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Selective withdrawal is a desired phenomenon in transferring oil from large caverns in US Strategic
petroleum reserve (SPR), because entrainment of oil at the time during withdrawal poses a risk
of contaminating the environment. Motivated to understand selective withdrawal in an SPR-like
orientation, experiments were performed in order to investigate the critical submergence depth as
a function of critical flow rate. For the experiments, a tube was positioned through a liquid-liquid
interface that draws the lower liquid upwards, avoiding entrainment of the upper fluid. Analysis of
the normal stress balance across the interface produced a Weber number, utilizing dynamic pressure
scaling, that predicted the transition to entrainment. Additionally, an inviscid flow analysis was
performed assuming an ellipsoidal control volume surface that produced a linear relationship between
the Weber number and the scaled critical submergence depth. This analytical model was validated
using the experimental data resulting in a robust model for predicting transition from selective
withdrawal to entrainment.

I. INTRODUCTION

This paper presents experimental data and discusses
results using scale analysis and a simplified inviscid anal-
ysis that yields a new relationship between two nondi-
mensional terms that predicts the transition from selec-
tive withdrawal to viscous entrainment in a two-liquid,
immiscible system.

In the US strategic petroleum reserve (SPR), crude oil
is stored in underground salt caverns, which have diame-
ters of approximately 60 m and depths of approximately
600 m [1]. In order to add oil to a cavern, brine is pumped
out using a pipe that has been lowered through the inter-
face into the brine. At some critical combination of flow
rate and depth below the undeformed interface and the
inlet to the pipe, oil is also withdrawn during pumping.
This marks the transition from selective withdrawal to
entrainment. Selective withdrawal, i.e. removal of only
the brine, is desirable during this process, because the
removed brine is stored as surface water and any oil in
it acts as a pollutant. Motivated to understand selec-
tive withdrawal in an SPR-like orientation for which we
found no published studies, experiments were performed
in order to investigate the critical submergence depth as
a function of critical flow rate. For the experiments, a
tube was positioned through a liquid-liquid interface that
draws the lower liquid upwards, avoiding entrainment of
the upper fluid, i.e. the SPR-like orientation shown in
Fig. 1(a-c). The schematic of the complete experimental
setup is shown in Fig. 2.

In this paper, we present two approaches to obtain pre-
dictive results for the transition from selective withdrawal
to entrainment. The first applies dimensional analysis
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on the interfacial stress balance, while the second uses
Bernoulli’s Principle or Euler’s equation for inviscid fluid
flow. The paper is organized as follows: background on
selective withdrawal phenomena is provided in Section 2;
a brief description of the experiments conducted is given
in Section 3; the analytical methods and the necessary
fit equations are explained in Section 4; and finally the
paper concludes with discussion of the results and the
conclusion in Section 5 and Section 6, respectively.

II. BACKGROUND

Early research conducted on selective withdrawal of
two-layer stratified liquids was an experimental study by
Lubin and Springer [2]. The critical height between the
floor of a two-liquid tank and the liquid-liquid interface
above was predicted as a function of the sink flow rate.
Assuming surface tension to be negligible and using the
Bernoulli’s principle, a Froude number (defined as Fr =
Qcr/(g

′d)1/2, where, Qcr is the critical flow rate, d is the
tube diameter and g′ is the reduced gravity) based on
the sink tube diameter was found to be the characteristic
nondimensional parameter representing the flow, and a
linear relationship between the nondimensional flow rate
and the scaled critical depth for their experimental data
collapsed their data well.

A more recent experiment was performed by Cohen
and Nagel [3] for a liquid-liquid system in which the up-
per liquid was withdrawn at a fixed rate (similar to sec-
ondary orientation but with the withdrawal tube above
the interface). For the given system, the authors found
the height of the tube above the interface at the moment
of entrainment to be proportional to the volumetric flow
rate raised to approximately the 0.3 power. The authors
were also able to find a scaling relationship that collapsed
all hump profiles to a single profile for low Reynolds
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FIG. 1. (a) Primary orientation in an initial state. (b) Pri-
mary orientation in a steady, intermediate sub-critical flow
rate state. (c) Primary orientation just after the inception
of entrainment. (d) Secondary orientation just after the in-
ception of entrainment. All the tube inner diameters in the
figure are 10.8 mm.

number flow. A capillary number based on the capillary
length was found to be the representative nondimensional
number for the flow. Cohen [4] extended the research
by including several pairs of fluids resulting in different
density and viscosity ratios. Based on the low Reynolds
number assumption, a dimensional analysis led to a rela-
tionship between a scaled flow rate and a scaled distance
to the undisturbed interface for prediction of the transi-
tion to entrainment. The fit equation had the form of a
power law with the exponent varying from 0.30 to 0.45,
depending on the fluid combinations used in the experi-
ment. Case and Nagel [5] reported a similar relationship
in their work while trying to analyze and collapse the
spout profiles after entrainment. According to the au-
thors, the spouts have two asymptotic regimes, based on
the viscosity ratio, which was matched to each other by
the flow dynamics. At large radius the interface is con-
strained by gravity to be horizontal and at large heights
the spout interface is constrained by the flows in the noz-
zle to be vertical. The nondimensional flow rate based
on the capillary number (defined as Ca = µwQcr/γl

2
c ,

where, Qcr is the critical flow rate, lc is the capillary
length, γ is the interfacial tension and µw is the viscosity
of withdrawal fluid) was identified as the representative
parameter that collapsed the spout states.

FIG. 2. Schematic diagram of the experimental setup. Cam-
eras (not shown) were located perpendicular to the two faces
of the hexagonal test tank.[1]

Blanchette and Zhang [6] developed a force balance
model to evaluate the system studied experimentally in
Cohen paper [4]. According to the authors, the tran-
sition to entrainment was dependent on a global force
balance on the interface, when the upwards force exerted
by viscosity because of the withdrawal flow overcomes
the downwards force of surface tension. The results of
the simulation matched the transition trends found in [4]
closely. It was concluded that the interfacial tension was
dominated by the weakly deflected portion of the hump
far away from the tip. The Capillary number (defined
as Ca = µwQcr/γS

2, where, Qcr is the critical flow rate,
S is the submergence depth, γ is the interfacial tension
and µw is the viscosity of withdrawal fluid) was also found
to be the representative non dimensional parameter that
collapses their data.

In addition to experimental work, the entrainment
problem has been investigated numerically. Lister [7] per-
formed a numerical simulation of a two liquid system of
equal viscosity in which a point sink was located a dis-
tance above an undeformed interface. Assuming Stokes
flow and equal viscosity in both layers, the flow field
was solved as a function of capillary number, the sink
strength, and a viscous velocity scale. A linear trend
in the log-log plot was identified between the nondimen-
sional capillary length and sink strength.

Farrow and Hocking [8] used a two dimensional finite-
difference approach to simulate selective withdrawal
of water for high Reynolds number, inviscid, irrota-
tional flow in order to investigate the scatter in the
critical draw-down Froude number (defined as Fr =
Qcr/(g

′S3)1/2, where, Qcr is the critical flow rate, S is
the submergence depth and g′ is the reduced gravity),
i.e. transition from selective withdrawal. Their results
indicated that interfacial waves could affect the critical
draw-down Froude number and were responsible for the
experimental scatter observed. The critical draw-down
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Froude number based on the depth of the withdrawn fluid
layer, for conditions in which interfacial waves was not
a significant factor, is approximately 1. Later, Hocking
et al. [9] included the surface tension effect due to the
curvature of the interface and concluded that the Froude
number, based on the sink depth from the interface, rep-
resented the complete flow phenomenon and the surface
tension adds a resistance to the withdrawal force. How-
ever, no predictive relationship between the submergence
depth and the critical flow rate was found.

Initially, the relationships developed in the aforemen-
tioned works were applied to our data, but the results
were not able to produce a consistent collapse for a pre-
dictive relationship between flow rate and submerged
depth as shown in Fig. 3. In an attempt to understand
the reason for the disparities, we consider the flow regime
at the onset of entrainment using the Ohnesorge num-
ber (Ohlc = µw/(ρwγlc)

1/2, where, µw is the viscosity of
withdrawn fluid, ρw is the density of withdrawn fluid, γ
is the interfacial tension and lc is capillary length), which
is defined as the ratio of viscous effect to the combined
effect of surface tension and inertia. As fluid is removed
at a rate below critical flow rate, the reduction in the
pressure due to the withdrawal flow is responsible for
the deformation of the interface. In order to maintain
the steady deformed interface the force balance has to
be at an equilibrium. For a given sub-critical flow rate,
at equilibrium, the flow regime effect is not explicitly ob-
servable other than causing a change in interface location
or shape. But at the onset of entrainment, the interface
is swept into the flow and the Ohnesorge number and
Weber number (defined as Welc = ρwU

2
0 lc/γ, where ρw

is the density of withdrawal fluid, lc is capillary length,
γ is interfacial tension and U0 is the tube velocity) help
define the flow regime. Fig. 4 shows where the experi-
mental studies fall in comparison to each other in terms
of the Weber number and Ohnesorge number. There are
three major regimes in terms of the Ohnesorge number.
For Ohlc < 0.1, the viscous effect is negligible compared
to the surface tension and inertia effect. For Ohlc > 10,
the viscous effect dominates the surface tension and in-
ertia effect. For 0.1 < Ohlc < 10, the viscous effect is
comparable relative to the surface tension and inertia ef-
fect. To understand the comparative effect between the
surface tension and inertia Weber number was also plot-
ted in Fig. 4. For Welc > 1, the inertia effect dominates
over surface tension and for Welc < 1 the surface tension
dominates inertia.

It was found that the Ohnesorge number for our exper-
imental data was very low, meaning during entrainment
the viscous effect is negligible compared to the surface
tension effect and inertial effect, as shown in Fig. 4. Sim-
ilarly, Lubin’s experimental data lies in the regime where
viscous effects are also negligible. For both these stud-
ies the Weber numbers are high, meaning surface tension
effects were not dominant. Reviewing Cohen’s data in
Fig. 4, it can be seen that their experimental flow regime
overlaps high and low values of Welc with Ohlc close to

order one, that is some data are in the region where vis-
cous effect was in a similar order in comparison to the
surface tension and inertial effect and also in a region of
surface tension dominance. This also explains the possi-
bility of having a hysteresis effect at very low flow rates,
as described by Cohen ([3], [4]).

In this paper, we present two approaches that were
used to predict transition from selective withdrawal to
entrainment for two withdrawal orientations - a dimen-
sional analysis based on the normal stress balance and
an extension to a simplified inviscid model. No paper
in the literature was found that studied withdrawal of
bottom layer fluid from a tube penetrating the interface
from above. Moreover, this analysis shows the compari-
son between withdrawal from above and withdrawal from
below, especially due to the tube wall effect on the in-
terface. Also it attempts to explain how having large
diameter compared to the capillary length would affect
the analysis, which would be more representative for real
SPR-like conditions.

III. EXPERIMENTAL DETAILS

A laboratory investigation was performed in order to
gain insight into the conditions for which entrainment
of the lighter fluid occurred for the orientations shown
in Fig 1. To record the transition from selective with-
drawal to entrainment in an immiscible, two-liquid sys-
tem, liquid pairs (silicon oils, brine, and water) were se-
lected with density ratios similar to what was expected
for SPR-like conditions. The liquid pairs were contained
in a glass hexagonal tank approximately 25.4 cm wide
and 61 cm tall. The withdrawal location was kept near
the center of the container to minimize wall effects. Two
withdrawal tube orientations were utilized. In the pri-
mary (SPR-like) orientation, the withdrawal tube is low-
ered through the interface and the lower fluid is drawn
upwards (Fig. 1). In the secondary orientation, the with-
drawal tube opening is placed below the interface and
the lower fluid is drawn downwards.

All experiments began by adjusting the withdrawal
tube centered in the tank such that the inlet was perpen-
dicular to the undisturbed interface; two Redlake Mo-
tionPro cameras positioned 120° apart were used to ad-
just alignment. The withdrawal tube was attached to a
linear variable displacement transducer (lvdt) that was
zeroed at the undisturbed interface. Prior to each exper-
iment, the tube was lowered at least 2.54 cm below the
interface of the upper fluid. The position of the tube was
monitored using an lvdt (Fig. 2). The upper fluid layer
was 2.54 cm thick.

In order to ensure that the return flow from the fil-
ter at the bottom of the test tank did not significantly
influence the flow at the liquid-liquid interface or near
the withdrawal tube, dye injection tests were conducted.
The results showed that the filter distributor created a
flow uniform enough to maintain the flow quality. Fur-
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FIG. 3. Plots showing the nondimensional submergence depth as a function of various nondimensional parameters. The
secondary orientation data are presented by “filled” symbols, whereas the primary orientation data are presented by ”hollow”
symbols. The symbols are defined in Table I. (a) nondimensional submergence depth as a function of capillary number as in
[4]. The dotted red line shows Cohen’s correlation. (b) nondimensional submergence depth as a function of capillary number
as in [6]. (c) nondimensional submergence depth as a function of Froude number as in [8]. (d) nondimensional submergence
depth as a function of Froude number as in [2]. The dotted red line shows Lubin’s correlation, see Eq. (15)

.

thermore, tests were conducted to show that there was no
change on the critical submergence depth when the loca-
tion of the withdrawal tube was varied by two diameters
off-center or when the thickness of the oil layer was var-
ied between 1.2 cm and 5.0 cm. This result is in contrast
with the findings of Cohen [4] for selective entrainment
above the interface, who reported that the entrainment

process was affected by upper layer thickness less than
2.54 cm.

After setting the initial position of the withdrawal
tube, the withdrawal rate was then slowly increased to
the desired level using an impeller pump. The lower fluid
was pumped into a settling tank and then back into the
bottom of the tank at the withdrawal rate, maintaining
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TABLE I. Table of the properties for each fluid combination studied. ρu and νu corresponds to upper fluid density and
upper fluid kinematic viscosity respectively. ρw and νw corresponds to lower fluid density and lower fluid kinematic viscosity
respectively. γ corresponds to surface tension coefficient. The upper layer fluid consists of two variations of polydimethyl
siloxane (PDMS) and for lower fluid deionized water (DI H2O) and two variations of Calcium Chloride Brine (CaCl2 Brine)
were used.

System 1 System 2 System 3 System 4 System 5 System 6
Symbols

Upper Fluid 5 cSt PDMS 5 cSt PDMS 5 cSt PDMS 20 cSt PDMS 20 cSt PDMS 20 cSt PDMS
Lower Fluid DI H2O 1.97 cSt CaCl2 Brine 3 cSt CaCl2 Brine DI H2O 1.97 cSt CaCl2 Brine 3 cSt CaCl2 Brine
ρu (g/cc) 0.918 0.918 0.918 0.950 0.950 0.950
ρw (g/cc) 0.998 1.245 1.325 0.998 1.245 1.325
ρu/ρw 0.920 0.737 0.693 0.952 0.763 0.717
νu (cSt) 5 5 5 20 20 20
νw (cSt) 1.01 1.97 3 1.01 1.97 3
νu/νw 4.95 2.54 1.67 19.80 10.15 6.67
γ (N/m) 0.031 0.038 0.038 0.031 0.038 0.038
lc/d 0.44 - 0.94 0.22 - 0.46 0.20 - 0.41 0.57 - 1.21 0.23 - 0.49 0.20 - 0.43

FIG. 4. Weber number as a function of Ohnesorge number.
The data from Cohen’s experiment is shown using the symbol

. The data from Lubin and Springer’s experiment is shown
using the symbol +. The data from this experiment had two
orientations. The fluid combinations for the primary and the
secondary orientation are expressed using the symbols men-
tioned in Table I. change axis and make symbols larger

a constant interface depth. Keeping the flow rate con-
stant, the tube was raised in increments of 0.25 mm until
the interface neared transition at which time the tube
was raised in increments of 0.03 mm until entrainment
occurred. Upon entrainment the pump was stopped and
the flow rate and tube depth were recorded. Six fluid
pairs were tested in the experiments with two PDMS
oils used as upper fluids and three brine solutions with
varying concentrations of CaCl2 as lower fluids. These
combinations resulted in kinematic viscosity ratios from

TABLE II. Withdrawal tube dimensions. All the tubes used
in the experiment were stainless-steel.

Tube 1 Tube 2 Tube 3
Nominal Dia. (cm) 0.953 1.27 1.905

Inner Dia. (cm) 0.744 1.08 1.57

1.67 to 19.80 and density ratios from 0.69 to 0.95. The
surface tension for each pair was measured using a ring
tensiometer and was between 0.03 N/m and 0.038 N/m
for all pairs (Table I).

For the primary orientation, three stainless steel tubes
were used, with inner diameters of 0.74 cm, 1.08 cm,
and 1.57 cm; the respective outer diameters were 0.95
cm, 1.27 cm, and 1.91 cm (Table II). The secondary
orientation only utilized a stainless steel tube with an
inner diameter of 1.08 cm. Flow rates were varied from
4.7×10−5 m3/s to 6.5×10−4 m3/s resulting in Reynolds
number (Red) based on the inner tube diameter ranging
from 2000 to 60,000, with most cases above 104. Typ-
ical SPR-like situation has nominally 16,000 m3/day of
brine flowing through a 9.85 in. inner diameter tube.
These flow conditions result in Red values on the order
of 390,000 to 900,000 [1]. Assuming turbulent flow begins
at Red values on the order of 2000 and fully turbulent at
104, the tube flow in the SPR caverns can be consid-
ered fully turbulent, similar to most of the experimental
conditions presented.

IV. ANALYSIS

The first approach applies dimensional analysis on the
normal stress balance equation. This analysis presents an
idea about the forces which are important in the selec-
tive withdrawal phenomenon. The second approach uses
Bernoulli’s principle to explain the intuition achieved
from the dimensional analysis pertaining to the exper-
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iment.

A. Interfacial Stress Balance

The objective of this study was to determine a pre-
dictive relationship between the submergence depth and
critical flowrate at the moment of entrainment. The di-
mensional analysis approach on the interfacial stress bal-
ance equation allows us to scrutinize the forces acting
on the interface at selective withdrawal. Surface ten-
sion manifests itself in the normal stress balance in the
boundary condition for a Newtonian incompressible fluid
as given below from [10], where ∆P indicates the pres-
sure change across the interface, followed by the viscous
normal stress across the interface and the surface ten-
sion stress, where γ is the surface tension and ∇ is the
gradient operator.

∆P −∆

(
2µ
∂un
∂n

)
− γ∇ · n = 0 (1)

Next, we nondimensionalize Eq. (1) with a choice
to make regarding the pressure scaling. In previous
works, the flow was often considered to be creeping flow
[4, 7, 11], which resulted in a capillary number based on
the capillary length as the representative nondimensional
flow parameter that did not collapse our data. We there-
fore investigated dynamic pressure scaling and chose to
bring gravity in the normal stress balance, by decompos-
ing the pressure term into its dynamic and static com-
ponent such that P = Pd − ρgz, where, Pd is the dy-
namic pressure, g is gravitational acceleration and z is
the vertical height, defined positive opposing the gravity
vector, thus ~g · z is negative. Using ρwU

2
0 as the dy-

namic pressure scale, capillary length (lc =
√
γ/∆ρg) as

length scale for the normal and tangential direction on
the interface, tube diameter (d) as the axial or vertical
length scale and U0 = 4Qcr/πd

2 as the velocity scale,
respectively, we achieve the following equation with di-
mensionless variables indicated by over-bars.

∆Pd −
1

Fr2
d

∆ρgz − 1

Relc
∆

(
2µ
∂un
∂n

)
− 1

Welc
γ∇ · n = 0 (2)

where, Frd = U0/
√
g′d, is the Froude number based on

the tube diameter and g′ is the reduced gravity such that
g′ = (1− ρu/ρw), ρu and ρw are the upper fluid density
and lower fluid density respectively. Relc = ρwU0lc/µw is
the Reynolds number based on the capillary length and
Welc = ρwU

2
0 lc/γs is the Weber number based on the

capillary length.
Prior to entrainment, the location and shape of the

interface is stable for a fixed flow rate, as observed from

the experiment. Using order of magnitude analysis, just
at the onset of entrainment, the following equation can
be shown (see details in Appendix A)

∆Pd︸︷︷︸
O(1)

− 1

Fr2
d

∆ρgz︸ ︷︷ ︸
O(10−1)

− 1

Relc
∆

(
2µ
∂un
∂n

)
︸ ︷︷ ︸

O(10−2)

− 1

Welc
γ∇ · n︸ ︷︷ ︸

O(1)

= 0 (3)

The scaling analysis allowed the viscous shear com-
ponent to be ignored, and the dynamic pressure was
found to balance surface tension with a secondary effect
of buoyancy.

We defined the flow regime using the Ohnesorge num-

ber, Ohlc = We
1
2

lc
/Relc = µw/(ρwγlc)

1/2, as illustrated

in Fig. 4. Rearranging Eq. (3) we can write the following,

We
1
2

lc
∆Pd −

We
1
2

lc

Fr2
d

∆ρgz −Ohlc∆

(
2µ
∂un
∂n

)
− 1

We
1
2

lc

γ∇ · n = 0 (4)

The Ohnesorge number has previously been used in the
literature to define the droplet breakout regimes of liquid
jets [12]. Recently, it has also been used to analyze the
regimes of selective withdrawal phenomena [13]. It en-
ables the comparison of the viscous effect to the surface
tension and inertia effect in one nondimensional param-
eter. In our experiment the flow regime Ohlc < 0.0085
and also from Eq. (3), it can be inferred that the viscous
effect at the onset of entertainment is negligible for our
experiments. This reduces the Eq. (4) into the following
representative stress balance equation.

∆Pd −
1

Welc

[
1

(lc/d)
×∆ρgz + γ∇ · n

]
= 0 (5)

There are three potential cases that can be considered
in Eq. (5). For case 1, as (lc/d) → ∞, surface tension
balances pressure and Weber number becomes dominant.
For case 2, as (lc/d) ≈ 1, both buoyancy and surface ten-
sion act as the resistive force to balance pressure. But as
the capillary length and the tube diameter are of similar
order, the Weber number once again becomes the repre-
sentative nondimensional parameter. For case 3, as the
ratio (lc/d)→ 0, buoyancy balances pressure and Froude
number becomes the dominant nondimensional parame-
ter, which is the case for actual SPR.

Thus, dimensional analysis for our case indicates that
the Weber number, based on capillary length, is the rep-
resentative flow parameter for the experimental data pre-
sented and is found to collapse the data well as shown in
Fig. 7.
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B. Inviscid Flow Model using Bernoulli’s Principle

This approach was introduced by Lubin and Springer
[2] and offered a more detailed insight on the selective
withdrawal phenomena. The analysis was based on the
assumptions that the viscous effects are negligible and the
flow is incompressible. Bernoulli’s principle was applied
just below the interface streamline. Lubin and Springer,
in their paper, assumed a hemispherical control volume
surface area, with the plug hole being at the center of the
hemisphere.

In this analysis, it was already confirmed, based on
the Ohnesorge number that the viscous effect was negli-
gible for our experimental flow field at the onset of en-
trainment. The assumption made by Lubin and Springer
were slightly modified such that the model accounts for
the suction tube instead of a drain-hole on a flat tank
surface. An ellipsoidal control volume surface was as-
sumed, with the center being at an offset (a) from the
tube opening, as in Fig. 5. Our supposition was that
the interface acts similar to a static wall and influences
the iso-velocity profiles away from the tube exit. An el-
lipsoidal control volume surface is more generalized as
compared to the previously assumed spherical or hemi-
spherical control volumes. This assumption is also sup-
ported by True and Crimaldi [14] for inhalant flows for
which velocity magnitude contours near the tube opening
become ellipsoidal in shape as Re increased. The ellip-
soidal shape is also seen in mulitiphase Eulerian-Eulerian
CFD simulations that we have performed for a few of our
experimental cases, see for example Fig. 6.

The flow phenomena observed in this experiment is
similar to the one observed by Lubin and Springer [2]
and Hocking et al [8, 9]. At a certain entrainment depth
and at a certain flow rate a dip forms above the point sink
on the surface of the lower fluid. The flow is steady unless
it reaches a critical entrainment depth (S) and a critical
flow rate (Qcr), at which point, the dip grows rapidly and
extends towards the point sink almost instantaneously.
Mass conservation at the ellipsoidal control volume, using
Knudsen Thomsen approximation [15], can be expressed
as,

Qcr = 4πα0H
2
dUs (6)

α0 ≈
(
b

Hd

)[
2

3

{
1 +

1

2

(
b

Hd

)( 8
5 )}]( 5

8 )

(7)

where, Qcr is the critical flow rate, Hd and b are the axes
of the 2D ellipsoidal control surface. Us is average ve-
locity normal to the ellipsoidal surface. The deformation
coefficient, α0 expresses the deviation from the spherical
control surface assumption. When α0 → 1, the control
surface is a sphere, when α0 → 0.5, the control surface
is a hemisphere, otherwise it is an ellipsoid. Eq. (7) cane
be used to estimate α0.

Bernoulli’s principle along a streamline from point 1
to point 2 in Fig. 5 generates the following equation,

TABLE III. Fluid properties for calculating ratio of capillary
length to tube diameter for Lubin’s Paper [2]

ρ1(kg/m3) ρ2(kg/m3) γ(N/m) d(m) lc(m) (lc/d)(1/5)

998 1.2226 0.075 0.0032 0.003 0.99
998 783.43 0.04 0.0032 0.004 1.05
998 918.16 0.021 0.0064 0.005 0.95
998 918.16 0.038 0.0064 0.007 1.02
998 868.26 0.012 0.0032 0.003 0.99

S = Hd +
U2
s

2g′
∓ a (8)

where, (−) is for primary orientation, (+) is for secondary
orientation and a is the offset of the ellipsoidal centroid
from the tube opening. Eq. (6) - Eq. (8) can be rear-
ranged to yield,

S = Hd +
Q2

cr

32π2g′α2
0H

4
d

∓ a (9)

The assumption of instantaneous rupture of the inter-
face at the critical condition is used to eliminate Hd.

dS

dt

/dHd

dt
≈ 0 (10)

Differentiating Eq. (9) and applying Eq. (10) gives

Hd =
0.4174

α
2/5
0

[
Q2

cr

g′

] 1
5

(11)

Substituting Hd from Eq. (11) to Eq. (9) yields,

S =
0.5227

α
2/5
0

[
Q2

cr

g′

] 1
5

∓ a (12)

Normalizing Eq. (11) and Eq. (12) with the diameter,
allows us to re-write the equations in terms of Weber
number, Welc = ρwQ

2
crlc/d

4γ and capillary length, lc =√
γ/∆ρg, such that it provides a linear relationship be-

tween the nondimensionalized critical entrainment depth
and nondimensionalized critical flow rate raised to the
power one-fifth.

S

d
=

0.5227

α
2/5
0

(
lc
d

) 1
5

We
1
5

lc
∓ a

d
(13)

Hd

d
=

0.4174

α
2/5
0

(
lc
d

) 1
5

We
1
5

lc
(14)
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FIG. 5. Schematic of symbols and control volume used in the analysis of inviscid model. (a) Primary orientation (b) Secondary
orientation. The critical flow rate is denoted by Qcr, the tube diameter by d and the submergence depth by S. Hd and b are
the axes of the 2D ellipsoid. Us is the average velocity normal to the control volume surface and a is the offset of the ellipsoidal
control volume from the tube opening.

FIG. 6. An example Multiphase Eulerian-Eulerian CFD sim-
ulation for system 4, withdrawal of bottom layer fluid at sub-
critical flow rate using Ansys FLUENT [16]. Label (1) de-
notes the initial position of the undisturbed interface; Label
(2) denotes an equilibrium position of the interface; Label
(3) denotes the control volume where the velocity vectors are
perpendicular to the ellipsoidal control surface (dashed line);
and Label (4) denotes iso-velocity contours.

V. RESULTS AND DISCUSSION

We now apply Eq. (13) to our experimental data for
both orientations and present the results in Fig. 7. The
relation for entrainment depth as a function of Weber

number to the one-fifth power fits the data well. Addi-
tionally, expressions for α0, a and b can easily be esti-
mated from the slope and intercept values of the fitted
equation as shown in Table IV.

From this analysis, it can also be concluded that the
experiment by Lubin and Springer is a special case of
the proposed model, where α0 = 0.5 (for hemispherical
control volume surface) and the fluid layers were chosen
such that (lc/d)1/5 ≈ 1, see Table III. The point sink was
assumed to be exactly on the plug-hole opening, render-
ing a = 0. Using these assumptions in Eq. (6), Eq. (11)
and Eq. (12), as well as taking help from Eq. (B4) the
expression derived by Lubin in Eq. (15) is realized

S

d
= 0.69

[
Q2

cr

g′d5

] 1
5

(15)

For an individual critical Weber number, the fit equa-
tions lead to a critical nondimensional submergence
depth for the corresponding tube orientations, Fig. 7.
For cases when the viscous effect is negligible compared
to the surface tension and inertial effect (low Ohlc flow),
and the capillary length is in the comparable order of
scale to the tube diameter, a predictive relationship is
generated for the desired selective withdrawal, above the
curve, and entrainment, below the curve.

The offset between the primary and the secondary ori-
entation can be explained as the effect of the tube wall on
the interface. In the primary orientation, the tube wall
is in contact with the interface and impedes the entrain-
ment whereas in the secondary orientation the interface
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TABLE IV. Table of estimations for the parameters α0, a and b, with uncertainties of the slope and the intercept given
parenthetically.

Orientation slope intercept α0 a(m) b(m)

Primary 0.41(± 0.01) -0.56(± 0.04) 1.84
(
lc/d

) 1
2 0.56d Hd

[
− 1 +

{
1 + 7.92

(
lc/d

) 4
5
} 1

2
] 5

8

Secondary 0.41(± 0.03) +0.30(± 0.08) 1.95
(
lc/d

) 1
2 0.30d Hd

[
− 1 +

{
1 + 8.75

(
lc/d

) 4
5
} 1

2
] 5

8

FIG. 7. Critical submergence depth as a function of critical
Weber number. The ”hollow” symbols represent the primary
orientation data, whereas the ”filled” ones represent the sec-
ondary orientation data. The solid line through the ”hollow”
symbols is the best linear fit for the primary orientation and
the solid line through the ”filled” symbols is the best linear
fit for the secondary orientation. The dotted lines are 95%
prediction intervals. The region above the 95% upper bound
of entrainment depth is selective withdrawal zone, whereas
the area below is entrainment zone. The symbols are defined
in Table I.

is completely free from any surface contact. As a result,
for the same submergence depth the primary orientation
requires a stronger flow rate compared to the secondary
orientation for entrainment to occur. A point to be noted
here is that having a negative entrainment depth would
require the lower fluid to “stick” to the withdrawal tube
and block the upper fluid from being entrained.

It is evident from the analysis that the ratio (lc/d)
plays a significant role in shaping the ellipsoid, see Ta-
ble IV for parameters. The inverse Bond number can be
defined as (lc/d), details in Appendix B. It can be in-
terpreted that Bo−1 is the scaled surface tension effect
with respect to the buoyancy effect at the diameter scale.
From the normal stress balance, Eq. (5), buoyancy dom-
inates surface tension for large diameters and the Bo−1

reduces to a small number. In SPR-like cavern flows, the
tube diameter is large compared to the capillary length,

FIG. 8. Ellipsoidal control volume parameters (Hd, b) as a
function of the inverse Bond number for (a) primary orien-
tation, (b) secondary orientation and (c) Lubin and Springer
model. The fluid combination of system 3 (Table I) was cho-
sen. The flow rate was set to be 0.35 m3/s. The surface
tension coefficient was varied from 0.001 N/m to 0.1 N/m
and eight selected diameters were chosen from a very wide
range of 0.001 m to 0.30 m. The solid line is for plotting Hd

and the dashed line is for plotting b.

so it can be inferred that the force balance is one of buoy-
ancy balancing pressure and, consequently, the Froude
number is expected to be the representative nondimen-
sional number, and the correlation shown in Fig. 7 is
not claimed to be predictive. However, for the exper-
iments presented herein, the inverse Bo numbers range
from about 0.2 to 1.2, which is in the vicinity of case 2
and makes Weber number the representative nondimen-
sional number at entrainment.

In this experiment, during selective withdrawal, the
reduction of pressure due to the tube velocity creates
a downward pull on the interface toward the tube in-
let. The surface tension and the buoyancy create a re-
sistance to this force and at equilibrium, a steady state,
sub-critical balance is achieved such as shown in the left
photo in Fig 1. When Bo−1 > 1, surface tension domi-
nates as the resistive force and when Bo−1 < 1, buoyancy
dominates. Entrainment occurs when the resistive force
is overcome by the force due to the pressure reduction.
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To understand the effect on inverse Bond number on
the shape of the ellipsoidal control volume, a simulation
was conducted keeping the flow rate fixed for a chosen
fluid combination. A high flow rate of 0.35 m3/s was
chosen so that the high Reynolds number flow condition
was satisfied even for the largest diameter and viscous ef-
fect can be neglected (Relc ≈ 103 to 108). It corresponds
to very low Ohnesorge number (Ohlc ≈ 10−4 to 10−2) for
the simulation. The inverse Bond number, Bo−1 = (lc/d)
was varied by changing the surface tension coefficient and
the diameter. The range of the surface tension coefficient
was from 0.001 N/m to 0.1 N/m. Eight selected diam-
eters were chosen from a very wide range of 0.001 m to
0.30 m.

The inverse Bond number, according to the derived
model, shapes the major and minor axes of the ellip-
soidal control volume surface. Figure. 8(a), shows the
trend of Hd, b for the primary orientation as a function of
Bo−1. The trend for the secondary orientation Fig. 8(b)
was found to be similar to the primary. For both ori-
entations, the ellipsoid becomes a sphere at a particular
Bo−1 value. As the Bo−1 increases, Hd tends to de-
crease, indicating the lowering of interface, Fig. 5. The
interface acts like a static wall and consequently, as the
interface drops, it also reduces the velocity in its vicinity.
At some critical average velocity Us, the interface cannot
resist the downward pull anymore and it collapses. To
collapse at a reduced critical velocity the area of the con-
trol surface has to increase, as the Bo−1 increases. The
only way the control surface area can increase for a fixed
flow rate is by an increase of the parameter b, which is
evident in Fig. 8. Fig. 8(c) shows the results of extending
the analysis to fluids in Lubin’s experimental setup. It
is apparent that as Bo−1 gets closer to 1, the major and
minor axes becomes equal and the control volume shape
obtains the form of an hemisphere, as Lubin and Spring
assumed in his paper.

VI. CONCLUSION

This paper presented two approaches to predict tran-
sition from selective withdrawal to entrainment using the
physics of fluid flow. The first used the dimensional
analysis approach on the normal stress balance equa-
tion showed the Weber number as the relevant nondimen-
sional parameter specific to selective withdrawal. More-
over, this method provided a representation for the force
balance on the interface for the relative significance of
buoyancy, surface tension, and pressure balance. The
second used Bernoulli’s principle for selective withdrawal
with two withdrawal-tube orientations. The theoreti-
cal model was fitted using experimental data and the
expressions for corresponding unknown parameters were
derived. It is shown that the general control volume asso-
ciated with the average velocity at the critical flow rate is
ellipsoidal in shape. It was also shown that Lubin’s cor-
relation is a special case of this proposed model. Both

approaches led to predictive relations for the selective
entrainment depth as a function of the critical Weber
number raised to the one-fifth power.
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Appendix A

Order of magnitude analysis for each term of Eq. (3)
can be performed using the appropriate scales.
Analyzing ∆Pd term:

∆Pd =
(ρwU

2
i − ρuU2

i )

ρwU2
0

≈ O(
U2
i

U2
0

) (A1)

where Ui(≈ Qcr/4πl
2
c) is the velocity estimated close to

the interface. The maximum order of the ratio Ui/U0

becomes 10−1.

∆Pd =
(ρwU

2
i − ρuU2

i )

ρwU2
0

≈ O(10−2) (A2)

Analyzing 1
Fr2d

∆ρgz term:

∆ρgz =
(ρwgzw − ρugzu)

ρwg′d
≈ O(

ρwgzw
ρwg′d

) (A3)

The maximum depth that z can have is in the order of the
submergence depth S. So the maximum order becomes,

∆ρgz =
(ρwgzw − ρugzu)

ρwg′d
≈ O(1) (A4)

Similarly, for the Froude number we can find the maxi-
mum order to be,

1

Fr2
d

=
g′d

U2
0

≈ 10× 10−2

102
≈ O(10−3) (A5)

The order of the total product becomes,

1

Fr2
d

∆ρgz ≈ O(10−3) (A6)

Analyzing 1
Relc

∆
(
2µ∂un

∂n

)
term:

∆

(
µ
∂un
∂n

)
=
µw

∆uw
n

∆n − µw
∆uu

n

∆n

µw
U0

lc

(A7)
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Below the interface, for the withdrawal fluid, it can be
estimated that the velocity goes from almost zero (com-
pared to tube velocity) near the interface to U0 near the
tube, over the length scale lc. Above the interface, for
the upper fluid, it can be estimated that the velocity goes
from almost zero near the interface to some maximum
normal velocity Um

n (≈ 4Qcr/πl
2
c) over the length scale

lc. Using these estimated scales we can rewrite Eq. (A7)
as below,

∆

(
µ
∂un
∂n

)
≈ O(

µuU
m
n

µwU0
) ≈ O(10) (A8)

Similarly, for the Reynolds number we can find the order
to be,

1

Relc
=

µw

ρwU0lc
≈ 10−3

103 × 10× 10−2
≈ O(10−5) (A9)

The order of the product becomes,

1

Relc
∆

(
2µ
∂un
∂n

)
≈ O(10−4) (A10)

Analyzing 1
Welc

γ∇ · n term:

γ∇ · n =
γ∇ · n
γslc

≈ O(
∇ · n
lc

) (A11)

where ∇ · n is the curvature and from our experiment it
is in the order of 10.

γ∇ · n ≈ O(
∇ · n
lc

) ≈ O(103) (A12)

The order of Weber number in our experiments are,

1

Welc
=

γs
ρwU2

0 lc
≈ 10−2

103.102.10−2
≈ O(10−5) (A13)

The order of the product is as following,

1

Welc
γ∇ · n =≈ O(10−2) (A14)

Appendix B

The Froude number for two-fluid stratified flow is
defined as the ratio of flow inertia to buoyancy effect
[17, 18], FrL1

= U0/
√
g′L1, where g′ is the reduced grav-

ity such that g′ = (1− ρu/ρw), assuming ρw > ρu. Sim-
ilarly, the ratio of inertia to surface tension effect is de-
fined as Weber number [17], WeL2 = (ρwU

2
0 )/(γs/L2).

When comparing Froude number to the Weber number,
another dimensionless number, known as the Bond num-
ber [17], comes into effect. The Bond number is defined
as the ratio of buoyancy effect to surface tension effect,
Bo = (ρwg

′L1)/(γs/L2). The squared Froude number
can be re-written as,

Fr2
L1

=
U2

0

g′L1
=
ρwU

2
0L2

γs
× γs
ρwg′L1L2

(B1)

Fr2
L1

= WeL2
/Bo (B2)

The dimensional analysis approach uses length scales
L1 = L2 = lc. Using the definition of capillary length,
lc, the Bond number reduces to Bo = 1. Applying in
Eq. (B2) yields,

Fr2
lc = Welc (B3)

Similarly, if the length scales were such that L1 = d
and L2 = lc, the Bond number reduces to Bo = d/lc.
Applying in Eq. (B2) yields,

Fr2
d = Welc/Bo =

(
lc
d

)
Welc (B4)

Eq. (B3) and Eq. (B4) helps us express the Froude
numbers in terms of Weber numbers.
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