)2s,2p(κ) = −
3
√

3(1 + κ2)

(1 − κ2)4
, (C10)

and

R(2)2p,2p(κ) =
30

(1 − κ2)4
, (C11)

which are conditional on κ < 1. For the short-ranged contri-
butions get

B(0)2s,2s(r; κ) =
1

8(1 − κ2)4
e−r

r
×[

(8 + 6r + 2r2 + r3) + κ2(24 + 8r − 3r3)

+κ4(16 − 10r − 6r2 + 3r3) + κ6r(4 + 4r − r2)
]
,

(C12)

B(0)2p,2p(r; κ) =
1

24(1 − κ2)4
e−r

r
×[

(24 + 18r + 6r2 + r3) + 3κ2(8 − 4r − 4r2 − r3)

− 3κ4r(2 − 2r − r2) − κ6r3] ,
(C13)

B(1)2s,2p(r; κ) = −
√

3
8(1 − κ2)4

e−r

r2 ×[
(24 + 24r + 12r2 + 4r3 + r4)

+ 3κ2(8 + 8r − 2r3 − r4)

−3κ4r2(4 − r2) + κ6r3(2 − r)
]
,

(C14)

and

B(2)2p,2p(r; κ) =
5

24(1 − κ2)4
e−r

r3 ×[
(144 + 144r + 72r2 + 24r3 + 6r4 + r5)

− 3κ2r2(8 + 8r + 4r2 + r3)

+3κ4r4(2 + r) − κ6r5] ,
(C15)

also conditional on κ < 1.
Explicit expressions of U(`)αβ(r; κ) for n = 2 are not pro-

vided since they are available by combining results above us-
ing Eq. (32). Instead, results for U(`)αβ(r → 0; κ) are given,
which are convenient for numerical calculations,

U(0)2s,2s(r; κ) =
1
r
−

[
κ +

1 + 2κ2

4(1 + κ)4

]
+
κ2r
2
+[

1
2
−

(
κ +

1 + 2κ2

4(1 + κ)4

)
κ2

]
r2

6
+ O(r3),

(C16)

U(0)2p,2p(r; κ) =
1
r
−

[
κ +

1
4(1 + κ)4

]
+
κ2r
2
−[

κ +
1

4(1 + κ)4

]
κ2r2

6
+ O(r3),

(C17)

U(1)2s,2p(r; κ) = −
κ2r
√

3
4(1 + κ)4

×{
1 −

1 + 4κ + 6κ2 + 4κ3

10κ2 r2 +
(1 + κ)4

12κ2 r3 + O(r4)

}
,

(C18)

and

U(2)2p,2p(r; κ) = −
r2

24(1 + κ)4

{
(1 + 4κ + 5κ2)

−
5 + 20κ + 29κ2 + 16κ3

14
r2 +

5(1 + κ)4

24
r3 + O(r4)

}
.

(C19)
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3. Expressions for G`(r; κ)

Using known properties of the Bessel function [45], write

G`(r; κ) = −
(−r)`

(2` − 1)!!

(
1
r
∂

∂r

)` e−κr

r
, (C20)

which yields

G0(r; κ) = −
e−κr

r
, (C21)

G1(r; κ) = −
e−κr

r2 (1 + κr), (C22)

G2(r; κ) = −
e−κr

r3

(
1 + κr +

κ2r2

3

)
, (C23)

G3(r; κ) = −
e−κr

r4

(
1 + κr +

2κ2r2

5
+

2κ3r3

15

)
, (C24)

and

G4(r; κ) = −
e−κr

r5

(
1 + κr +

3κ2r2

7
+

2κ3r3

21
+
κ4r4

105

)
,

(C25)
required in the present work.

Appendix D: Penetrating collisions

The contribution from penetrating collisions in the radial
matrix elements are given in Eq. (37),

B(`)αβ(r; κ) = (2` + 1)
∫ ∞

r

dra
√

rar
Pα(ra)Pβ(ra)×{

I`+1/2(κra)K`+1/2(κr) − I`+1/2(κr)K`+1/2(κra)
}
.

(D1)

Using the known expression for the hydrogenic wavefunc-
tions [21], write

Pα(ra) ∝ e−ra/nα fα(ra) (D2)

with fα(x) a polynomial in x. The modified Bessel function
of the third kind can be written as√

2
πz

K`+1/2(z) =
e−z

z`
χ`(z) (D3)

with χ`(z) a polynomial in z. The modified Bessel function of
the first kind has the asymptotic expansion√

2
πz

I`+1/2(z) =
ez

z
ξ`(z) =

ez

z

∞∑
j=0

b(`)j
z j

(D4)

defining ξ`(z) with b(`)j constant coefficients.
Collecting results, the first term in Eq. (D1) is proportional

to

χ`(κr)
r`

∫ ∞

r

dra exp
(
−

nα + nβ
nαnβ

ra

)
×

fα(ra) fβ(ra)e−κ(r−ra )
ξ`(κra)

ra
=

exp
(
−

nα + nβ
nαnβ

r
)
χ`(κr)

r`
×∫ ∞

0
dx exp

[
−

(
nα + nβ

nαnβ
− κ

)
x
]
F1(x + r).

(D5)

The second term in Eq. (D1) is proportional to

ξ`(κr)
r

∫ ∞

r

dra exp
(
−

nα + nβ
nαnβ

ra

)
×

fα(ra) fβ(ra)e−κ(r−ra )
χ`(κra)

r`a
=

exp
(
−

nα + nβ
nαnβ

r
)
ξ`(κr)

r
×∫ ∞

0
dx exp

[
−

(
nα + nβ

nαnβ
+ κ

)
x
]
F2(x + r),

(D6)

where

F1(x)
F2(x)

}
= fα(x) fβ(x)

{
ξ`(κx)/x
χ`(κx)/x`

. (D7)

Both integrands vanish as x → ∞ with the condition [only
required for Eq. (D5)]

0 ≤ κ <
nα + nβ

nαnβ
, (D8)

leading to finite integrals. Thus,

B(`)αβ(r →∞; κ) ∝ exp
(
−

nα + nβ
nαnβ

r
)

(D9)

and the penetrating collision contributions vanish exponen-
tially with perturber distance.
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