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We investigate the effects of physicochemical attractions on the transport of finite-sized particles
in three-dimensional ordered nanopost arrays using Stokesian dynamics simulations. We find that
weak particle-nanopost attractions negligibly affect diffusion due to the dominance of Brownian
fluctuations. Strong attractions, however, significantly hinder particle diffusion due to localization
of particles around the nanoposts. Conversely, under flow, attractions significantly enhance
longitudinal dispersion at low to moderate Péclet number (Pe). At high Pe, by contrast, advection
becomes dominant and attractions weakly enhance dispersion. Moreover, attractions frustrate
directional locking at moderate flow rates, and shift the onset of this behavior to higher Pe.

I. INTRODUCTION

The dispersion of nano- to micron-sized particles
through complex media underpins the efficacy of
practical applications including drug delivery [1, 2], oil
exploration and production [3], and separations processes
such as gel electrophoresis [4] and chromatography
[5]. The complex media in these settings may consist
of solutions containing macromolecules, fluid mixtures,
and solid porous materials. Thus, particle transport
is controlled by multiple physical processes, including
physicochemical and hydrodynamic interactions with
the medium as well as coupling of the particle
dynamics to local [6, 7] and cooperative [8–10] medium
relaxations. Understanding the contributions of these
distinct processes to the dispersion of particles is
essential to developing novel strategies for controlling
their transport through complex media.

The transport of particles has been extensively studied
using theory [11–13] and simulation [14–26]. Most
computational studies of pore-scale transport, however,
have focused on investigating the effects of medium
geometry [11, 27–29], packing arrangement [30, 31], and
flow conditions [31] on the dispersion of infinitesimal
tracer particles. Particles whose size is comparable
to length scales within the porous medium, such as
throat or pore diameter, interact sterically as well as
hydrodynamically with the medium during transport.
Indeed, simulations of finite-sized particles in fibrous
media under quiescent conditions have shown that
their diffusivity markedly decreases with increasing
solid volume fraction due to both steric hindrance
and hydrodynamic drag [14, 15, 26, 32, 33]. These
investigations have largely been carried out in the
absence of non-steric physicochemical interactions with
the medium such as van der Waals and macromolecular
depletion attractions and electrostatic forces, which are
common in many practical settings. Notable exceptions
include recent work showing that non-steric interactions
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decrease the diffusivity of finite-sized particles in model
gel networks [26, 34].

Physicochemical attractions can lead to reversible and
irreversible adsorption within porous media [35, 36].
Most existing computational and theoretical studies that
examine physicochemical attractions have also focused on
the transport of infinitesimal tracer particles. Previous
studies examining the effects of different variables,
including sorbing conditions (equilibrium and kinetic)
[37], retention factor [24, 25], packing geometry [38],
and particle shape [38, 39], on particle transport under
flow find, broadly, that adsorption strongly affects
the dispersion of infinitesimal tracers. Comparatively
few studies, by contrast, have addressed the complex
multiphysics scenario encountered in many practical
settings, where particle dispersion is affected by steric
confinement and by attractions and hydrodynamic
interactions (HI) with the medium. One recent study
examined particle transport in geophysical fractures of
varying aperture and attractive surface potential [40].
Particles were transported preferentially in regions of
large aperture, and dispersion increased when the surface
potential and local aperture were positively correlated.
Nonetheless, fundamental open questions remain about
how attraction strength and range influence particle
dispersion across a broad range of flow conditions in
different types of confining geometries.

In this study, we perform Stokesian dynamics
(SD) simulations to investigate the effect of
attractive interactions, in conjunction with steric and
hydrodynamic forces, on particle transport. Specifically,
we analyze the effect of attraction strength and range
on particle diffusion and dispersion in three-dimensional
square nanopost arrays. We find that weak attractions
negligibly affect particle diffusion because dominant
Brownian fluctuations allow particles to easily escape
from the attractive wells around the nanoposts. Strong
attractions, however, drive localization of the particles
near the nanoposts and thereby hinder particle diffusion.
For attractions of moderate strength, increasing the
range further hinders diffusion. Conversely, under flow
conditions, strong attractions significantly increase
the longitudinal dispersion at low to moderate Péclet
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number (Pe) due to transient trapping of the particles
near the nanoposts. At high Pe, where advection
dominates, attractions weakly affect the dispersion.
Increasing the attraction range at moderate strength
enhances dispersion at low Pe, but has a negligible
effect at higher flow rates. Finally, attractions frustrate
directional locking, which reduces dispersion [41], at
moderate flow rates and shift the onset of behavior to
larger Pe.

II. METHODS

We performed SD simulations to investigate the effects
of attractive interactions on particle transport through
three-dimensional square arrays of nanoposts. Similar
to previous studies [14, 15, 26, 32–34], each nanopost
was modeled as an immobile chain of tangential spherical
beads of diameter dnp aligned along the z-direction of
the simulation cell (Fig. 1). The chains were arranged on
periodic 3 × 3 square lattices in the x − y plane of the
simulation cell [Fig. 1(a)]. The nanopost volume fraction
in the system is given by φ = πd2

np/6L2, where L is
the spacing between adjacent posts. For convenience,
the simulations were performed and analyzed using
non-dimensional units in which dp, kBT , and τd =
3πηd3

p/4kBT were chosen as characteristic length, energy,
and time, respectively, where kB is Boltzmann’s constant,
T is temperature, τd is the diffusive time scale, and η is
the dynamic fluid viscosity.

The simulations were conducted under dilute
conditions by considering the transport of a single
particle through the nanopost arrays. Particle
trajectories were propagated using the SD algorithm
described in our previous study [33]. Hydrodynamic
interactions were treated rigorously by including both
short- and long-range components, using the Ewald
summation method to accurately compute the latter
[26, 42–44]. Non-hydrodynamic interactions between
the transported particle and beads in the nanopost were
modeled using a Yukawa potential with a repulsive,
hard-sphere core [26]:

u(rij) =

{
−u0 exp (−κrij) , rij ≥ 0

∞, rij < 0
(1)

where u0 is the magnitude of the potential strength,
κ sets the range of the potential decay, and rij is the
surface-to-surface distance between the particle and the
nanopost bead (Fig. 2). We study values of u0 and
κ in the range 0 – 7 and 20 – 40, respectively, which
are characteristic of the interactions (e.g., depletion)
observed for particles in porous media [45, 46]. A
standard rejection scheme [26, 32] was used to account
for the hard steric repulsion for rij < 0. Flow was driven
through the arrays by imposing a uniform suspension

velocity V∞ with orientation θ = arccos
(

V∞·a
|V∞||a|

)
relative to lattice vector a [Fig. 1(a)]. The particle

FIG. 1. (a) Two-dimensional orthographic projection of a
square nanopost array in the x − y plane of the simulation
cell. (b) Three-dimensional perspective view of a section
of a square nanopost array. The spheres representing the
nanoposts (grey, np) and the diffusing particle (orange, p)
have the same diameter (i.e., dnp = dp).
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FIG. 2. Yukawa potential with repulsive core u(rij) (Eq. 1)
as a function of the surface-to-surface distance rij for (a)
different u0 and fixed κ = 30 and (b) different κ and fixed
u0 = 6.
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equations of motion were integrated using a time step
dt in the range 10−7 − 10−5, depending on V∞ and
the strength of the attractive potential. Tests were
performed in each case to confirm that computed
properties were insensitive to further reduction of dt
(< 3% variation). All other details of the SD simulations
are identical to those reported in ref. [33].

Transport properties were computed by averaging
over 100 independent particle trajectories, using the
standard error of the mean to estimate statistical
uncertainties. The particle diffusivity under quiescent
conditions was obtained from the long-time limit of the
ensemble-averaged, in-plane mean-square displacement
(MSD), Dq = lim∆t→∞

〈
∆r2(∆t)

〉
/4∆t. Similarly, the

asymptotic longitudinal dispersion coefficient (dispersion
in the direction of flow) DL under flow conditions was
calculated via [29, 47]:

DL ≡ lim
t→∞

1

2

dσ2
L(t)

dt
, (2)

where σ2
L(t) =

〈
(∆rL(t)− 〈VL〉t)2

〉
is the particle MSD

evaluated in the frame of reference of the average
longitudinal velocity 〈VL〉. The velocity 〈VL〉 was
estimated from a linear fit to the average particle
displacements over time. Both Dq and DL were
normalized by the diffusivity of the freely-diffusive
particle D0 = kBT/3πηdp.

III. RESULTS AND DISCUSSION

We first examined the two-dimensional, in-plane
particle diffusivity as a function of the potential strength
u0 for κ = 30 for different nanopost volume fractions
φ. The normalized in-plane diffusivity Dq/D0 is not
strongly influenced by the presence of weak interactions
(i.e., u0 ≤ 3) (Fig. 3(a)), indicating that thermal
Brownian fluctuations allow the particles to easily escape
the attractive wells around the nanoposts. Upon further
increasing the potential strength, however, Dq/D0

exhibits a gradual downturn, followed by a sharp
decrease for u0 ≥ 5, suggesting that stronger attractions
drive localization of the particles near the nanoposts.
Increasing the range of the potential κ−1 also affects
the particle diffusivity (Fig. 3(b)). Whereas changing
the potential range for u0 = 3 has little effect on the
diffusivity, Dq/D0 steadily decreases with increasing κ−1

for u0 = 6, suggesting that longer-range attractions
increasingly hinder particle diffusion. Although Dq/D0

decreases with increasing nanopost volume fraction φ
due to the increase in confinement experienced by the
particles, changing the potential strength and range
results in similar trends across all values of φ examined.
The sharp decrease of diffusivity at strong attraction
strength is in qualitative agreement with a previous
simulation study of transport in hydrogel matrices [26]
and the behavior predicted by a theoretical model [48].
Moreover, in the absence of attractions (u0 = 0), the

three-dimensional diffusivity Dq,3D/D0 is well described
by a hydrodynamic model for hindered diffusion [49]
(Fig. 3(c)). As the potential strength is increased,
progressively larger deviations from the prediction are
observed because the model neglects the effects of
attraction interactions.

Particle transport under flow conditions was
investigated in a nanopost system with φ = 0.028
by imposing a uniform suspension velocity V∞ with a
θ = 45◦ orientation with respect to the lattice vector
a (Fig. 1(a)). In the absence of attractions (u0 = 0),
the normalized average particle velocity 〈VL〉/V∞
remains approximately constant and near unity as the
flow magnitude V∞ = |V∞| is varied, indicating that
particles on average move at the same speed as the
imposed flow (Fig. 4). For u0 ≥ 5, however, 〈VL〉/V∞
is no longer independent of V∞. For these attraction
strengths, the normalized velocity is less than one for
V∞ < 101, and approaches unity as V∞ is increased
above 103. Further, the value of 〈VL〉/V∞ decreases
as u0 is increased. Together, these trends reveal that
sufficiently strong attractions with the nanoposts reduce
the average velocity of the particles at low to moderate
flow rates, consistent with localization or transient
trapping of particles.

To further characterize the particle localization
behavior, we computed the particle residence time tR
near the surfaces of the nanoposts as a function of
suspension velocity V∞ and attraction strength u0 for
a system with interaction range κ = 30. The residence
time was defined as the duration spent within a thin shell
around a nanopost, using a surface-to-surface distance
cutoff of 0.1 to encompass the attractive well. Under
quiescent conditions, the residence-time distribution
P (tR) exhibits a sharp initial decrease at small tR before
crossing over to exponential decay at larger residence
times (Fig. 5(a)). The exponential tail of P (tR) becomes
broader as the attraction strength u0 increases. Similar
behavior is observed under weak flow (V∞ = 5; Fig.
5(b)). As V∞ increases at constant u0, however,
the exponential tail of the residence-time distribution
narrows (Fig. 5(c),(d)). Additionally, P (tR) begins to
exhibit a local minimum at small tR. This local minimum
arises from the competition between Brownian forces
and advection near the cut-off boundary, where the
effect of attractions is very small. For small V∞ ≤ 5,
particles can easily move across the cut-off boundary by
dominant Brownian motion, leading to a smooth and
sharp decrease in P (tR) at small tR. Upon increasing
V∞, however, the probability of the particles moving
along the flow streamlines increases due to the greater
effect of advection and enhances P (tR) for intermediate
tR, resulting in a local minimum at small tR.

Previous studies showed that the characteristic
residence time τR significantly affects solute dispersion
[24, 25]. Thus, we estimated the characteristic time
scale τR associated with the exponential decay at large
residence times by fitting the tail regions to P (tR) =
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FIG. 3. Normalized in-plane diffusion coefficients Dq/D0 as
functions of (a) potential strength u0 for κ = 30 and (b)
potential range κ−1 for u0 = 3 and 6. (c) Comparison of
normalized three-dimensional diffusion coefficients Dq,3D/D0

as functions of nanopost volume fraction φ with a
hydrodynamic model for hindered diffusion [49]. Estimated
uncertainties are smaller than the symbol sizes.
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FIG. 5. Trap time distribution P (tR) for attractive potentials
with different u0 and fixed κ = 30. Distributions are shown
for a uniform suspension velocity V∞ of (a) 0, (b) 5, (c) 20 and
(d) 80. The black dashed lines show fits to function P (tR) =

c exp−tR/τR .

ce−tR/τR , where c is a fitting constant [24, 50]. The
characteristic time τR increases in an approximately
exponential fashion with increasing u0 for all V∞
examined (Fig. 6). This behavior is consistent with
the strong decrease in the average particle velocity
at a given V∞ (Fig. 4(a)) and also with the Frenkel
model for a first-order desorption process, which predicts
that the average adsorption sojourn time will increase
exponentially with the average adsorption energy [25,
51, 52]. Previous simulations examining the transport
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FIG. 6. Characteristic trapping time τR as a function of the
magnitude of the potential strength u0 for κ = 30 at different
V∞. The black dashed lines show fits to the function τR =
c1 exp−c2u0/kBT , where c1 and c2 are fitting constants.

of short polymers on an attractive flat surface [53]
and in crowded nanopost arrays [50] also reported an
exponential decay in P (tR) and an increase in τR with
increasing potential strength.

Next, to visualize the effect of u0 on particle
localization, we computed the log-probability density
distribution of the particle positions in the x − y plane
log10 P (x, y) for selected values of u0 and V∞ (Fig. 7).
For low suspension velocity (V∞ = 80), increasing u0

alters the extent to which particles localize in the wake
of the nanoposts. When u0 = 3, the particles near
the surfaces of the nanoposts are easily driven away
by advection (Fig. 7(a)). Upon increasing u0, however,
the particles cannot easily escape the attractive wells of
the nanoposts due to the strong interactions. Strong
attractions force particles to move along the surface of the
nanoposts to the wake. Subsequently, particles are driven
away from the nanoposts along the slow flow streamlines,
which are oriented parallel to V∞ (Fig. 7(b), (c)). By
contrast, for V∞ = 1000 hydrodynamic drag forces are
dominant and increasing the attraction strength u0 does
not markedly alter the particle distribution (Fig. 7(d),
(e), (f)).

The changes in the residence times and particle
distributions arising from variation in attraction strength
and range are expected to affect dispersion. Hence, we
examined the behavior of the normalized longitudinal
dispersion coefficient DL/D0 as a function of the
dimensionless Péclet number Pe = 〈VL〉dp/D0 for various
u0 and κ. In the absence of attractions (u0 = 0), DL/D0

initially increases gradually with Pe and then transitions

FIG. 7. Log-probability density distributions of particle
positions log10 P (x, y) for u0 = 3 (a,d), 5 (b,e) and 7 (c,f)
at V∞ of (a,b,c) 80 and (d,e,f) 1000 for flow orientation
θ = 45◦. The intense blue color corresponds to regions where
log10 P (x, y) < −3.

to Pen scaling with n ≈ 2 (i.e., Taylor-Aris dispersion
behavior) for Pe & 102 (Fig. 8(a)). Upon increasing u0

over the range 0–7, DL/D0 increases up to two orders of
magnitude at low and moderate Pe (Pe < 103). In the
presence of strong attractions (u0 > 3), particles become
more localized in the wake of the nanoposts, thereby
leading to broader distribution along the flow direction.
At very large Pe (Pe > 103), the effects of advection
become dominant and DL/D0 only increases weakly with
u0, exhibiting a transition to quadratic scaling. By
contrast, increasing the range of the potential κ−1 for
fixed u0 negligibly affects DL/D0, except for a slight
increase at low Pe (Fig. 8(b)).

Finally, we investigated the effects of attractions on
directional locking, which enables size-based separation
of particles in deterministic lateral displacement devices
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[22, 54]. Sorting of suspended particles driven through
periodic potential fields by directional locking has also
attracted interest [12, 13, 16, 17, 19, 20, 23]. In
our previous study of the influence of flow orientation
on transport in square and hexagonal arrays with
purely repulsive, non-hydrodynamic particle-nanopost
interactions [41], we observed an abrupt decrease in
average particle velocity and longitudinal dispersion
for certain flow orientations slightly perturbed from
primitive lattice vectors. This decrease was attributed to
directional locking behavior in which steric interactions
with the nanopost cause the particle dynamics to become
dominated by advection along a specific vector over a
finite range of θ [22].

In both the square and hexagonal arrays with φ =
0.058, directional locking was most pronounced for flow
orientations slightly perturbed from the lattice vector a
(i.e., θ near 0◦) [41]. Consequently, we investigated the
effects of attraction in a square array with φ = 0.058 for
θ = 1.25◦. In the absence of attractive interactions (i.e.,
u0 = 0), the in-plane log-probability density distribution
log10 P (x, y) reveals strong direction locking along the
lattice vector a at all V∞ (Fig. 9(a), (b), (c)). With
increasing V∞, the distribution becomes increasingly
narrow, reflecting enhanced directional locking. For
u0 = 7, however, the attractive interaction frustrates
directional locking behavior at small V∞ ≤ 320 and shift
its onset to larger V∞ (Fig. 9(d), (e), (f)). For small
V∞ = 80, particles advecting to the nanoposts are driven
to the upper hemisphere of an adjacent post downstream
by the attractions, thus frustrating directional locking
(Fig. 9(d)). Upon increasing V∞, however, some of the
particles are driven to the bottom hemisphere of the
subsequent post by the stronger effect of advection in
this region leading to partial directional locking (Fig.
9(e)). At large V∞ = 1000, advection becomes dominant
and leads to nearly perfect directional locking (Fig.
9(f)). Our results are qualitatively consistent with a
recent study, which showed that the critical particle size

for separation in DLD devices can be manipulated by
controlling electrostatic interactions between particle and
obstacles [55].

The frustration of directional locking at small V∞ for
u0 = 7 arises from the competition between attractive
and advective forces. At small V∞ = 80, particles
advecting to the nanoposts by the flow streamlines
cannot leave from the bottom hemisphere of the post
due to the strong attractive interactions. Particles are
driven to the wake of the nanopost by the attractions and
then transported along the flow streamlines to the upper
hemisphere of the next nanopost. This process frustrates
directional locking. Upon increasing V∞, however,
the probability of particles leaving from the bottom
hemisphere of the nanopost increases due to the stronger
effect of advection, leading to partial directional locking.
For large V∞ = 1000, advection becomes dominant and
all particles leave from the bottom hemisphere of the
nanopost, resulting in nearly perfect directional locking.

The changes in directional locking behavior arising
from attractive interactions strongly affect longitudinal
dispersion. In the absence of attractive interactions (i.e.,
u0 = 0), DL/D0 exhibits non-monotonic behavior due
to directional locking [41] for all V∞ as θ is perturbed
away from 0◦, which corresponds to flow along the
primitive lattice vector a (Fig. 10(a)). For u0 = 7,
however, DL/D0 gradually decreases for V∞ ≤ 320
as θ is perturbed away from 0◦ (Fig. 10(b)). The
gradual decrease in DL/D0 reflects sampling of all flow
streamlines by the particles and thus the frustration
of directional locking by attractive interactions. By
contrast, for V∞ = 1000, advection dominates particle
transport and DL/D0 exhibits non-monotonic behavior
as a function of θ due to directional locking [41]. Thus,
attractive interactions frustrate directional locking at
moderate flow rates (V∞ < 320), and alter the trends of
longitudinal dispersion as a function of flow orientations.

CONCLUSION

We performed Stokesian dynamics simulations to
investigate the effects of attractive interactions on the
long-time transport properties of finite-sized particles
within square arrays of nanoposts. Under quiescent
conditions, the normalized diffusivity Dq/D0 is negligibly
affected by attractive interactions with the nanoposts
for potential strength u0 ≤ 3. Upon further increasing
u0, Dq/D0 exhibits a gradual downturn, followed by
a sharp decrease for u0 ≥ 5. For u0 = 6, Dq/D0

steadily decreases with increasing potential range κ−1.
Under flow conditions, the characteristic residence time
τR of particles near the nanoposts increases exponentially
with increasing attraction strength u0 and decreases as
the suspension velocity V∞ increased. Consequently,
for small to moderate Pe (Pe < 103), increasing the
potential strength u0 leads to a marked increase in the
normalized longitudinal dispersion DL/D0 by up to two
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FIG. 9. Log-probability density distributions of particle
positions log10 P (x, y) for u0 = 0 (a,b,c) and u0 = 7 (d,e,f)
at V∞ (a,b) 80, (c,d) 320, and (e,f) 1000 for flow orientation
θ = 1.25◦. The intense blue color corresponds to regions
where log10 P (x, y) < −3.
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FIG. 10. Normalized longitudinal dispersion coefficient
DL/D0 as a function of flow orientation θ in a square array
with φ = 0.058 for attractive potentials with κ = 30 and (a)
u0 = 0 and (b) u0 = 6.

orders of magnitude. At large Pe (Pe > 103), however,
DL/D0 only increases weakly with u0 due to dominance
of advection in this regime. By contrast, increasing the
potential range k−1 while fixing u0 results in a slight
increase in DL/D0 at low Pe (Pe < 102), but does not
significantly affect dispersion at moderate to high Pe
(102 < Pe < 104). Finally, we examined the effects of
attractions on directional locking. Attractive interactions
frustrate directional locking behavior at small V∞ ≤ 320
and shift the onset of this behavior to larger V∞.

Our simulations provide insights into the effects of
attractive interactions on the transport of finite-sized
particles in ordered arrays, relevant to separation
methods such as deterministic lateral displacement [56,
57] and hydrodynamic chromatography [58–60]. The
simple model reported in this study intentionally neglects
features such as variability in nanopost size and spacing
in the porous medium and physicochemical interactions
between the particles, which may become relevant
in specific systems (e.g., in disordered media or in
concentrated suspensions). We anticipate that the
computational approach employed in this study can be
adapted to address the role of these factors in future
work.
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núm. 16, p. 160601 (1)-160601 (4) (2005).

[20] A. Lacasta, M. Khoury, J. M. Sancho, and
K. Lindenberg, Modern Physics Letters B 20, 1427
(2006).

[21] K. Lindenberg, J. M. Sancho, A. Lacasta, and I. M.
Sokolov, Physical review letters 98, 020602 (2007).

[22] J. Frechette and G. Drazer, Journal of Fluid Mechanics
627, 379 (2009).

[23] C. Reichhardt and C. O. Reichhardt, Physical Review
Letters 106, 060603 (2011).

[24] D. Hlushkou, F. Gritti, A. Daneyko, G. Guiochon, and
U. Tallarek, The Journal of Physical Chemistry C 117,
22974 (2013).

[25] D. Hlushkou, F. Gritti, G. Guiochon,
A. Seidel-Morgenstern, and U. Tallarek, Analytical
chemistry 86, 4463 (2014).

[26] J. Hansing and R. R. Netz, Macromolecules 51, 7608
(2018).

[27] D. L. Koch and J. F. Brady, Journal of Fluid Mechanics
154, 399 (1985).

[28] J. Salles, J. F. Thovert, R. Delannay, L. Prevors, J. L.
Auriault, and P. M. Adler, Physics of Fluids A: Fluid

Dynamics 5, 2348 (1993).
[29] R. S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington,

J. F. Peters, and H. T. Davis, Physics of Fluids 12, 2065
(2000).

[30] D. Edwards, M. Shapiro, H. Brenner, and M. Shapira,
Transport in Porous Media 6, 337 (1991).

[31] H. P. A. Souto and C. Moyne, Physics of Fluids 9, 2253
(1997).

[32] T. Stylianopoulos, B. Diop-Frimpong, L. L. Munn, and
R. K. Jain, Biophysical Journal 99, 3119 (2010).

[33] D. Mangal, J. C. Conrad, and J. C. Palmer, AIChE
Journal 67, e17147 (2021).

[34] T. Stylianopoulos, M.-Z. Poh, N. Insin, M. G. Bawendi,
D. Fukumura, L. L. Munn, and R. K. Jain, Biophysical
Journal 99, 1342 (2010).

[35] P. Bacchin, A. Marty, P. Duru, M. Meireles, and
P. Aimar, Advances in Colloid and Interface Science 164,
2 (2011).

[36] T. Zhang, M. J. Murphy, H. Yu, H. G. Bagaria, K. Y.
Yoon, B. M. Neilson, C. W. Bielawski, K. P. Johnston,
C. Huh, and S. L. Bryant, SPE Journal 20, 667 (2015).

[37] C. V. Chrysikopoulos, P. K. Kitanidis, and P. V.
Roberts, Transport in Porous Media 7, 163 (1992).

[38] X. Yan, Q. Wang, and H. H. Bau, Journal of
Chromatography A 1217, 1332 (2010).

[39] L. Li, X. Yan, J. Yang, and Q. Wang, Applied Energy
185, 2168 (2017).

[40] S. C. James, L. Wang, and C. V. Chrysikopoulos,
Journal of Hydrology 566, 735 (2018).

[41] D. Mangal, J. C. Palmer, and J. C. Conrad, Phys. Rev.
E 104, 015102 (2021).

[42] J. F. Brady and G. Bossis, Annual Review of Fluid
Mechanics 20, 111 (1988).

[43] R. J. Phillips, J. F. Brady, and G. Bossis, Physics of
Fluids 31, 3473 (1988).

[44] M. Wang and J. F. Brady, The Journal of Chemical
Physics 142, 094901 (2015).

[45] N. Tufenkji and M. Elimelech, Langmuir 20, 10818
(2004).

[46] F. Babayekhorasani, D. E. Dunstan, R. Krishnamoorti,
and J. C. Conrad, Soft Matter 12, 8407 (2016).

[47] M. P. Howard, A. Gautam, A. Z. Panagiotopoulos, and
A. Nikoubashman, Physical Review Fluids 1, 044203
(2016).

[48] J. Hansing, C. Ciemer, W. K. Kim, X. Zhang, J. E.
DeRouchey, and R. R. Netz, The European Physical
Journal E 39, 1 (2016).

[49] R. J. Phillips, Biophysical journal 79, 3350 (2000).
[50] W. Chien and Y.-L. Chen, Soft Matter 12, 7969 (2016).
[51] J. Frenkel, Kinetic theory of liquids (Dover Publications,

1955).
[52] A. Felinger, Journal of Chromatography A 1184, 20

(2008).
[53] P. Linse and N. Kallrot, Macromolecules 43, 2054 (2010).
[54] J. Koplik and G. Drazer, Physics of Fluids 22, 052005

(2010).
[55] K. K. Zeming, N. V. Thakor, Y. Zhang, and C.-H. Chen,

Lab on a Chip 16, 75 (2016).
[56] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm,

Science 304, 987 (2004).
[57] J. McGrath, M. Jimenez, and H. Bridle, Lab Chip 14,

4139 (2014).
[58] J. O. de Beeck, W. D. Malsche, P. D. Moor, and

G. Desmet, Journal of Separation Science 35, 1877



9

(2012).
[59] A. Daneyko, D. Hlushkou, S. Khirevich, and U. Tallarek,

Journal of Chromatography A 1257, 98 (2012).

[60] A. M. Striegel and A. K. Brewer, Annual Review of
Analytical Chemistry 5, 15 (2012).


