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We present a mathematical description of amorphous solid deformation and plasticity by extending
the concept of instantaneous normal modes (INMs) to deformed systems, which allows us to retain
the effect of strain on the vibrational density of states (VDOS). Starting from the nonaffine lattice
dynamics (NALD) description of elasticity and viscoelasticity of glasses, we formulate the linear
response theory up to large deformations by considering the strain-dependent tangent modulus at
finite values of shear strain. The (nonaffine) tangent shear modulus is computed from the vibrational
density of states (VDOS) of affinely strained configurations at varying strain values. The affine
strain, found analytically on the static (undeformed) snapshot of the glass, leads to configurations
that are rich of soft low-energy modes as well as unstable modes (negative eigenvalues) that are
otherwise completely “washed out” and lost, if one lets the system fully relax after strain. This
procedure is consistent with the structure of NALD. The INM spectrum of deformed states allows for
the analytical prediction of the stress-strain curve of a model glass. Good parameter-free quantitative
agreement is shown between the prediction and simulations of athermal quasi-static shear of a coarse-
grained polymer glass.

I. INTRODUCTION

Explaining the emergence of rigidity across the glass
transition (Tg) and the fact that the low-frequency shear
modulus G goes from zero in the liquid to a finite value
in the glassy state is one of the overarching goals of
condensed matter physics, with widespread applications
from materials engineering [1] to the mechanical stabil-
ity of amorphous biological matter [2]. An important
step towards this goal is to develop a mechanistic under-
standing of how amorphous solids behave under defor-
mation, i.e. of both their elastic and plastic deformation
behaviour. In particular, an understanding of how plas-
tic deformation leads to material yielding and what kind
of microstructures promote the plastic flow is currently
missing, let alone the possibility of predicting the plastic
behaviour in terms of stress vs strain.

While many approaches have aimed at identifying the
carriers of plasticity, with moderate success so far given
the absence of identifiable microstructures in glass, ap-
proaches aiming at describing amorphous plasticity in
terms of mechanical instabilities are, with no exceptions,
heavily based on numerical simulations which hinders the
mechanistic understanding. In this paper, we tackle this
problem from a different angle. By exploiting recent
success in mathematically describing the temperature-
induced softening and melting of glasses based on the so-
called Instantaneous Normal Mode (INM) spectrum [3–
6], we apply the same strategy to describe the strain-
induced analogues of softening and “melting”, i.e. the
plasticity and yielding phenomena [7].

Starting from the seminal work of Squire, Holt and
Hoover [8], it became clear that, in the case of amor-
phous systems (and even complex non-centrosymmetric
crystals), in addition to the affine displacements [9], the
mechanical properties are defined by the relaxation of

atomic positions towards their equilibrium values, which
are called non-affine deformations [10]. These deforma-
tions make the material softer, i.e. the elastic shear mod-
ulus decreases with increasing non-affinity. It turns out
that G = GA−GNA, where GA is the affine or Born mod-
ulus and −GNA is the softening correction from nonaffine
displacements [11].

II. THEORY

Despite the fact that a formal expression for the non-
affine corrections was written early on [8], the concept
has been used mainly as a tool to calculate elastic con-
stants in computer simulations [12]. Only recently the
mathematical nonaffine response theory of viscoelastic-
ity of amorphous solids was developed [10, 11, 13]. It
was again limited to small deformations and athermal,
meaning that the system resides at, or very close to, a
local minimum of the potential energy (inherent state).
Further introduction of the so-called instantaneous nor-
mal modes (INMs) made it possible to extend the the-
ory to finite temperatures up to the glass transition tem-
perature Tg and slightly beyond [14]. The main idea of
INMs is that, instead of characterizing the system in the
well-equilibrated inherent states, single snapshots of the
non-fully equilibrated system are considered and aver-
aging is performed over the snapshots. This procedure,
devised long ago in the context of numerical simulations
of liquids [3, 4] (and recently formulated also analyti-
cally [6]) allows one to retain crucial information about
anharmonicities and saddle-points, which dominate the
dynamics of liquids [15] and glasses [16, 17].

The extended theory including INMs (also known as
Nonaffine Lattice Dynamics or NALD) yields predictions
that agree with coarse-grained molecular dynamics (MD)
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simulations [14, 18] and with atomistic simulations [19],
quite well without adjustable parameters. In order to
compute the viscoelastic moduli of a model glass of N
particles with mass m from the MD configurations with
the atoms’ positions, one needs to know the vibrational
density of states (VDOS) ρ(ω) and the affine force corre-
lator Γ(ω). This leads to the following expression for the
complex viscoelastic modulus G∗(Ω) = G′(Ω) + iG′′(Ω)
[10, 14]:

G∗(Ω) = GA −
3N

V

∫
C

ρ(ω)Γ(ω)

−mΩ2 + iων +mω2
dω, (1)

where ν is a friction coefficient, the Γ(ω) can be com-
puted if all the eigenvalues and eigenvectors of the Hes-
sian matrix are known, while the VDOS is a modified
distribution of eigenvalues. See Ref.[14] for details.

A limitation of the theory presented above is that it
works only for small deformations. Upon increasing the
shear strain (γ), the amorphous solid can exhibit exten-
sive irreversible plastic deformation. At the moment,
there is no way to analytically predict whether a given
material state will fail suddenly and catastrophically
(brittle failure) or flow like a liquid (ductile yielding).
Moreover, we cannot predict when or where it will fail.
For disordered solids, including glassy materials, this
fundamental question remains a challenge [20–22].

A useful theoretical framework to analyze elementary
plastic events is the limit of temperature T = 0. To this
end, many computational studies on amorphous solids
have been performed with the athermal quasi-static
(AQS) protocol [23]: a glass sample initially quenched
down to zero temperature is deformed by a quasi-static
shear procedure consisting of the (nonaffine) relaxation
of the system after each strain step. While this protocol
still cannot accurately reproduce the elastic and plastic
stress-strain response of real materials due to the miss-
ing entropic contributions [24–26], it represents a useful
framework for developing a deeper physical understand-
ing of plasticity in amorphous solids [27]. As before, the
elastic and plastic features of amorphous solids can be
understood by analyzing the Hessian matrix [27]. In this
case, the NALD equation for the shear modulus reads as
[10, 11]

G = GA −
1

V

∑
p

ΞT
p ·Ξp

ω2
p

. (2)

where ωp is the p-th eigenfrequency, Ξp is the projection
of the affine force onto the p-th eigenvector of the Hessian,
and V is the volume occupied by the system.

Our aim here is to extend the approach to large de-
formations and hence to predict the stress-strain curve
and the yielding point. We propose to construct the
INMs spectrum of deformed states (in short, γINM) by
an instantaneous Affine Transform (AT) from the non-
deformed state. This procedure provides a set of de-
formed configurations {r(γAT

i )}. Using these configura-
tions in Eq. 2, we calculate the strain-dependent shear

tangent modulus, referred to here as the “local” modulus,
from which we predict the stress-strain curve. We will
subsequently refer to this procedure as γNALD. A recon-
struction of the whole stress-strain curve of amorphous
solids based on modelling the local strain-dependent
shear modulus has been presented also in [28], however
their continuum model contained a free parameter given
by the size of hypothetical Eshelby inclusions, whereas
our prediction is entirely parameter-free and from only
microscopic quantities.

We also compared the calculations based on γINM
with the calculations obtained with a similar procedure
but using, instead of the γINM states from AT, the fully
relaxed states in the local energy minima or inherent
states {r(γMIN

i )}. We found that this calculation does
not predict any softening nor yielding, but just a steady
linear elastic regime, because relaxing the configurations
at each strain step effectively washes out all the instabil-
ities, the soft modes, and the saddle-points (see below, in
Fig. 1) from the VDOS. This is exactly the same as the
case of varying temperature at constant density, where
the VDOS of fully relaxed configurations is basically T -
independent [14]. Further, using the energy-minimized
configurations after each strain step to compute VDOS
and shear modulus with Eq. (1) or Eq. (2) would lead
to an erroneous “double counting” of the nonaffine re-
laxations. This is because the negative term in Eq. (1)
and Eq. (2) already represents the nonaffine relaxations
from affine positions (the Ξ are precisely the force fields
that act on the particles in the affine positions [10, 23]),
hence it is consistent that this term is evaluated using
the eigenvalues and VDOS of affinely deformed configu-
rations. Finally, we use the AQS’s stress-strain curve as
the reference benchmark to test our prediction.

III. NUMERICAL SIMULATIONS

We have used a modified Kremer-Grest model [29] of
a coarse-grained polymer system consisting of 100 linear
chains of 50 monomers, where the polymer chain con-
sisted of two masses, chosen as m1 = 1 and m2 = 3,
placed in an alternating fashion along the chain back-
bone.

To test the idea described above, a zero temperature
configuration of the solid must first be obtained. All of
the above quantities can then be extracted from the coor-
dinate snapshots of the system and knowing the interac-
tion potentials. In brief, the snapshots of the system are
obtained using the LAMMPS simulation package[30]. Af-
ter a sufficient number of equilibration steps, the system
is slowly quenched below the glass transition temperature
Tg, and then the energy minimization is performed. Five
replica configurations were constructed, and all results
are subsequently averaged over these five glass realiza-
tions at T = 0.

Each glassy configuration is used as an input for the
calculation of the γINM. For this we perform an affine
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transformation (AT) of the initial configuration:

r(γAT
i ) = Λr(γAT

0 = 0) (3)

where Λ is the simple shear strain transformation ma-
trix (strain tensor), with all diagonal elements equal to
1, and the only non-zero off-diagonal element Λxy = γi.
The set of γi values is chosen such that we do not skip
any of the significant plastic events. For every configu-
ration {r(γAT

i )}, we calculate the Hessian matrix H and
the affine force field Ξ [10]. The Hessian is then diago-
nalized to obtain the eigefrequencies ωp, and the eigen-
vectors needed to compute the Ξp fields projected onto
the eigenvectors that enter Eq. (2).

IV. RESULTS

A. Vibrational density of states under strain

We start by looking at the VDOS of both sets of config-
urations, {r(γAT

i )} and {r(γMIN
i )} (Fig. 1). The VDOS

for a Kremer-Grest model of polymeric amorphous solid
at low temperatures consists of two prominent features:
a large peak associated with Lennard-Jones (LJ) interac-
tions between beads and a higher frequency band dom-
inated by FENE bonds vibrations [31]. Also, in the
{r(γAT

i )} configurations, the diagonalization of the Hes-
sian H produces negative eigenvalues and thus imaginary
frequencies. The conventional way of depicting these
imaginary frequencies is to show their absolute values
on the negative part of the frequency axis as discussed
many times in the literature [3, 4, 32].

As shown in Fig. 1, the VDOS of the minimized states
from AQS, {r(γMIN

i )}, does not show signatures of the
deformation, similar to what happens as a function of
temperature, where the VDOS of well equilibrated sys-
tems barely changes with T . In contrast, the VDOS of
affinely strained (i.e. not fully relaxed) states changes
significantly, in the same way as the INMs are tradition-
ally extracted from MD configurations that are not fully
relaxed [3–5]. Moreover, in the γINM procedure, the in-
crease of γ produces a similar effect on the VDOS, i.e.
proliferation of soft low-frequency modes, exactly as for
the increase of T on the VDOS of liquids and glasses in
standard MD simulations at zero strain (for the latter ef-
fect see [5, 14] and references therein). In particular: (i)
the population of low-energy and saddle-point unstable
(negative eigenvalue) modes increases significantly with
increasing strain; (ii) the increase of γ causes the LJ peak
and the FENE-bond peaks to decrease and shift to lower
frequencies, while a tail of very high-frequency modes
emerges at the end of the spectrum and the Debye fre-
quency ωD is shifted to higher frequencies.[33]

The proliferation of low-energy modes (with positive
eigenvalues) directly explains the softening of the mate-
rial upon increasing γ, similarly to what happens upon
increasing T at vanishing strain as shown in [14].

LJ

FENE bonds

Figure 1: VDOS ρ(ω) for different affine strains γi,
showing the INMs spectrum for deformed glasses. Inset
gives a closer look at the low-ω region, where we see the

increase of the number of low-energy modes with
increase of γ. The VDOS for the fully relaxed

configuration at γ = 0.1 from the AQS simulation is
also shown, and it basically coincides with the VDOS at
γ = 0 because the energy minimization at each strain

step effectively washes out all the soft low-energy modes
and the unstable modes.

B. Predicting shear modulus and stress-strain
curve

To directly test if the softening predicted by the pre-
vious mechanism also occurs in reality, we first semi-
analytically calculate the local strain-dependent shear
modulus of the {r(γAT

i )} configurations using Eq. 2. Fig-
ure 2 shows the local shear modulus as a function of the
applied shear strain calculated via Eq. 2, excluding the
lowest negative eigenvalue from the sum, and as a slope
of the AQS. In both cases we average it over 50 replicas
of the polymer glass. As shown in Figure 2, the overall
trend of the ’softening’ as a manifestation of the strain-
induced softening caused by the proliferation of low fre-
quency vibrational modes shown in Fig.1, similar to the
AQS. For some values of strain it drops to huge negative
values, these drops corresponding to a negative slope in
the stress-strain curve or, in another words, to mechani-
cal instabilities. We can see that NALD is overestimating
the negative drops of the shear modulus. There are two
possible reasons for this: 1) the specific AT configurations
are not ideal to predict plastic events (but at the moment
there are not better alternatives), 2) the Eq. 2 itself is ap-
proximate, and possibly must be improved, which is also
suggested by the slight discrepancy in the low-γ region.
Further work is required to clarify this point. Note also
that these drops of the shear modulus can be called “plas-
tic events” only if a single replica is considered. Thus,
in Fig. 3 we show a frequency of the plastic events fe
across 50 replicas, calculated as the average appearance
of the negative shear modulus at strain γ. As shown in
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Figure 2: Strain-dependent shear modulus. Yellow(light
gray) - calculated with Eq. 2 using the γINM spectrum

as input excluding the lowest negative eigenvalue.
Blue(dark gray) - calculated as the slope of AQS

stress-strain curve.
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Figure 3: The frequency of the plastic events fe,
calculated as the average appearance of the negative

shear modulus averaged over 50 replicas.

the figure, the frequency calculated through γNALD is
very similar to the one from AQS simulations.

Using the calculated local shear modulus we then re-
construct the stress via the following algorithm (see also
[28]):

σ(γi) = σ(γi−1) +G(γi)(γi − γi−1). (4)

We present the stress-strain curves in Fig. 4. Here,
we compare the stress measured as the direct output
of the AQS simulation with that predicted from Eq.
4 using the values of G(γi) computed from the un-
deformed snapshots. The semi-analytical calculation
from Eq. 4 (red/dark gray) gives meaningful results,
successfully predicting the deviation from linearity
at ≈ 5%. Similarly to the vDOS results, using the
configurations {r(γMIN

i )} from the fully minimized
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Figure 4: Stress vs strain. Stress directly recorded in
AQS simulation of deformation (solid black). Stress

mathematically predicted from γNALD (Eq. 2) for the
set of snapshots {r(γAT

i )} of N =5k system averaged
over 50 replicas. Curves are shown that exclude all

negative eigenvalues (dashed green), exclude the lowest
negative eigenvalue (red/dark gray), include only the
lowest negative eigenvalue (dotted blue) and NALD

applied to AQS states (cyan/light gray).

states of the AQS, although it shows a moderate
softening, gives no indications at all of the appearance
of the plastic events. In a similar way, if we include
the lowest negative eigenvalue into our NALD anal-
ysis, there are no indications of the softening whatsoever.

C. Analysis of lowest positive and negative
eigenvalues

In order to obtain an agreement between γNALD and
AQS in the above comparison of stress-strain curve in
Fig. 4, the lowest negative eigenvalue was discarded in
the γNALD calculation. To provide a tentative explana-
tion, we analyzed the statistics of the eigenvalues E = ω2,
both negative E< and positive E>, of the Hessian ma-
trix at a fixed strain γ. The results are shown in Fig. 5.
As expected, the standard deviation becomes larger for
the modes near E = 0 (or ω = 0). In particular, it is
seen that the standard deviation is systematically larger
for the negative eigenvalues, i.e. for the INMs, and in
particular near |E| = 0. Upon extrapolating to |E| = 0,
or ω = 0, this effect becomes striking, and provides a
possible justification for our heuristic elimination of the
lowest negative eigenvalues in γNALD while retaining the
lowest positive one, as argued below.

From the data shown in the figure, we gather that the
lowest negative eigenvalue with mean |E<| = 0.0190 has
a non-normalized standard deviation equal to approxi-
mately 0.0130, which is in the same order of magnitude
of |E<|. This, in other words, implies that the lowest
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Figure 5: Normalized standard deviation for negative
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the absolute value has been taken in the plot. The value
of shear strain is fixed at γ = 0.03.

negative eigenvalue is statistically less meaningful, which
provides a justification for neglecting it in our γNALD
calculation.

Furthermore, the fact that the standard deviation be-
comes comparable to the mean, also implies that the
lowest negative eigenvalue could be confused for a zero-
energy mode. This can be explained with the fact that,
under a shear γ and in a dissipative environment (our
polymer glass system is subject to a Langevin thermo-
stat), additional trivial Goldstone-type modes may exist
[34], besides the standard three Goldstone trivial modes
with ω = E = 0 that exist for non-sheared solids due
to spontaneously broken translations. Since these three
Goldstone modes for non-sheared solids are always dis-
carded in calculations of the dynamics and mechanics,
then also any additional Goldstone modes arising from
the applied shear field should also be discarded. This
is another possible justification for discarding the low-
est negative eigenvalue (and not the lowest positive), i.e.
that it may represent a zero Goldstone mode due to shear,
as discussed in recent work on the additional Goldstone
zero modes in sheared systems, e.g. see [34]. Clearly,
further work on this issue is required in future investiga-
tions.

V. CONCLUSION

In summary, we have presented a microscopic
mathematical framework that is able to predict, in a
parameter-free way, the nonlinear deformation and plas-
tic flow transition of amorphous solids. The approach is
based on the nonaffine lattice dynamics (NALD) theory
of amorphous solids [10, 11, 14, 19] formulated for

large strains by extending the concept of Instantaneous
Normal Modes (INMs) to deformed glasses. In this
procedure, the mechanical relaxations (and avalanches)
are effectively taken into account via the imaginary
frequencies (unstable modes) contained in the INMs
spectrum of the Affinely Transformed (AT) strained
configurations, along with the proliferation of low-energy
modes upon increasing the strain. These effects can
hardly be seen in standard calculations where the energy
is minimized after each strain step. Instead, in our
approach, by using the affinely transformed strain states
(which is the correct input to the nonaffine response
calculations), all the information about microscopic
relaxation processes is retained. Using the INMs of
the deformed glass as input to the nonaffine shear
modulus expression in Eq.(2), it is then possible to
semi-analytically reconstruct the stress-strain relation
in a parameter-free way via Eq. (4). In comparison
with actual AQS simulations of the plastic deformation
of a coarse-grained polymer glass, our prediction is able
to capture the deviation from the linear elastic regime
without the need of performing any simulation of the
deformation process, i.e. using only MD snapshots of the
undeformed material as input. The methodology is still
far from perfect, and there could be better candidates
instead of AT configurations to use as the input of the
γNALD calculation. In future work, we will investigate
systems with more extensive annealing, which have a
much more pronounced (sharper) yield point. It will also
be useful to understand how the spatial structure of the
lowest eigenmode, allegedly responsible for the softening,
is connected to new topological “defects” that have been
recently identified in the displacement field of deformed
glasses, and which can self-organize into a slip system at
yielding [35]. Further extensions of the current approach
will be useful to elucidate rheological behaviour of soft
materials [16]. The γNALD approach developed here
can be further extended for finite temperatures and for
atomistic systems with more complex potentials.
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