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Mixtures of active and passive particles are predicted to exhibit a variety of nonequilibrium phases.
Here we report a dynamic clustering phase in mixtures of colloids and motile bacteria. We show that
colloidal clustering results from a balance between bond breaking due to persistent active motion
and bond stabilization due to torques that align active particle velocity tangentially to the passive
particle surface. Furthermore, dynamic clustering spans a broad regime between diffusivity-based
and motility-induced phase separation that subsumes typical bacterial motility parameters.

I. INTRODUCTION

Collective self-organization of self-propelled, or ac-
tive, particles is a vibrant topic of research in statistical
physics [1, 2]. Active matter exhibits diverse nonequilib-
rium phenomena including flocks [3], living crystals [4, 5],
active nematics [6–9], turbulent phases [10], whorls [11]
and nonreciprocal interactions [12]. Recent years have
seen a growing interest in interactions between active and
passive particles [13], which have been studied in the con-
text of diffusion [14–16], transport [17, 18], pairwise in-
teractions [19, 20] and active dopants [21, 22]. Further,
theoretical work on active-passive mixtures predicts seg-
regation based on differences in motility [23–25] or diffu-
sivity [26, 27]. Despite considerable theoretical interest
and a growing body of numerical studies, the dynam-
ics and phase behavior of mixtures of active and passive
particles remain underexplored experimentally. Further-
more, a majority of studies have focused on the two ex-
treme limits of low and high persistence of active motion.
However, synthetic as well as natural active particles such
as active colloids and motile bacteria typically exhibit an
intermediate level of persistence, and are therefore likely
to deviate from the predicted phenomenology in these
limits. In a broader context, the mechanisms governing
nonequilibrium self-assembly of active-passive mixtures
are not yet fully understood. Here, we address these
key challenges using experiments on colloids and motile
bacteria, as well as Brownian dynamics simulations of
active-passive mixtures.

II. EXPERIMENTAL SETUP AND METHODS

Our experiments employ a quasi-2D geometry, with
passive silica colloids of diameter σ = 3.2µm confined
between two coverslips separated by a gap of 5µm using
spacer particles (Fig. 1a). We held the area fraction of
passive colloids constant at φp = 0.15, and systematically
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varied the bacterial density ρb. We work with low φp to
preclude aggregation effects in the absence of bacteria.

A. Bacterial strains and growth conditions

We used motile Pseudomonas aurantiaca bacteria as
active particles and restricted our experiments to bacte-
rial densities below the onset of active turbulence [10].
P. aurantiaca cells are rod shaped, with a long axis of
≈ 1.5µm and aspect ratio ≈ 2. Prior to the experiments,
P. aurantiaca bacteria (strain ATCC # 33663 with chro-
mosomal insertion miniTn7-GmR-F1-06RFP for expres-
sion of red fluorescent protein (RFP)) were streaked
from a frozen glycerol stock stored at -80 degree C onto
plates containing 2% w/v Luria-Bertani (LB) medium
and 1.5% w/v agar (both Beckton, Dickinson and Com-
pany, Franklin Lakes, NJ, USA). The plate was incubated
for 24 hours at 30◦C. To grow bacteria for microscopy
experiments, individual colonies from the plate were used
to inoculate 5 mL of growth medium containing 10 g/L
Yeast Extract and 10 g/L Soytone (both Beckton, Dick-
inson and Company, Franklin Lakes, NJ, USA). Prior to
inoculation, the growth medium was sterilized by pass-
ing through a 0.22 µm filter (VWR), and the pH was
adjusted to 7 by dropwise addition of 100 mM sodium
hydroxide (NaOH). Bacteria were grown for 16 hours us-
ing an orbital shaker at 30◦C and 250 rpm and allowed
to reach saturation density (ρ0 = 3× 109 colony forming
units (CFU) per mL). Throughout the paper, we report
the bacterial density ρb in units of the saturation den-
sity ρ0. The bacterial culture was concentrated by cen-
trifuging at 4000g for three minutes. Different bacterial
densities were achieved by removing different amounts
of supernatant. To test the generality of our findings,
we also performed experiments with motile Escherichia
coli bacteria, using the strain M3K2R: W3110 contain-
ing the plasmid pSBIK3-RFP that confers resistance to
kanamycin and enables expression of RFP. E. coli cells
are also rod shaped with aspect ratio ≈ 2, and a long axis
of ≈ 2.2µm, and grow to a saturation density ρ0 = 7×109

CFU/mL.
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B. Sample and chamber preparation for
microscopy experiments

Unfunctionalized silica colloids of diameter σ = 3.2µm
were purchased either from Bangs Laboratories, Inc. or
microParticles GmbH. To demonstrate the interaction
between individual Pseudomonas aurantiaca cells and
colloids (Video S3), we grew a fluorescent silica shell
on the colloids that incorporated the fluorophore rho-
damine B isothiocyanate (Sigma Aldrich) using the pro-
tocol devised by Kuijk et al. [28]. Video S2 and Video S3
were captured using a customized fluorescence micro-
scope with an EMCCD camera (ANDOR ixon 897) and
100X oil immersion objective lens (Nikon) at 20 frames
per second (fps). Unfunctionalized silica colloids of di-
ameter 5µm, to be used as spacers, were purchased from
Bangs Laboratories, Inc. The σ = 3.2µm colloids were
concentrated 2X by centrifugation and 5µm silica col-
loids were diluted 10× in distilled deionized water. Prior
to the experiments, both types of colloids were sonicated
for 30 minutes, in order to break any clusters formed due
to sedimentation during storage. 20 µL concentrated bac-
terial culture, 20 µL of 2X suspension of 3.2µm colloids
and 1 µL of 0.1X suspension of 5µm colloids were mixed
together by vortexing at 1500 rpm.

In all experiments, 5 µL of this bacteria-colloid mixture
was put between two polymer coverslips (ibidi GmbH,
untreated), plasma cleaned at maximum radio frequency
(RF) level for 15 minutes before use, filling an area of 18
mm × 18 mm. The polymer coverslips allow exchange
of oxygen with the environment and help maintain bac-
terial motility over durations several times longer than
those of our experiments. The chamber was pressed by
placing a known weight of 600g on top of the coverslips
for 30 s, which caused the σ = 5µm colloids to stick
to the top as well as bottom coverslip, thus serving the
purpose of spacers. This arrangement ensures that the
σ = 3.2µm colloids experience quasi-2D confinement.
Finally, the chamber was sealed with valap to prevent
flows and evaporation. All experiments were performed
in triplicate, using different bacterial colonies (biological
replicates) and on separate days, to ensure that the ob-
served phenomena are robust to fluctuations in bacterial
density, motility and metabolism.

The samples were imaged in bright field with a 40X
or 60X air objective on a Motic AE2000 inverted micro-
scope. Videos were acquired for 5 minutes at 6 fps using
a CMOS digital camera (AmScope MU500). Prior to
capturing videos, we waited for 15 minutes to allow any
incidental bulk flows in the sample chamber to subside.
The field of view typically contained ∼ 600± 50 colloids.

III. RESULTS AND DISCUSSION

A. Motile bacteria drive steady state dynamic
clustering of passive colloids

While colloids are distributed homogeneously in the
absence of bacteria, they undergo significant clustering
at high ρb (Fig. 1b-c, Video S1). To identify clus-
ters, colloids were localized and tracked using Blair and
Dufresne’s publicly available Matlab version of the par-
ticle tracking code originally developed by Crocker and
Grier [29]. Particle trajectories were de-drifted to remove
the effects of residual bulk flows in the sample as well as
any drift in the microscope stage. Clusters were iden-
tified using a distance cutoff. Throughout this study,
unless stated otherwise, we classify any two colloids sep-
arated by less than 1.2σ, where σ is the colloid diameter,
as belonging to the same cluster. Accordingly, the default
cutoff distance in our Brownian dynamics simulations is
chosen to be 1.2dp, where dp is the diameter of passive
particles. Choosing the cutoff distance to be too small
(1.1σ) makes the measurements sensitive to errors in par-
ticle localization as well as polydispersity and synthesis
defects in the purchased colloids, which increases noise
and obscures trends (Fig. S1) [30]. On the other hand,
a higher cutoff distance (1.3σ) influences the measured
values of mean cluster size and bond lifetimes but leaves
our results qualitatively unchanged (Fig. S1) [30]. Thus
the phenomenon of dynamic clustering is robust to small
changes in the distance cutoff used to define clusters.

We first verified that the clustering is not induced by
metabolites produced by the bacteria, by performing a
control experiment. For this experiment, after concen-
trating the bacteria, we filtered the supernatant contain-
ing the conditioned growth medium through a 0.2 µm sy-
ringe filter (Pall Corporation) to remove bacterial cells.
We mixed 20 µL of this filtered supernatant with 20 µL
of 2X suspension of 3.2 µm colloids and 1 µL of 0.1X
suspension of σ = 5µm colloids and loaded 5 µL of this
sample into the same type of imaging chamber as de-
scribed above. These conditions are identical to those in
our main experiments, with the exception that the bac-
terial suspension is replaced by the conditioned growth
medium. We then took a time lapse video at 1 frame per
minute for 250 minutes, which is 50 times longer than the
duration of our experiments. We observed no evidence of
colloidal clustering over this period (Fig. S2) [30], show-
ing that the clustering observed in our experiments is
due to bacterial motility alone, and not due to chemical
modifications in the growth medium that occur during
bacterial growth.

Clustering results in strong enhancement of the first
peak of the radial distribution function g(r) (Fig. 1d).
Furthermore, the cluster size distribution P (n), n being
the number of colloids in a cluster, becomes significantly
broader for high ρb (Fig. 1e), resulting in a larger mean
cluster size 〈n〉 =

∑
nP (n) (Fig. 1e, inset). We quanti-

fied the broadening of P (n) by computing the probability
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FIG. 1. Dynamic clustering of passive colloids by
motile bacteria. (a) Schematic of the experimental setup.
(b-c) Representative snapshots of colloids at ρb = 0 (b) and
ρb = 50ρ0 (c). Monomers are shown in black, and clusters in
blue, with lighter shades indicating larger clusters. The scale
bar is 10µm. (d) g(r) for ρb = 0 (black) and ρb = 50ρ0 (blue).
(e) P (n) for ρb = 0 (black) and ρb = 50ρ0 (blue). Inset shows
the mean cluster size computed from data in the main plot.
Shaded regions in (d) and (e) and error bars in inset to (e)
are standard errors of the mean across three independent ex-
periments.

of clustering, P (n > 2), defined as the fraction of clusters
containing at least three colloids (Fig. S3) [30]. Consis-
tent with increasing 〈n〉, we observe that P (n > 2) at
ρb = 50ρ0 is four times as large as that for ρb = 0. Fur-
thermore, we observe qualitatively similar clustering with
Escherichia coli bacteria as well, demonstrating that the
phenomenon is general and robust (Fig. S4) [30].

While clusters form and break over seconds, 〈n〉 does
not evolve over 30 minutes, suggesting that the system
is in a nonequilibrium quasi-steady state (Fig. S5) [30].
This dynamic steady state is characterized by a monoton-
ically decaying P (n) (Fig. 1e and Fig. S6) [30], which is
substantially different from the phase separation of active
and passive particles predicted in previous studies. A key
parameter that determines phase behavior of active par-
ticles is the Péclet number Pe = vaτr/da where va is the
speed of active particles, τr is a reorientation time scale
set by rotational diffusion for active Brownian particles or
tumbling time for bacteria, and da is the size of the active
particles. At high Péclet numbers (Pe� 1), mixtures of
active and passive particles are expected to undergo seg-
regation [23–25] accompanied by large inhomogeneities in
active particle density, consistent with motility-induced

phase separation (MIPS) in purely active systems [31].
However, numerical studies have shown that MIPS is not
observed in 2D below Pe ≈ 55 [31]. Since the measured
Péclet number for our bacteria is much smaller (Pe ≈ 14,
Fig. S7), we do not expect MIPS-like segregation to oc-
cur in our system [30]. Furthermore, the presence of
passive particles increases the critical Péclet number for
MIPS [24]. We therefore do not observe any spatial in-
homogeneity in bacterial density even at ρb = 50ρ0, the
highest density studied (Video S2). Phase separation can
also occur in mixtures of particles that differ significantly
in their diffusivities [26, 27]. For active-passive mixtures,
this occurs for Pe < 1. However, the Péclet number for
our bacteria is large enough to suppress diffusivity-based
phase separation completely. The observed steady state
dynamic clustering is a distinct effect that has neither
been predicted nor observed before.

B. Brownian dynamics simulations of active and
passive disks with aligning torques recapitulate

dynamic clustering

To understand the origin of dynamic clustering, we in-
vestigated a minimal model system consisting of active
and passive Brownian disks of diameter da and dp re-
spectively, in two dimensions (Fig. 2a). Both types of
particles obey an overdamped Langevin equation in two
spatial dimensions. The position ri of passive particle i
follows

dri
dt

= µpFi +
√

2Dt,pξi (1)

where µp is the mobility of a passive particle, ξi a 2D
Gaussian white noise with unit variance and Dt,p the
coefficient of translational diffusion of a passive particle.
In addition, the active particles self-propel at a speed v0,
thus following

dri
dt

= v0ui + µaFi +
√

2Dt,aξi (2)

where µa and Dt,a are the mobility and translational
diffusion coefficient of an active particle, respectively.
ui = (cos θi, sin θi) is a unit vector giving the direction of
propulsion of particle i. It is parametrized by an angle
θi subject to rotational diffusion with coefficient Dr and
to torques that tend to align tangentially to the surface
of the passive particles

dθi
dt

= −Γ
∑
j

sin(θi − θij) +
√

2Drηi (3)

where the sum runs over passive particles in contact with
particle i (main text Fig. 2a). Γ sets the speed of align-
ment, θij = arg(ri − rj) and ηi is a Gaussian white
noise of unit variance. This type of interaction is stan-
dard to model the alignment of self-propelled rods with
the surface of passive objects [32]. Our minimal model
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FIG. 2. Torque-induced stabilization of clusters in simulations. (a) Schematic showing the orientation of active particles
parametrized by θi, and θij is the orientation of the relative position vector between active particle i and passive particle j.
(b-c) No clustering is observed for Γ = 0/s (b) but substantial clustering is observed at Γ = 25/s (c). Monomers are shown in
black, and clusters in blue, with lighter shades indicating larger clusters. Insets in (b) and (c) reveal the difference in particle
trajectories during a collision, with (c) and without (b) torque. The scale bar is 10µm.(d) Mean cluster size as a function
of φa for Γ = 0/s (dotted line) and Γ = 25/s (solid line). In (b-d), error bars are standard errors of the mean across three
independent simulations.

replaces short-ranged hydrodynamic lubrication interac-
tions by contact interactions. This simplification is jus-
tified, since previous work has shown that the measured
value of Γ for swimming bacteria matches the estimated
value from contact interactions within experimental error
[33]. Finally, the interaction Fi in Eqs. (1)-(2) accounts
for volume exclusion. It derives from a potential so that
Fi = −∇riU with

U=−k
2

∑
i<j

(
di + dj

2
− |ri − rj |

)2

Θ

(
di + dj

2
− |ri − rj |

)
(4)

where di and dj assume the value da for active parti-
cles and dp for passive ones. The Heaviside Θ func-
tion insures that particles interact only when they are
in contact, i.e. when the distance between them is less
than the sum of their radii. Eq. (4) imposes a soft har-
monic repulsion between the particles but in practice
we take a large k = 100 that allows for little overlap.
Throughout the paper, we choose da = 1µm, dp = 3µm,
v0 = 10µm/s, µa = (dp/da)µp = 1mPa−1 · s−1 · µm−1
,and Dt,a = (dp/da)Dt,p = 0.15µm2/s.

Simulations of our model system with Γ = 0/s show
that motility alone is not sufficient to induce significant
clustering, even for very high area fractions of active
particles φa (Fig. 2b). However, we observe the forma-
tion of clusters for Γ = 25/s (Fig. 2c). Moreover, as
in the experiments, the clustered phase is a nonequilib-
rium steady state (Fig. S8) with a monotonically decay-
ing P (n) (Fig. S9) [30]. Interestingly, dynamic clus-
tering is qualitatively robust to changes in the relative
size of active and passive particles. Simulations with
dp = 0.5da exhibit clustering with significantly larger
〈n〉 (Fig. S10) [30]. Elucidating the effect of particle
size ratio on clustering is an interesting topic for fu-
ture research. The inclusion of Γ in our simulations is
motivated by anisotropic bacterial shape and flow fields
[34], which lead them to turn away from colloids on con-

tact [33] (Video S3) [30]. Furthermore, we observe that
〈n〉 =

∑
nP (n) increases substantially with φa in the

presence of torque (Γ = 25/s), but remains nearly con-
stant for Γ = 0/s (Fig. 2d).

Fig. 2 shows that although torque only acts on ac-
tive particles, it strongly influences dynamic clustering.
This is because the magnitude of torque controls the
momentum transferred to passive particles during col-
lisions with active ones (insets to Fig. 2b-c. Also see
Video S4) [30]. Finite Γ leads to faster reorientation
of active particles (Fig. 2c, inset), and consequently a
smaller “push” on passive particles compared to Γ = 0/s
(Fig. 2b, inset). We quantified this effect by measuring
the effective single-particle diffusivity of passive particles
as a function of Γ, for a fixed φa = 0.6 (Fig. S11) [30].
As expected, effective diffusivity decreases strongly with
Γ. Crucially, the torque-induced reduction of momen-
tum transfer plays a significant role in stabilizing larger
clusters. To illustrate this fact, we initialized our simu-
lations with a single large cluster of passive particles in
the center of the simulation box, surrounded by a sea
of active particles. For Γ = 0/s, the cluster dissolves
rapidly, whereas with increasing torque, it dissolves over
increasingly longer timescales (Video S5) [30].

C. Dynamic clustering results from torque-induced
effective attractions between passive particles

To gain further insights into the mechanism of cluster-
ing, we numerically investigated the diffusion and bond-
ing kinetics of passive particles for various φa. To avoid
possible many body effects, we extract the diffusion coef-
ficient of passive particles by simulating a single passive
particle in a bath of active particles, and averaging over
time. Likewise, to quantify bond lifetimes, we simulated
two passive particles diffusing in a bath of active par-
ticles and generated a bond lifetime distribution from
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FIG. 3. Effective attraction between passive particles
leads to clustering. (a) Effective diffusivity (open green
diamonds) and bond lifetime (open orange squares) of pas-
sive particles versus φa in simulations. (b) Mean cluster size
versus δ = Dτ/(D0τ0) in simulations (open symbols) and
experiments (filled symbols). (c) Effective diffusivity (filled
green diamonds) and bond lifetime (filled orange squares) of
colloids versus ρb/ρ0 in experiments. In (a-c), black symbols
correspond to φa = 0 in simulations and ρb = 0 in experi-
ments. Error bars in (a-c) are standard errors of the mean
from three independent replicates.

several independent bonding events, assuming that the
two particles are bonded, if the separation between them
is less than 1.2d. Collisions with active particles enhance
diffusion of passive ones, which opposes clustering. How-
ever, for Γ > 0/s, the same collisions also result in effec-
tive attractions between pairs of passive particles, lead-
ing to cluster formation. We quantified these competing
effects using the single particle diffusivity D (Fig. 3a,
open green diamonds) and the mean pair bond lifetime τ
(Fig. 3a, open orange squares) for passive particles (Also
see Fig. S12-S13) [30]. Using the corresponding quanti-
ties D0 and τ0 under thermal fluctuations for φa = 0, we
constructed a dimensionless parameter δ = Dτ/(D0τ0)
that serves as an indicator of the strength of effective
attractions. In the absence of attractions, enhancement
in diffusion would be accompanied by a corresponding
decrease in bond lifetimes, resulting in δ ∼ 1. However,
attractive interactions can lead to a substantial increase
in lifetimes, leading to δ � 1. We therefore expect that
larger δ should result in larger clusters, which is indeed
observed in our simulations (Fig. 3b, open symbols).

Finally, we examined whether the predicted increase
in 〈n〉 with δ can also be observed in experiments. To
extract the effective diffusion coefficient of colloids in our
experiments, we calculated the mean square displacement
using a time average for a single track as well as an en-
semble average over the tracks of all colloids in the field
of view. While the diffusion coefficient is a property of in-
dividual colloids, its measurement can be affected by the
clustering observed in our experiments. To remove the

effect of clustering on diffusivity measurements, we only
considered those particle trajectories that had on average
less than one nearest neighbor over their duration. Near-
est neighbors were defined using the same distance cutoff
used to identify clusters. The MSDs for all bacterial den-
sities studied were diffusive at long times (Fig. S14) [30],
which allowed us to extract the diffusion coefficient of
colloids.

To quantify bond lifetimes in experiments, we assume
that two colloids are bonded to each other if their cen-
troids are separated by a distance smaller than 1.2σ, the
same cutoff distance used for clustering analysis. A bond
lifetime for a pair of colloids is defined as the duration
over which two colloids remain separated by a distance
smaller than 1.2σ. The bond is said to be broken once
the separation exceeds this cutoff distance. Two colloids
can thus form and break bonds with each other as well as
with other colloids, several times during the experiment.
While bond lifetimes can help us quantify effective pair-
wise interactions, these can also be affected by clustering,
since particles in the interior of clusters will typically have
longer bond lifetimes. Thus, clustering leads to heavy
tails in the bond lifetime distributions (Fig. S15) [30].
We ignore these heavy tails and only consider the ini-
tial exponential decay of bond lifetimes in order to get
a more accurate estimate of the characteristic bond life-
time of pairs of colloids. The characteristic bond lifetime
is defined as the decay constant of the exponential fit to
the initial decay of the bond lifetime distribution.

We observe that the variation inD (Fig. 3c, filled green
symbols) and τ (Fig. 3c, filled orange symbols) with ρb
is qualitatively similar to that observed in simulations
(Fig. 3a), particularly from moderate to high φa. Next
we quantified the mean cluster size from our experimen-
tal data. While φp ≈ 0.15 in our experiments, in prac-
tice, the number of colloids in the field of view fluctuates
across replicates, which influences our measurements of
the mean cluster size. To account for these fluctuations,
we define a corrected mean cluster size 〈niC〉 = 〈N〉

Ni
〈n〉,

where 〈n〉 is the measured mean cluster size, 〈N〉 is the
number of colloids in the field of view averaged across all
experimental replicates and all bacterial densities, and
Ni is the number of colloids in the field of view for the
ith experiment, averaged over the experimental duration.
Both the bare as well as corrected mean cluster size in-
crease with ρb (Fig. S16) [30]. Experiments with E.
coli also show qualitatively similar results (Fig. S4) [30].
〈niC〉 plotted as a function of δ (Fig. 3b, filled symbols),
is in agreement with the prediction from simulations,
demonstrating that the clustering mechanism revealed by
our simulations can adequately explain our experimental
findings.
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D. Dynamic clustering spans a wide range of
parameters in the Alignment rate - Péclet number

plane

To better understand the effect of torques, and place
our results in the context of prior work on mixtures of ac-
tive and passive particles [23–27], we construct a numeri-
cal phase diagram for our system in the Pe-Γ plane, keep-
ing φp = 0.15 and φa = 0.6 fixed. We delineate different
phases using two order parameters. First we define an or-
der parameter for the demixed regime ODM = 〈NL/Np〉t,
where NL is the number of particles in the largest cluster
of passive particles, Np is the total number of passive par-
ticles, and 〈〉t indicates time averaging. We also define a
MIPS order parameter OMIPS = 〈σφ〉t/(φa + φp), where
σφ is the standard deviation of the local area fraction φ,
computed by dividing the simulation box into square cells
of length 5da. As expected [26, 27], we observe a demixed
phase at low Pe (Fig. 4a-b), clustered phase at interme-
diate Pe (Fig. 4a,c) and motility-induced phase separa-
tion [31] at high Pe (Fig. 4a,d) (See Fig. S17 for represen-
tative snapshots of simulated data points and Video S6
for movies corresponding to Fig. 4b-d [30]). Qualita-
tively, increasing Γ shifts the demixed as well as MIPS
phase boundaries to higher Pe (Fig. 4a), suggesting that
aligning torques effectively reduce the persistence of ac-
tive motion. The effect of torque-induced interactions on
MIPS in purely active systems has been studied in pre-
vious numerical works [35–37]. Specifically, it has been
shown that while torques that lead to velocity alignment
promote MIPS [36, 37], torques resulting from elongated
shapes of active particles suppress MIPS by reducing the
duration of collisions [35]. Our findings are consistent
with those of [35], with the important distinction that
in our experiments, suppression of MIPS happens due
to torques associated with collisions between active and
passive particles, rather than between two active parti-
cles.

Over a wide range of Pe and Γ, we generically ob-
serve the dynamic clustering phase, with a mean clus-
ter size that increases with Γ (Fig. S18) [30]. Using ex-
perimental measurements of speed (vb ≈ 40µm/s), cell
size (db ≈ 1.5µm), and tumbling time (≈ 0.5s), we esti-
mate Pe ≈ 14 and Γ ∼ vb/db ≈ 27/s for P. aurantiaca
bacteria (Fig. S7) [30]. For E. coli, our measurements
yield swim speed vb ≈ 16µm/s, cell size db ≈ 2.2µm,
and tumbling time (≈ 0.5s), resulting in Pe ≈ 4 and
Γ ∼ vb/db ≈ 7/s (Fig. S7) [30]. The motility parameters
for both species of bacteria thus lie within the numeri-
cally predicted dynamic clustering regime (Fig. 4a, stars).
Indeed, since most motile bacteria exhibit sizes ∼ 1µm,
speeds ∼ 10µm/s and tumbling times ∼ 1s, we expect
dynamic clustering to be a generic feature of bacterial
active matter.

To conclusively demonstrate that dynamic clustering
of passive colloids is an independent phenomenon distinct
from MIPS, we performed fluorescence video microscopy
on our P. aurantiaca bacteria. Visually, we observe that

0
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0.5

OMIPSODM

(a)

(b) (c) (d)

FIG. 4. Numerical phase diagram of mixtures of ac-
tive and passive particles (a) Phase diagram in the Péclet
number (Pe) - alignment rate (Γ) plane showing diffusivity-
based phase separation at low Pe (purple region), dynamic
clustering at intermediate Pe (white region), and MIPS at
high Pe (yellow region). The purple colormap (left) corre-
sponds to the demixed phase order parameter (ODM), and
yellow colormap (right) corresponds to the MIPS order pa-
rameter (OMIPS). The stripes in the purple region result from
sparse sampling of the parameter space and incomplete do-
main coarsening due to the finite duration of simulations. The
red arrow corresponds to Pe = 55, the critical Péclet number
for the onset of MIPS in 2D [31]. Blue stars correspond to
experimental data points for P. aurantiaca and E. coli bacte-
ria. (b-d) Representative simulation snapshots of the demixed
phase (b), clustered phase (c), and MIPS phase (d). Triangles
in (a) denote the values of Pe and Γ used for the simulations
in (b-d). The scale bar is 10µm.

bacteria are uniformly distributed throughout the field of
view and do not exhibit the pronounced density fluctu-
ations expected for MIPS (Video S2) [30]. The absence
of MIPS could stem from a number of factors such as
the low Péclet number, hydrodynamic effects [31],torque-
induced effects [35], as well as the presence of passive col-
loids [24]. To quantify bacterial density fluctuations, we
define a modified version of the MIPS order parameter
described earlier, OIMIPS, defined as OIMIPS = 〈σI/Iavg〉t,
where σI is the standard deviation of the local fluores-
cence intensity I, computed by dividing the field of view
into square cells of length 5db, and Iavg is the fluores-
cence intensity averaged over the full image. To avoid
artifacts due to non-uniform sample illumination, we re-
stricted our analysis to a 240 pixel × 240 pixel (38.4µm ×
38.4µm) square region including the bottom right corner
of the field of view. Our analysis yields a very low value
of OIMIPS = 0.07 ± 0.015, demonstrating that the active
phase of our system is not in the MIPS regime. Further-
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more, a bright field video of the same field of view taken
immediately after the fluorescence video shows clusters
of silica colloids, showing that the system is in fact in the
dynamic clustering regime (Video S2) [30].

IV. CONCLUSION AND OUTLOOK

In summary, we have shown that passive colloids ex-
hibit steady state dynamic clustering when immersed in
a bath of motile bacteria, and that clustering can be
tuned by changing the bacterial density (Fig. 1). Us-
ing Brownian dynamics simulations of active and passive
disks, we have shown that torques experienced by active
particles on collisions with passive ones are sufficient to
stabilize the observed micro phase separated state. The
quantitative agreement between experiments and simula-
tions (Fig. 3b) further strengthens this claim. Crucially,
dynamic clustering represents a distinct nonequilibrium
phase in the phenomenology of active-passive mixtures
that spans a broad range of Péclet numbers (Fig. 4a)
between the two well-studied limits associated with dif-
fusivity based demixing and motility induced phase sep-
aration. Our work provides the first experimental obser-
vation as well as numerical characterization of this phase.
Our study further reveals that in addition to the Péclet
number, torque, as quantified by the the alignment rate
Γ, serves as an important parameter for characterizing
active systems.

The physical picture underlying dynamic clustering
can be understood by approaching from the low Péclet
number regime, where demixing is driven by diffusiv-
ity differences [26, 27]. In this regime, particles with
high diffusivity are unable to break clusters of particles
with low diffusivity due to rapid stochastic reorienta-
tion of their velocity vectors, which results in complete
phase separation. Persistent active motion at interme-
diate Péclet numbers is sufficient to break these clusters
rapidly enough for the system to be completely disor-
dered (Fig. 2b). The addition of torque leads to a faster
reorientation of the active particles, which reduces the
propensity of active motion to break clusters, thereby
resulting in micro phase separation, or steady state dy-
namic clustering (Fig. 2c). While bonds between passive

particles can always be formed in mixtures of active and
passive particles due to collisions, whether the system
undergoes complete phase separation, micro phase sep-
aration, or remains completely disordered, depends on
the timescales over which those bonds persist. Dynamic
clustering therefore results from a balance between per-
sistent active motion, which leads to breaking of clus-
ters, and torque, which leads to stabilization of clusters
(Video S5).

At the two body level, the stabilizing effect of torques
can be interpreted as an effective attraction between pas-
sive particles, as evidenced by the enhancement of bond-
ing times relative to the expectation based on diffusion
alone (Fig. 3b). However, in the presence of pairwise
attractions alone, the system would undergo complete
phase separation, instead of micro phase separation. This
suggests that many body interactions that destabilize
large clusters must also be present. It would be interest-
ing to investigate the nature of these effective many body
interactions in future works. Nonetheless, the presence
of effective attractions suggests a possible route to direct
and manipulate the self-assembly of building blocks by
simultaneously tuning inter-particle interactions as well
as spatiotemporal correlations in the active bath. Fur-
thermore, using passive particles that break fore-aft [38]
or chiral [39] symmetry, it should be possible to self-
assemble ordered structures with intrinsic translational
or rotational dynamics, which cannot exist in equilib-
rium.

ACKNOWLEDGMENTS

S.G. was supported by a Human Frontier Science Pro-
gram (HFSP) cross-disciplinary postdoctoral fellowship
though Grant No. LT000470/2016-C. S.G. and A.S. ac-
knowledge the Gordon and Betty Moore Foundation for
support as Physics of Living Systems Fellows through
Grant No. GBMF4513. This research was supported by
the Sloan Foundation Grant (G-2021-16758) to N.F. and
J.G., and in part by the National Science Foundation
under Grant No. NSF PHY-1748958 (to N.F.) .
‡S.G and J.L contributed equally to this work.

[1] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B.
Liverpool, J. Prost, M. Rao, and R. A. Simha, Reviews
of Modern Physics 85, 1143 (2013).

[2] M. J. Bowick, N. Fakhri, M. C. Marchetti, and S. Ra-
maswamy, arXiv preprint arXiv:2107.00724 (2021).

[3] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot,
and D. Bartolo, Nature 503, 95 (2013).

[4] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and
P. M. Chaikin, Science 339, 936 (2013).

[5] T. H. Tan, A. Mietke, H. Higinbotham, J. Li, Y. Chen,
P. J. Foster, S. Gokhale, J. Dunkel, and N. Fakhri, arXiv

preprint arXiv:2105.07507 (2021).
[6] V. Narayan, S. Ramaswamy, and N. Menon, Science 317,

105 (2007).
[7] T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann,

and Z. Dogic, Nature 491, 431 (2012).
[8] G. Duclos, R. Adkins, D. Banerjee, M. S. Peterson,

M. Varghese, I. Kolvin, A. Baskaran, R. A. Pelcovits,
T. R. Powers, A. Baskaran, et al., Science 367, 1120
(2020).

[9] K. Copenhagen, R. Alert, N. S. Wingreen, and J. W.
Shaevitz, Nature Physics 17, 211 (2021).



8

[10] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher,
R. E. Goldstein, H. Löwen, and J. M. Yeomans, Pro-
ceedings of the national academy of sciences 109, 14308
(2012).

[11] E. S. Bililign, F. Balboa Usabiaga, Y. A. Ganan, A. Pon-
cet, V. Soni, S. Magkiriadou, M. J. Shelley, D. Bartolo,
and W. Irvine, Nature Physics , 1 (2021).

[12] J. Zhang, R. Alert, J. Yan, N. S. Wingreen, and
S. Granick, Nature Physics , 1 (2021).

[13] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,
G. Volpe, and G. Volpe, Reviews of Modern Physics 88,
045006 (2016).

[14] X.-L. Wu and A. Libchaber, Physical review letters 84,
3017 (2000).

[15] A. E. Patteson, A. Gopinath, P. K. Purohit, and P. E.
Arratia, Soft matter 12, 2365 (2016).

[16] Y. Peng, L. Lai, Y.-S. Tai, K. Zhang, X. Xu, and
X. Cheng, Physical review letters 116, 068303 (2016).

[17] N. Koumakis, A. Lepore, C. Maggi, and R. Di Leonardo,
Nature communications 4, 1 (2013).

[18] L. Vaccari, M. Molaei, R. L. Leheny, and K. J. Stebe,
Soft Matter 14, 5643 (2018).

[19] L. Angelani, C. Maggi, M. L. Bernardini, A. Rizzo, and
R. Di Leonardo, Physical review letters 107, 138302
(2011).

[20] P. Liu, S. Ye, F. Ye, K. Chen, and M. Yang, Physical
review letters 124, 158001 (2020).

[21] F. Kümmel, P. Shabestari, C. Lozano, G. Volpe, and
C. Bechinger, Soft matter 11, 6187 (2015).

[22] S. Ramananarivo, E. Ducrot, and J. Palacci, Nature com-
munications 10, 1 (2019).

[23] S. R. McCandlish, A. Baskaran, and M. F. Hagan, Soft
Matter 8, 2527 (2012).

[24] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and
M. E. Cates, Physical review letters 114, 018301 (2015).

[25] P. Dolai, A. Simha, and S. Mishra, Soft Matter 14, 6137
(2018).

[26] A. Y. Grosberg and J.-F. Joanny, Physical Review E 92,
032118 (2015).

[27] S. N. Weber, C. A. Weber, and E. Frey, Physical review
letters 116, 058301 (2016).

[28] A. Kuijk, A. Van Blaaderen, and A. Imhof, Journal of
the American Chemical Society 133, 2346 (2011).

[29] J. C. Crocker and D. G. Grier, Journal of colloid and
interface science 179, 298 (1996).

[30] See Supplemental Material at [URL will be inserted by
publisher] for supporting data plots..

[31] M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter
Phys. 6, 219 (2015).

[32] O. Chepizhko, E. G. Altmann, and F. Peruani, Physical
review letters 110, 238101 (2013).

[33] A. Lagarde, N. Dagès, T. Nemoto, V. Démery, D. Bar-
tolo, and T. Gibaud, Soft Matter 16, 7503 (2020).

[34] D. Giacché, T. Ishikawa, and T. Yamaguchi, Physical
Review E 82, 056309 (2010).

[35] R. Van Damme, J. Rodenburg, R. Van Roij, and M. Dijk-
stra, The Journal of chemical physics 150, 164501 (2019).

[36] J. Barré, R. Chétrite, M. Muratori, and F. Peruani, Jour-
nal of Statistical Physics 158, 589 (2015).

[37] E. Sese-Sansa, I. Pagonabarraga, and D. Levis, EPL (Eu-
rophysics Letters) 124, 30004 (2018).

[38] Y. Baek, A. P. Solon, X. Xu, N. Nikola, and Y. Kafri,
Physical review letters 120, 058002 (2018).

[39] A. Sokolov, M. M. Apodaca, B. A. Grzybowski, and I. S.
Aranson, Proceedings of the National Academy of Sci-
ences 107, 969 (2010).


	Dynamic clustering of passive colloids in dense suspensions of motile bacteria
	Abstract
	Introduction
	Experimental setup and methods
	Bacterial strains and growth conditions
	Sample and chamber preparation for microscopy experiments

	Results and Discussion
	Motile bacteria drive steady state dynamic clustering of passive colloids
	Brownian dynamics simulations of active and passive disks with aligning torques recapitulate dynamic clustering
	Dynamic clustering results from torque-induced effective attractions between passive particles
	Dynamic clustering spans a wide range of parameters in the Alignment rate - Péclet number plane

	Conclusion and Outlook
	Acknowledgments
	References


