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We show how oscillations in fluid flow over a fluid-saturated and porous sediment bed leads to the
development of a bedform. To understand the role of pressure fluctuations on the bed associated
with flow oscillations, we analyze how the flow penetrates into and through the bed. We then
calculate the corresponding vertical pressure gradients within the bed that tend to expand the bed
along the vertical direction. When these pressure gradients are large enough, they facilitate small
irreversible rearrangements of the grains within the bed, and so cause granular creep. We conjecture
that this granular creep alternates with jamming to produce a granular ratchet that slowly lifts the
surface of the bed locally where pressure gradients dominate, and depresses the surface where shear
stresses dominate. We observe that the shape of the resulting heap exhibits a constant characteristic
width. The height of this heap evolves approximately as the square root of time, in agreement with
dimensional arguments predicated on a coarse-grained viscous deformation of the bed. The surface
of the heap contracts initially with the square root of time, consistent with an incompressible analysis
of the flow of grains within the heap. Near its peak the heap grows due to a dilatation of the bed,
to inward radial flux, or to a combination of the two.

I. INTRODUCTION

Initially flat granular beds are unstable under many
conditions, and give rise to various types of bedforms
including ripples, dunes, and antidunes [1]. These bed-
forms are responsible for the shape and evolution of ter-
rains including deserts [2], seabeds [3], and the surfaces of
other rocky planets, such as Mars and Venus [4, 5]. Bed-
forms protect against damage caused by natural disasters
such as hurricanes [6], but can also themselves be dan-
gerous by causing sandslides [7] and unsafe shoal waters
[8].

The size, shape, and spacing of bedforms depends on
flow characteristics, such as velocity and flow depth, as
well as sediment characteristics, such as size and grading
[9–11]. In order to predict the development and erosion
of bedforms, it is necessary to understand the particle-
fluid interactions within granular beds, as has been done
in various geometries including tumblers, shakers and
flumes [9, 12, 13]. Due in part to large variations in
the grain properties and fluid environments, it is both
a challenge and an opportunity to identify mechanisms
and formulate scaling laws that describe the dynamics of
the coupled particles and fluid.

Bedforms generally arise in turbulent environments,
and the forces imposed on the bed by the surround-
ing fluid flows cause sediment beds to become unstable
sooner than predicted by canonical shear-driven models
[14–16]. Both mean flows and turbulent fluctuations im-
pose shear stresses on beds, and understanding the effects
of these stresses is an ongoing challenge [17, 18]. Pressure
fluctuations can be associated with surface waves [19, 20],
internal waves [21], or turbulence. When vertical forces
caused by the pressure gradients are large enough, they
expand a bed and cause its failure grains to become mo-
bile. We show that the recurrence of these large vertical

forces leads to the development of bedforms.

Traditional sediment transport theories operate under
the assumption that transport depends only on the mean
shear stress at the bed [2, 22]. However, experiments
on the effects of pressure fluctuations caused by turbu-
lence show that single particles experience fluctuating lift
forces due to pressure differences between the top and the
bottom of the particles [23, 24]. Foster et al. [25] observes
that horizontal pressure gradients influence the onset of
sediment motion. Models incorporating this additional
force generate more accurate predictions [26], especially
in cases where turbulence is dominant and mean shearing
is minimal, such as in the swash zone [27].

Recently, Johnson [14] observed sediment transport in
turbulent flows absent of mean flow-induced shear. They
performed experiments using randomly actuated jets to
develop homogeneous isotropic turbulence with no mean
flow above a flat bed of sand. Over the course of a couple
of hours, prominent ripples developed in the sand bed.
The researchers noted that there existed a linear relation-
ship between the ripple spacing and the integral length
scale of the turbulence but were unable to fully explain
the development of the ripples. They hypothesized that
the appearance of the ripples may be due to pressure
fluctuations above or within the sand bed.

Seepage may have an effect on pressure gradients im-
posed on grains below the bed’s surface, which in turn
affects the development of bedforms and the transport
of moisture and dust. Comparisons between the pres-
sure fluctuations imposed on solid [28] and porous [29]
surfaces show that porosity can affect the surface pres-
sure gradients and induce a slip velocity. Though sedi-
ment transport models traditionally consider only shear
forces experienced by surface grains [2, 22], Louge et al.
[30] suggests that seepage-induced body forces may re-
sult in a lowered threshold for sediment transport than
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the threshold predicted by these models.
The goal of this work is to contribute to an understand-

ing of the onset of sediment motion due to pressure gra-
dients. In La Ragione et al. [31], we showed that a gran-
ular bed under an oscillating plate forms a heap, similar
to those observed in vibrated granular beds [13, 32, 33].
The oscillating flow, generated by the plate motion, in-
duced pressure gradients at the surface and in the in-
terior of the bed. In this paper, we extend the theory
and data analysis to capture the evolution of the heap.
The upward motion of the plate draws fluid up through
the center of the bed and lifts a layer of beads, permit-
ting small reconfigurations of the bed with every cycle of
the plate motion. We find that the development of the
heap is approximately self-similar in time and can be ex-
plained with simple scaling arguments. For instance, the
heap height increases approximately as the square root
of time. As a consequence of mass conservation, the sur-
face of the heap contracts at a similar rate. The rate of
contraction, however, is modified by a factor determined
by the shape of the heap.

II. EXPERIMENT

We performed the experiments in a 50 cm long and
30 cm wide glass tank, which we filled with glass beads
to a depth of 8 cm. The glass beads had a mean diam-
eter, d, of 0.5 mm, an approximately uniform size distri-
bution between 0.43 and 0.60 mm, and a mass density
of 2.5 g/cm3 (Potters Industries, P-0230). After filling
the tank with beads, we filled the tank with water to
8 cm above the bed of glass beads. A schematic of the
apparatus can be seen in Fig. 1.

A cross beam held an electro-magnetic shaker over the
tank. Attached to the shaker was a 7.5 cm square plate,
which was horizontally centered in the tank and oscil-
lated up and down under the water. We observed the
development of heaps in the bed over a period of hours,
corresponding to plate oscillations ranging from O(104)
to O(105) in number. We performed the experiment for
plate oscillation frequencies, f , between 10 and 40 Hz,
amplitudes, A, between 0.02 and 0.14 cm, and at a fixed
mean height above the bed, H, of 2.7 cm.

We measured the height profiles of heaps with a red
laser sheet produced by reflecting a laser beam off of a
cylindrical surface. The laser sheet illuminated the sur-
face of the bed of glass beads, producing a bright curve
in images of the heap taken from the side. Before each
experiment, we used an acrylic sheet to flatten the bed.
This initial condition is illustrated in Fig. 1 (Top Left)
and we acquired a series of images at regular intervals
as the heap developed in the bed, as seen in Fig. 1 (Top
Right).

We determined the profile of the bed using an algo-
rithm that followed the path with the highest red inten-
sity in the images of the heap. We found the center of the
heap by averaging the position associated with the max-
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FIG. 1. Top Left: A laser beam (red) reflected off a cylinder to
form a vertical light sheet. A plate with width 2W oscillated
about a mean height H above the bed. Before each experi-
ment, we flattened the bed using an acrylic sheet. Top Right:
After many oscillations of the plate, a heap developed in the
bed. By taking images at regular intervals in time, we quan-
tified the evolution of the bed’s shape. Bottom: In this image
of the heap from the side, the surface of the heap is marked
with a black curve determined using an algorithm. The ini-
tial bed height is marked with a dashed white curve and the
centerline with a vertical purple line. We measured the radial
distance, r, as the horizontal distance from the centerline.

imum height of the heap and taking the median value of
that position in the latter half of the time-lapse videos.
The results of this method can be seen in Fig. 1 (Bottom),
where the dashed line indicates the initial configuration
of the bed, the solid black line indicates the measured
surface of the bed as determined by the technique de-
scribed above, and the purple line indicates the center of
the heap. Note that, although we leveled the bed with
an acrylic sheet before each experiment, the bed was not
completely flat and the initial height varied slightly.

To measure the amplitude of the plate oscillations, we
took slow-motion videos of the plate and found the posi-
tions of the plate by placing a black dot on the edge of
the plate and tracking the dot. To convert the size of the
heap and plate oscillations from pixels to millimeters, we
placed a ruler in the tank and aligned it with the laser
sheet and to the near-side of the plate. We used images
of the ruler to calibrate the ratio between image pixels
and the millimeter markers on the ruler.

In order to track the motion of grains on the surface
of the bed in the horizontal direction, we placed black
beads on the surface and took pictures of the bed every
10 minutes. Fig. 2 shows a ring of such beads initially,
after 20 minutes of plate oscillations, and after 60 minutes
of plate oscillations. To take images from above the heap,
we stopped the experiment, removed the plate, took the
image, replaced the plate, then restarted the experiment,
taking care to disturb the bed as little as possible during
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FIG. 2. Images taken from directly above the bed at different
times increasing from left to right. A ring of dark beads on
the surface of the bed drew in toward the center over time. A
spot of dark beads in the centered stayed in the center while
also contracting slightly. In both cases the beads stayed at
the surface of the bed. The left-most image is of the bed in its
initial flat condition, and the subsequent images were take 20
and 60 mins after being subjected to oscillations of the plate
at a frequency of 20 Hz and an amplitude of 0.4 mm.
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FIG. 3. Blue dye injected into the flow generated by plate
oscillations showed a region beneath the plate within which
the dye followed the streamlines (black curves) of an inviscid
flow associated with a stagnation point. These streamlines are
superimposed on the image. In the inviscid theory, the fluid
motion is symmetric in time and so flows in both directions
along the streamlines. In the experiment and outside the
boundary of the plate, the flow curled into a slow clockwise
vortex whose turnover time was much longer than the period
of plate oscillations. Our analysis of the effects of fluid motion
on the bed applies to the region directly under the plate.

the process. We measured the radius of rings of beads
on the surface as functions of time by fitting ellipses to
the minima in the intensity of images of the rings taken
at regular intervals. Since the rings were not exactly
circular, we tracked both the major and minor axes of
the ellipses.

III. THEORY

On the sediment bed in the experiment, shear stresses
under the periphery of the plate give way to normal
stresses beneath the center of the plate. Ignoring normal
stresses, the importance of mean shear stresses to the sta-
bility of the bed is embodied in the Shields parameter, θ
= τ/∆ρgd, which makes the shear stress, τ , dimension-

less with the density difference between the sediment and
fluid, ∆ρ = ρs − ρ, gravitational acceleration, g and the
sediment grain diameter, d [22, 34]. In order to suggest a
corresponding parameter, which we call φ, with which to
gauge the importance of normal stresses, we examine the
balance of forces on grains within the bed. We suggest
that the pair, θ and φ, are then the dimensionless param-
eters that describe the conditions in the experiment.

In III A, we analyze the instability mechanism intro-
duced in La Ragione et al. [31]. We elaborate on the
mechanism and show how the onset of sediment motion
results when fluid flows generate vertical pressure gra-
dients within the bed large enough to lift part of the
bed directly. In this section, we introduce a parame-
ter φ = (Uf/g)(ρ/∆ρ) that measures the importance of
normal stresses, and we propose that sediment motion
occurs for φ & c/26.4. In III B, we examine the subse-
quent evolution caused by this instability of an initially
flat bed into a heap, and do so in the context of a con-
tinuum model, which has been utilized in other granular
applications [35–38], that captures the essential features
of the heap’s evolution.

A. Onset of heap formation

Given the symmetry in the experiment, radial bedload
transport arising from shear stress on the bed at high
Shields numbers would lead either to an accumulation at
the center of material from the sides, or to a pit, depend-
ing on the direction of mean transport. In the experiment
we observed the former. Furthermore we observed that
beads on the surface of the bed remained on the surface
during heap growth. Since the accumulation of material
associated with bedload transport would tend to bury
those beads in the center of the bed, we sought a dif-
ferent explanation for the sediment motion. While bed-
load transport may play a role in the observed heap de-
velopment, particularly around the margins of the heap,
we concentrated on prediction of possibly more novel as-
pects, which include the lifting of beads near the surface
of the heap. In the following, we focus our analysis on
vertical pressure gradients near the axis of symmetry of
the heap, and continue our description of the flow away
from this axis only as needed to provide boundary condi-
tions consistent with basic physics such as mass conser-
vation.

We idealize the experiment as an axisymmetric oscil-
latory flow of an incompressible fluid driven by vertical
oscillations of a horizontal bar (or plate) above a flat
porous bed, as shown in Fig. 4. We note the remarkable
azimuthal symmetry of the heap observed in the experi-
ments despite the square shape of the plate (e.g. Fig. 2).
That is, the flow of the fluid and deformation of the bed
seemed unaffected at the leading order by the particulars
of the geometry.

We divide the flow into two parts: one above the bed
and one within the bed. Above the bed, we approximate
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FIG. 4. Half of the oscillating plate appears as a horizontal
bar at z = H. Its full width is 2W and it oscillated vertically
with amplitude A. The curves between the plate at z = H
and the bed surface at z = 0 are the streamlines of an in-
viscid stagnation point flow. This flow applied an oscillating
pressure on the surface of the bed, which in turn generated
flow through the porous bed modeled by Darcy’s Law and
shown by the blue streamlines and red isolines of pressure.
We predict sediment transport primarily under the origin of
the coordinate system, and the peak of the observed heap
grew up along the z-axis at x = 0.

the flow generated by the oscillating plate as the one near
an inviscid stagnation point whose amplitude varies sinu-
soidally in time at a given frequency, f . We specify this
flow over the bed in order to set the boundary condition
for the flow through the bed, which is the pressure distri-
bution on the surface of the bed. Within the bed, which
is porous, the fluid motion continues as a linear viscous
flow according to Darcy’s Law.

In order to calculate the pressure distribution on the
surface of the bed, we first consider the flow above the
bed. The equations that govern the motion of the fluid
are the balances of mass and momentum [39]. As a first
approximation, we consider an inviscid fluid because the
plate Reynolds number is large (Re = AfW/ν is about
102), and we linearize the dynamics because the fluctua-
tions are small. These approximations do not hold near
the edge of the plate, where a shear layer and vortex
typically develops, or at the surface of the bed, where
a boundary layer forms. The vortex we observed (see
Fig. 3) was confined to the region outside of the plate
boundaries, so that our approximations are more realis-

tic under the plate and where we predict bed instability.
We neglect the viscous boundary layer on the surface
of the bed because pressure is approximately constant
across the thickness of boundary layers.

The amplitude of the oscillations A is small compared
with the mean height of the plate above the bed H. Un-
der static conditions, the pressure is p0 = −ρg(H − z),
where g is the gravitational acceleration. The fluid’s ra-
dial velocity is u(r, z, t), its vertical velocity is v(r, z, t),
the fluid pressure is p(r, z, t), and its constant mass den-
sity is ρ. In the fluid above the bed (for 0 ≤ r ≤ W
and 0 ≤ z ≤ H), the system of equations governing the
problem are

1

r

∂(ru)

∂r
+
∂v

∂z
= 0, (1)

ρ
∂u

∂t
= −∂p

′

∂r
, and (2)

ρ
∂v

∂t
= −∂p

′

∂z
, (3)

for conservation of mass, radial momentum, and vertical
momentum, respectively, where the prime indicates a de-
viation from hydrostatic conditions. Terms proportional
to viscosity are absent, since we assumed inviscid flow.

In order to estimate the variation of the pressure in
space and time, we separate the space and time depen-
dencies of the flow. Under the plate (for 0 < r < W
and 0 < z < H), we specify that the radial and vertical
components of the flow velocity are u(r, z, t) = k(t)r/2
and v(r, z, t) = −k(t)z where k(t) sets the strength of the
flow and the way it varies in time.

Under the plate (for 0 < r < W and 0 < z < H),
Eqs. (2) and (3) in combination with the stagnation point
flow introduced above give

1

2
ρr
dk

dt
= −∂p

′

∂r

and

ρz
dk

dt
=
∂p′

∂z
.

The solution for the pressure given by these equations is

p′ = −ρ
4

dk

dt

(
r2 − 2z2 −W 2

)
, (4)

where the constant of integration is found by observing
that on the bed (z = 0) the pressure induced by the plate
motions decays away from the center of the plate, and by
prescribing that at r = W , the induced pressure is zero.

Then, at the bed, the pressure induced by the plate
through the fluid is

p′(r, 0, t) =
ρ

4

dk

dt
(W 2 − r2) (5)
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The oscillatory motion of the plate in the experiment
is an approximately sinusoidal function in time. The ver-
tical fluid velocity at the plate, the time derivative of its
position, is given by v′ = (2πf)A cos (2πft), where A is
the amplitude of the plate’s oscillations and f is the fre-
quency of oscillation. We combine this expression for v
with the vertical velocity of an inviscid stagnation point
flow, v = −k(t)z, and find at z = H that

(2πf)A cos(2πft) = −Hk(t), (6)

From this equation, we find an expression for the time
derivative of k and substitute this derivative into Eq.
(5). The pressure on the bed in excess of hydrostatic
contributions is then

p′(r, 0, t) = −ρ
4

A

H
(2πf)2 sin(2πft)

(
r2 −W 2

)
, (7)

with 0 < r < W .
We now turn to the flow within the porous bed, which

we describe with a linear continuum model. Within the
bed (for z < 0 and 0 ≤ r ≤W ), the mass balance is

1

r

∂rqr
∂r

+
∂qz
∂z

= 0, (8)

where qr = (1− c)u, qz = (1− c) v, u and v are coarse-
grained interstitial fluid velocities, and c is the volume
fraction of particles in the bed, which we assume is con-
stant. Ignoring the compressibility and inertia of the
fluid, we follow Darcy’s Law [40], which states that

−∂p
′

∂r
− µ

κ
qr = 0 (9)

and

−∂p
′

∂z
− ρg − µ

κ
qz = 0, (10)

where κ is the permeability of the bed and µ is the viscos-
ity of the fluid. Under this hypothesis, the flow has no in-
ternal timescales and it evolves quasi-statically with a ve-
locity proportional to the instantaneous gradient in pres-
sure. By substituting Eqs. (9) and (10) into Eq. (8), we
find that mass conservation is described by the Laplace
equation,

1

r

∂

∂r

(
r
∂p′

∂r

)
+
∂2p′

∂z2
= 0, (11)

which conveniently eliminates the constants that charac-
terize the bed and fluid, under the assumption that their
spatial gradients are zero.

The flat bed becomes unstable when vertical pressure
gradients within the bed exceed the buoyant weight of
the bed. To calculate this critical pressure gradient, we
solve Eq. (11) with the boundary conditions given (in
part) by Eqs. (7), see Appendix A. The solution for the
perturbations to the pressure in the porous bed is

p′ (r, z, t) =0.28ρ
A

H
(ωW )2

×e2.41z/WJ0(2.41r/W ) sinωt, (12)

and is characterized by an exponential decay into the bed
in which J0 is the Bessel function of the first kind. This
fast decay of the flow below the surface is consistent with
the observation reported in La Ragione et al. [31] in that
placing a flexible circular cylinder in the bed, blocking
the flow beneath the bed, prevented the development of
heaps only when the blockage extended to within ten
bead diameters of the surface.

The maximum vertical gradient of the pressure given
by Eq. (12), ∂p′/∂z|max, is located at the origin and when
the plate is at its maximum excursion from its mean po-
sition. Its particular value is given by

−∂p
′

∂z

∣∣∣
max

.
= 2.41× 0.28ρ

A

H
Wω2

In the special case for which the plate is as far from the
bed as its half-width, or for H = W , which was approx-
imately the condition in the experiment, the maximum
gradient in pressure is further simplified and is

−∂p
′

∂z

∣∣∣
max

.
= 26.4ρAf2. (13)

The difference between this critical pressure gradient and
the one given by the full dynamic pressure applied across
a sediment grain, ρ(Af)2/d, is the (large) geometric fac-
tor of 26.4 when the plate moves by the diameter of a
grain, which is due to the resistance of porous materials.

We balance the maximum induced pressure gradient
with the buoyant weight of the bed, (ρs − ρ)cg, to de-
termine the following condition for instability of the flat
bed

Af2|failure =
c

26.4

∆ρ

ρ
g, (14)

where ∆ρ = ρs−ρ. This equation describes a limit above
which particles in the bed will be lifted by the flow.

We re-express the criterion in Eq. (14) as a param-
eter, φ, that makes pressure dimensionless in the same
way that the Shields parameter makes the shear stress
dimensionless. We define φ by rearranging Eq. (14), and
by noting that U = Af is a characteristic (vertical) ve-
locity, so that

φ ≡ Uf

g

ρ

∆ρ
, (15)

which compares flow accelerations with gravitational ac-
celeration reduced by buoyancy. Because the particle vol-
ume fraction, c, does not change substantially over time
or between different compact beds, we ignore it in the
definition of φ. When pressure gradients dominate grav-
ity, we expect the flat-bed to be unstable for large values
of φ. For a random close packing of spheres, cRCP ≈ 0.64
[41]. Using Eq. (14), we estimate that the onset of this
instability occurs when φRCP = cRCP /26.4 ≈ 0.024.
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B. Bed evolution

Once a flat bed becomes unstable as described in the
previous section, and continues to evolve periodically as
the flow through it oscillates, we need to explain the sub-
sequent slow uplift of the bed into a heap. We conjec-
ture that the bed reshapes itself by creeping, or through
small rearrangements of the grains within the heaping
region of the bed. Unlike the creep analysis in previous
studies that was driven by a mean shear [42], we sup-
pose instead that oscillatory flow through the heap drives
creep, especially near the vertical axis of symmetry. We
also suppose that creep occurs primarily during upward
flows, and that the bed locks into place, or jams, during
downward flows [43–45]. This asymmetry with respect to
time in the behavior of the bed enables the accumulation
of a net deformation, and constitutes a kind of granular
ratchet [46].

During upward motions of the plate, the particles of
the heaping region of the bed are able to move; during
downward motions, the particles are locked and the bed
is rigid. The oscillations of the plate are far more rapid
than the resulting deformation of the bed. Hence, the
slow motion of the bed may be taken to be in response to
the average flow of the fluid during the upward motion of
the plate. In this case, the motion of the bed is forced by
the fluid shear stress at its surface and forces associated
with gradients of the fluid pressure in its interior.

The size of the fluid shear stress at the bed surface
may be estimated using the boundary layer analysis
in Batchelor [39, pp. 287-8], with the x-component of
the steady velocity at the surface being proportional to
2π(A/H)fx. The resulting shear stress is proportional
to (ρµ)1/2(Af/H)3/2x. The stresses associated with the
gradients of the fluid pressure in its interior are, roughly,
the product of the pressure gradient in Eq. (13) and the
extent, W , of the fluidized region: ρAW 2f2/H. The
ratio of the first to the second is on the order of 10−3,
which indicates that the surface shear stresses may be ig-
nored relative to the normal stresses induced by the fluid
pressure gradients. This emphasizes the difference in bed
formation in rapid oscillatory flows and those driven by
superficial shear stresses alone.

To capture the essential response of the bed to the ap-
plied stresses, we suppose that the bed behaves as a lin-
ear viscoplastic granular flow [47, 48]. That is, we assume
that the slow deformation of the bed by the grain-scale
processes outlined above can be described approximately
as a coarse-grained viscous flow characterized by an ef-
fective kinematic viscosity, νg. The resulting predictions
include how the height of the bed and the radius of a ring
on its surface change in time, predictions that compare
favorably with the data presented in section IV.

We assume that the shape of the heap is invariant with
time when scaled by a single length scale. This charac-
terization may be reasonable for times much larger than
the period of the flow oscillations and much smaller than
the one required for the heap to grow large enough to

modify the flow geometry. The characterization may fail
for heaps containing too few grains, or heaps approaching
the size of their container. That is, we seek an interme-
diate asymptotic description of the evolution of the bed
in terms of a single length scale [49], which we take to be
the height of the bed at the peak, hp.

According to dimensional analysis [50], if a physically
meaningful equation exists that relates hp and t, then
hp(t) must be proportional to

√
νgt. We rewrite this

proportionality in terms of the dimensionless heap height,
hp(t)/d, and the dimensionless time, tf , as follows

hp(t)

d
= Ch (tf)1/2, (16)

where the dimensionless prefactor, Ch(Reg), is unknown

but for proportionality to Re
−1/2
g , where Reg = d2f/νg

is a Reynolds number that arises due to our choice of di-
mensionless variables. Eq. (16) constitutes our prediction
for the temporal development of the heap.

Because the problem contains more dimensions than
we included in our analysis, the dimensionless prefactor,
Ch, is likely to contain additional dependencies that can
generate exponents different from 1/2 in principle. These
additional dimensions include, for instance, the charac-
teristic speed and length scales of the flow above the bed
(Af and W ), and the densities of the sediments and fluid.
These additional dependencies appear to be negligible in
the regime of our interest, where hp is small compared
with H and hp/t is small compared with U , for instance,
while other parameters likely did not vary appreciably
in our experiments, including W/H and UW/νg. Future
experiments are needed to develop a more detailed un-
derstanding of the mechanisms at play.

To see how a bead on the surface of the bed migrates
during the growth of the heap, we describe the radial
flow of sediments within the bed in a depth-averaged
sense while ignoring diffusion of the grains. Consider
that the change in heap height at any radius, r, is given
in part by the flux into an annular control volume cen-
tered on r and in part by changes in the mass density
of the bed. Granular beds are generally compressible,
grains can rearrange themselves to occupy more or less
volume. However, for simplicity, we initially assume an
incompressible flow of grains, though the data do not pre-
clude contributions from changes in mass density, and we
revisit this assumption below. For an incompressible bed,
where changes in the depth-averaged radial flux, ūT , ex-
actly balance changes in the height, h, we have

∂h

∂t
= −T

r

∂(rū)

∂r
, (17)

where ū(r, t) is the mean radial velocity of beads moving
in a surface layer with thickness T (r, t).

Since the shape of the heap is approximately invariant
with time, we can separate the time and space variations
of the height, so that h(r, t) = hp(t)α(r). According
to the dimensional arguments summarized in Eq. (16),
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hp/d ∼ (tf)1/2 . We then solve for the mean radial
bead velocities in the heap by integration of Eq. (17)
over the radius. Given the boundary conditions, we find
the depth-averaged radial velocity to be

ū(r, t)

fd
= −1

2
ChRe

−1/2
g G(r, t) (tf)−1/2, (18)

with

G(r, t) =
1

r

∫ r

0

α(ξ)

T (ξ, t)
ξ dξ. (19)

The dimensionless function G depends on the thickness of
the layer of mobile beads T (r, t), which we did not mea-
sure, and on the shape function, α(r), which we did mea-
sured. Large G corresponds to tall heaps within which
motion is confined to a thin layer. Assuming that T does
not vanish at the peak, plausible assumptions about its
shape, including that it is constant or determined by α
itself, lead to qualitatively similar conclusions. Namely,
that the velocity of the ring approaches zero more quickly
than t−1/2 at small radii. This slow-down can give the
appearance that superficial beads cease their mean radial
motion entirely within a region near the axis, a notion we
revisit below. We note an analogy between this analysis
and the one of hydrogen particles on a quantized vortex
ring in Bewley and Sreenivasan [51], in which an underly-
ing square-root decay in time is modified by drag between
the particles and fluid.

According to the arguments above, the radius, R, of a
ring of beads on the surface of the heap is proportional
to the square root of time far from the axis and when n
= 1/2, since its radius changes as dR = ū(R, t) dt and
integration yields

1− R

R0
∼ G(R)

d

R0
(tf)n. (20)

where R0 is the initial radius. At long times [49], a stable
configuration of the heap is reached and it stops growing.
Eqs. (16) and (20) constitute the two predictions that we
compare with data in the next section.

IV. RESULTS AND DISCUSSION

We performed the experiment at various oscillation
frequencies corresponding to a range of values for φ in
Eq. (15) from 0.004 to 0.03. In natural flows, φ can be
arbitrary small and reaches values larger than 0.1 for tur-
bulent flows under water. In the experiment and under
the perimeter of the plate, we estimate the Shields pa-
rameter θ to be no larger than O(10−3) in any of our
experiments, which is smaller than the value (& 0.02)
observed for the onset of sediment motion under steady
shear flow [22, 52]. The Reynolds numbers of the plate,
Re = 2WAf/ν, ranged from approximately 500 to 1500.

0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

2

2.5

FIG. 5. Prediction of sediment motion by φ, Experimental
data are represented by circles (blue) and crosses (red): circles
when sediment motion occurred and crosses when it did not.
The solid lines are curves of constant φ, defined in Eq. (15).
The thickest line corresponds to the value φRCP = 0.024 We
find that φ ≈ 0.020 generally separates conditions that formed
heaps from those that did not. Values above this one corre-
spond to integer multiples of φRCP and those below to 1/2,
1/4 and 1/8 of φRCP . Note that the predicted onset of sed-
iment motion using Shields’ theory [22] corresponds to A/d
values of O(1000).

A. Onset of heap formation

We review in this section the finding we reported in
La Ragione et al. [31], which is that bedforms developed
only under those conditions shown in Fig. 5. For lower
amplitudes of the plate motion, no bedform developed.
When the bedforms did develop, it took many oscilla-
tions of the plate to do so – on the order of hundreds
of thousands. The heap resulted from the cumulative ef-
fect of many very small motions in the bed. The data
are consistent with the onset of flat-bed instability be-
ing described by the theory in the previous section and
by Eq. (15), that is, for large φ ∼ Af2. The particular
form of the curve of constant φ is distinctive of the onset
of heap formation due to vertical pressure gradients and
not shear stresses. The particular value of the critical φ0
for the onset of heap formation determined from the ex-
periment, φ0 = 0.02, compares favorably with the factor
c/26.4 . 0.03 for packed spherical particles, as predicted
by Eqs. (14) and (15).

B. Heap profile

The profiles of the bed, h(r, t) in Fig. 6, show that after
a few thousand cycles the shape of the heap was approx-
imately invariant in time when appropriately rescaled.
There was an initial transient during which the peak was
flat and the annular trough around the heap was deep rel-
ative to later times. This initial heap development was
sensitive to initial conditions; it was different in different
experiments.

The profiles reported in La Ragione et al. [31] are re-
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produced in Fig. 6 (Left), and replotted in Fig. 6 (Right)
normalized by their peak height at each time, hp(t), in
order to evaluate the assumption that, upon rescaling of
the heap, the shape of the heap does not change with
time. As in Eq. (19), we call the shape that the heap ap-
proached α(r/W ), whose form we know only from these
measurements. Empirically, we found that the first zero
crossing of the data was a constant equal to about 3.7 cm.
Note that the radius at which no material accumulated
is also, in principle, the radius at which there was a max-
imum in the radial flux of material across the bed.

0 1

-5

0

5

10

15

0 1

-0.5

0

0.5

1

FIG. 6. Left: The profile of the bed, h(r, t), at intervals of
4800 cycles (320 s), resulting from plate oscillations with an
amplitude of A/d = 2.72. Colors transition from yellow to
purple indicate increasing time. The profile is normalized by
the diameter of the glass beads, d, and the radius is nor-
malized by the plate half-width, W = 3.8 cm. Right: The
profile of the bed with respect to the initial height of the bed,
h0(r) = h(r, 0). Each profile is normalized by its peak height,
hp(t) = h(0, t). The profiles are approximately invariant in
time after an initial transient. We call the invariant profile
α(r/W ). The inset shows all profiles, including h0, normal-
ized by the bead diameter, d, and the radius normalized by
the plate half-width.

C. Bed evolution

The heap height grew as shown in Fig. 7. Below a
certain threshold oscillation amplitude near A= 0.38 mm
at a frequency of f = 15 Hz, no heap formed. Above
this threshold, the heap height data are consistent with
a power law in time with an exponent of 1/2, shown in
Fig. 7 as black lines. This exponent is consistent with
Eq. (16). Note that beads deposited on top of the center
of the heap stayed on the top of the heap as the heap
rose upward, while remaining centered and contracting
slightly in radius [31].

Fig. 8 shows the radius of a ring on the surface of the
heap as a function of time. Initially, the ring contracted
approximately as the square root of time, in agreement
with Eq. (20) for constant G. The ring contraction sub-
sequently slowed down relative to a power law when it
became small relative to its initial diameter. This slow-
down is consistent with the behavior of G(R(t)), which
is not constant as we now explore.

In order to understand the role of the shape factor,
G(R(t)), and to illustrate its essential behavior, we fit
a polynomial to the data in Fig. 6 and then integrated
Eq. (19) numerically under the assumption of constant
T for each measurement of R(t). We show these inte-
grations of G(R(t)) in Fig. 8 as a solid line with circles,
shifted in the vertical direction (i.e. for arbitrary T = T0)
for clarity since our interest is in scaling behavior. The
function captures qualitatively the way that the ring in
the experiment slowed down relative to a power law of
time as the radius of the ring approached zero. Indeed,
in the last hour (54,000 cycles) of the experiment, both
the incompressible model and the data show a change of
only a few percent (6-8%) in the ring radius.

Though the scaling arguments embodied in Eqs. (16)
and (20) capture the essential features of the development
of the heap, a granular bed is not incompressible, as we
assumed until now. Since the net volume of a granular
bed can change due to changes in the way the beads are
packed within the bed, a heap can grow as a consequence
of a decrease in its depth-averaged mass density, ρ̄(r, t).
To see this, consider that Eq. (17) is an incompressible
simplification of

∂

∂t
(ρ̄h) = −1

r

∂

∂r
(rρ̄ūh) (21)

for a compressible material. We introduce a radius, r0,
within which the radial flux is identically zero. In the
incompressible analysis, the radial flux approaches zero
asymptotically toward small r, but in the available data
this behavior cannot be distinguished from one where the
flux is zero within r0. We find that within this radius the
heap height changes due to changes in the mass density

3 4

-1

0

FIG. 7. The growth of the peak height, hp, was consistent
with the square root of time (black line) predicted in Eq. (16).
From the lower to the upper curve, the normalized plate os-
cillation amplitudes were A/d = 1.64, 1.76, 1.92 and 2.04. No
heap grew for a normalized oscillation amplitude of less than
1.52. The normalized oscillation frequency for all cases was
f
√
d/g = 0.11. The data are smoothed using a moving aver-

age and error bars indicate the standard error for a few select
points.
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FIG. 8. Above: The radius of a ring, R(t), on the surface
of the heap contracted over time, shown by the major (×)
and minor (+) axes of an ellipse fit to images of the ring,
their mean (•), and a square root function for reference (–
). The square root contraction goes hand-in-hand with the
heap growth as described in the text. The initial radius was
R0 = 2.8 cm, and the frequency of the plate oscillations was
f = 20 Hz. Below: The logarithmic scale reveals that as the
ring approached the peak of the heap, its contraction slowed
down relative to the square root of time. The product of
the shape factor, G(R) in Eq. (20) (–◦–), and a 1/2 power
law shows that the combination of geometric effects with the
slowing dynamics reproduces the observation that the ring
radius reached an approximate constant at large times (– –).

alone, and not to radial flux, since dh = −(h/ρ̄)dρ̄ within
this region. In the absence of radial flux, the observed
change in height of the bed corresponds to a change in
density of 10 to 20%.

By integrating the profiles in Fig. 6 we observed qual-
itatively that the volume of the trough around the heap
balanced the volume of the heap itself, but with large
enough uncertainty that it was impossible to establish
whether the mass density of the material changed ei-
ther in time or across the heap. Further experiments
are needed to determine the relative contributions from
the radial flux and from the changes in mass density.

V. CONCLUSIONS

The arguments and predictions outlined above are con-
sistent with the essential features of the onset of sediment
transport and the subsequent development of the heap,
while also calling attention to the importance of motions
internal to the heap. At the coarse-grained scale, these
motions include changes in the mass density of the bed

and the depth of penetration of the granular deforma-
tion. At the scale of grains, the motions include creep,
jamming and ratcheting, and an important thrust of fu-
ture work will be to explore the limitations of the con-
tinuum models employed here. While other mechanisms
may ultimately fully explain the response of the bed to
the fluid stresses we applied to it, we observed that sedi-
ment motion due to pressure gradients and a subsequent
viscous deformation agree with the data as hypothesized
by Johnson [14] in their experiments involving irregular
oscillations. Future studies could evaluate these internal
motions quantitatively as well as the extent to which per-
meability gradients change the presented results, the re-
lationships between the heap’s dimensions and the grain
size, and the relationships between the heap’s shape dis-
tributions and plate geometry.
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Appendix A

The Laplace equation governs the pressure distribution
within the bed

∂2p′

∂x2
+
∂2p′

∂y2
= 0, (A1)

with the condition at surface of the bed

p′(r, 0, t) = −ρ
4

A

H
ω2 sin(ωt)

(
r2 −W 2

)
. (A2)

If we make both r and z dimensionless by W then, within
the bed, 0 < r̂ < 1 and ẑ < 0, the solution of Eq. A1 is

p′(r̂, ẑ, t) =

∞∑
n=1

ane
λ̂nẑJ0(λ̂nr̂)ω

2 sin(ωt),

where the assumption that p′(1, 0, t) = 0 gives the λn
as the values at which J0(λ̂n) = 0. Then, the an are
determined by

ρ

4

A

H
W 2

(
1− r̂2

)
=

∞∑
n=1

anJ0(λ̂nr̂),

with ∫ 1

0

[J0(λ̂nr̂)]
2r̂dr̂ =

1

2
[J1(λ̂nr̂)]

2

and

an =
ρ

2

A

H

W 2

[J1(λ̂n)]2

∫ 1

0

(
1− r̂2

)
J0(λ̂nr̂)r̂dr̂.
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For example, J0(λ̂1) = 0, when λ̂1
.
= 2.41. Then,

J1(2.41)
.
= 0.52, J2(2.41)

.
= 0.43, and J3(2.41)

.
= 0.20.

So,

∫ 1

0

J0(λ̂nr̂)r̂dr̂ =
1

λ̂
J1(λ̂1)

and

∫ 1

0

J0(λ̂nr̂)r̂
3dr̂ =

1

λ̂2
[2J2(λ̂1)− λ̂1J3(λ̂1)].

At lowest order,

a1 =
ρ

2

A

H

W 2

[J1(λ̂n)]2
1

λ̂1

{
J1(λ̂1)− 1

λ̂1
[2J2(λ̂1)− λ̂1J3(λ̂1)]

}
.

Then,

a1 = 0.28ρ
A

H
W 2; (A3)

and, finally, at lowest order in the Fourier series, the
perturbation to the pressure in the porous bed is

p′ (r̂, ẑ, t) =0.28ρ
A

H
(ωW )2

×e2.41ẑJ0(2.41r̂) sinωt. (A4)
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