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Chirality is a design feature of a number of biomolecules (e.g., collagen). In these molecules,
cholesteric (chiral-nematic) behavior emerges from a combination of the tendency for the biopoly-
mers to align (nematic interactions) and for the alignment direction to change with position, rotating
around an axis normal to the alignment direction. This work presents self-consistent field theory
(SCFT) of chiral-nematic polymers, which takes into account polymer flexibility and the orienta-
tional degrees of freedom of polymer segments. Using the resulting SCFT, we construct a phase
diagram showing regions of stability for isotropic, nematic and cholesteric phases. Furthermore, we
find that nematic interactions can stabilize the cholesteric phase, pushing the isotropic-cholesteric
phase transition to lower cholesteric interaction strength, until the isotropic-nematic-cholesteric
triple point is reached.

I. INTRODUCTION

Many macromolecules of biological and technological
interest self-assemble into organized structures. In par-
ticular, anisotropic (rod-like) molecules can form liquid-
crystal phases, such as nematic, smectic and cholesteric
(chiral-nematic) phases, among others [1, 2]. Their
molecular ordering often dictates the optical [3–8] and
mechanical properties of the structures they form [9–
13]. Indeed, the ability of these molecules to form de-
sired structures is crucial for their integrity as struc-
tural elements in cells or as photonic materials. This
is most obvious for corneal collagen, which combines
both features: optical and mechanical [9–13]. Some
molecules tend to align and can form nematic struc-
tures; rodlike molecules without chirality are good exam-
ples [1, 2]. Some molecules have chirality; their mirror re-
flection has an opposite handedness. These molecules can
form cholesteric phases, since adjacent molecules tend
to align slightly in a non-parallel (skew) orientation (see
Fig. 1). Good examples are the structural proteins col-
lagen [9, 14–22] and chitin [23], and DNA [24].

The focus of this paper is on nematic and cholesteric
molecules, as illustrated in Fig. 1. Studying chiral
molecules is no simple task. First, each molecule stores
large degrees of freedom: conformational and orienta-
tional. Beyond some length scale known as the persis-
tence length, they tend to coil up, so as to explore a
large conformational space. Second, the simultaneous
presence of various distinct interactions poses a serious
challenge to our theoretical analysis: bending, nematic,
chiral interactions, ...

In the Oseen-Frank (OF) model [2, 25], a system of
rodlike molecules is represented by a vector field, n(r), of
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unit size (i.e., n ·n = 1). A free energy cost is assigned to
different types of deformations: splay, twist (chiral), and
bending. The degree of these deformations is controlled
through the coefficients of the corresponding free energy
terms. In OF model, the cholesteric free energy density
is given by

fOFchol =
1

2
K22

(
n · ∇ × n +

k2
K22

)2

. (1)

The parameter K22 gives the strength of cholesteric inter-
actions and k2 controls the pitch. This free energy term
is minimized by the following cholesteric configuration
n(z) = x̂ cos(kz) + ŷ sin(kz), when k = k2/K22, where x̂
and ŷ are unit vectors in the x- and y-directions [2, 25].
Here, 2π/k is the pitch, i.e., a height along the z axis,
over which the director n makes a complete turn.

The full OF free energy contains more terms that de-
scribe splay, bend, splay-bend, and saddle-splay deforma-
tions [1, 2]. For instance, the so-called blue phase, charac-
terized by double twist, is controlled by an energy term
describing saddle-splay deformations [2, 26, 27]. How-
ever, they are not directly relevant to the cholesteric be-
havior we focus on, as shown in Fig. 1. This work builds
on the OF model in Eq. 1.

Although the OF model has been highly successful
in predicting the particular configurations of aligned
molecules, it has limitations. One typically seeks for n
that minimizes the free energy in Eq. 1 or a more gen-
eral form of free energy [1, 2, 26, 27]. As a result, it
ignores the orientational degrees of freedom of individ-
ual molecules, which leads to imperfect molecular align-
ment, as well as the flexibility of their backbone. The
formation of isotropic phases by these molecules points
to the significance of the orientational degrees of free-
dom stored in them [1, 2]. In contrast, the conventional
Maier-Saupe (MS) or Onsager theory of nematic phases
replies on the orientational distribution of molecules (see
Eq. 5 for MS interactions) [1, 2]. The distribution tells us
about the degree of ordering. It is desirable to construct



2

a cholesteric interaction at the level comparable to that
of MS or Onsager theory. Furthermore, chain flexibility
turns out to be a relevant parameter, since it tends to
diminish orientational ordering [28].

In our previous work [29], we introduced self-consistent
field theory (SCFT) of chiral molecules, which takes
into account the orientational degrees of freedom and
chain flexibility of these molecules. Here, we extend
this approach by including explicitly MS nematic inter-
actions [1, 2, 30]. Using the resulting approach, we dis-
cuss the chiral-nematic phase behavior and construct a
phase diagram showing regions of stability for isotropic,
nematic, and cholesteric phases in the ν-γ plane, where
ν and γ are nematic and cholesteric interaction parame-
ters, respectively. The isotropic phase occupies the small
ν-γ range. The cholesteric phase becomes stabilized as
γ increases. Increasing ν does not always induce a tran-
sition to the nematic phase. Indeed, we find that MS
interactions can stabilize the cholesteric phase by reduc-
ing the free energy cost for orientational ordering, as is
more obvious for less stiff polymers including collagen.
As a result, the isotropic-cholesteric phase transition is
shifted to lower cholesteric interaction strength, as long
as ν is larger than the value of ν at which the isotropic-
nematic transition occurs.

The main advantage of SCFT is its extensibility to the
practically relevant case of cholesteric molecules, possi-
bly mixed with crowding molecules (e.g., proteoglycans),
near an interface [10–12]. Indeed, the desire to engineer
tissue constructs/substitutes (e.g., cornea and tendon)
has generated much interest in understanding how con-
finement or crowding controls the structure of collagen
assembly. Self-consistent field theory is well-suited to
the study of confined polymer mixtures (see Ref. [28] for
confined nematic molecules). Furthermore, it can be ex-
tended to capture the aforementioned other types of de-
formations as outlined in Ref. [29]. Inclusion of these
additional complexities will add to the predictive power
and relevance of SCFT.

II. THEORY

This work describes an incompressible melt (or solu-
tion of uniform concentration) of chiral nematic poly-
mers, modeled as worm-like chains with chiral-nematic
interactions. The melt, of volume V , contains nc chiral
polymer chains, each of which has a contour length L
and persistence length `p, as illustrated in Fig. 2. Each
polymer is composed of N segments of size a each; each
monomer occupies a volume ρ−10 = V/ncN . The posi-
tion along the chain is parameterized by s in the range
0 < s < 1 and the unit tangent vector to a chain is given
by

u ≡ 1

L

dr(s)

ds
, (2)

FIG. 1: Molecules that form cholesteric phases tend to be
chiral, such as the pentuple helix (resembling type 1 colla-
gen [10–12]) shown at the top. These may align parallel to
one another (left) or at an angle (right). If the molecules are
thought of as simple solids with the geometry shown, adjacent
helices could pack all in parallel (nematic, left) or if succes-
sive layers are rotated by an angle 2Θ (with Θ being the twist
angle, as defined at the top) then the sub-units of one helix
would fit into the grooves between subunits of the adjacent
helix. Interactions between real molecules are undoubtedly
more complicated, involving weak interactions, such as hy-
drogen bonding and van der Waals interactions, as well as
other complications. This simple picture is only meant to
provide an intuitive caricature of the formation of cholesteric
phases.

where r(s) denotes the spatial position of the segment
at location s. The reduced concentration, ψ(r,u) ≡
ρ(r,u)/ρ0, is the local concentration of segments with
orientation u; ψ(r,u) can be thought of as a probability
density of segment orientations.

We model interactions between segments using a com-
bination of the Maier-Saupe model [1, 2, 30] and a
cholesteric potential that we described in a previous pa-
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FIG. 2: Collagen-like chains (in a nematic phase) (left) and a field representation (right). The polymers are modeled as worm-
like chains with persistent length `p and contour length L, interacting with each other through chiral-nematic interactions. The
field representation focuses on one chain and replaces the influence of others by a field w(r,u) it is subject to. In self-consistent
field theory (SCFT), w(r,u) and the spatial distribution of “particles” (e.g., chain segments), denoted as ψ(r,u), are determined
self-consistently. We adjust w(r,u) and ψ(r,u) iteratively until they are “correctly” related. “Reprinted with modifications
from Ref. [28], R. K. W. Spencer et al, J. Chem. Phys. 152, 204907 (2020), with the permission of AIP Publishing.”

FIG. 3: Distributions, ψ(r,u), are shown for the cholesteric phase (single-peak) and the nematic phase (double-peak), calculated
at γ = 4.5133 and ν = 132.528. The horizontal plot on the left shows the distribution in φ-θ space whereas the plot on the
right shows a slice through θ = π/2. The illustration in the middle is to define the angles φ and θ. The rod on top has φ = π/2
and θ = π/2. This orientation represents the peak location in the φ-θ space in the distribution on the left. The distribution is
more strongly peaked for the cholesteric phase.

per [29]. The effective Hamiltonian of the melt is given
as a sum of several terms:

U = UB + U0 + UMS + UC. (3)

Here, UB is a sum of bending energies for the nc WLCs,
each identified by an index α (see Ref. 28 and those
therein)

UB

kBT
=

`p
2L

nc∑
α=1

∫ 1

0

ds

∣∣∣∣duαds
∣∣∣∣2. (4)

The excluded volume interaction, U0, is simply a con-
stant for a uniform density and thus can be ignored. The
Maier-Saupe interaction is given by [1, 2, 30]

UMS

kBT
= −νNρ0

2

∫
drdudu′ψ(r,u)P2(u · u′)ψ(r,u′),

(5)

which is characterized by the strength ν and P2(x) =
(3x2 − 1)/2 is the Legendre polynomial of degree two.
Finally, the cholesteric interaction proposed in Ref. 29

UC

kBT
=
γNρ0

2

∫
drdu [u · ∇ × 〈u′〉(r) + κ]

2
ψ(r,u), (6)

depends on the average local alignment vector, 〈u′〉(r) ≡∫
du′ψ(r,u′), the strength of the interaction, γ, and the

characteristic cholesteric pitch, 2π/k∗. In Eq. 5 and
Eq. 6, νN and γN are the strength per chain segment and
can be expressed as νN = ν/N and γN = γ/N , where ν
and γ are the corresponding strength per chain. Below,
we use ν and γ.

The free energy (density) in the OF model in Eq. 1 is a
special case of Eq. 6. If we assume ψ(u, r) = δ(u−n(r))
and set k2/K22 = κ, UC in Eq. 6 per volume reduces to
fOFchol in Eq. 1. As a result, 2π/k∗ represents correctly
the helical pitch only in the limit γ →∞, i.e., when the
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entropy of the system is suppressed. Indeed, there is a
subtle difference between Eq. (1) and Eq. (6): |n| = 1 in
Eq. (1), whereas | 〈u〉 | ≤ 1 in Eq. (6). To see possible
consequences of this difference, let us pretend that we
lift the constraint |n| = 1 and treat it as representing

〈u〉. If we introduce A ≡
√
〈u · u〉, we can express a

segment orientation field as n = A (x̂ cos kz + ŷ sin kz).
This essentially describes the WLC system by only its
local average orientation and degree of orientation, A.
The energy in Eq. (6) is minimized when A2k∗ = κ. The
combination A2k in Eq. (6) plays the same role as k in
Eq. (1). As a result, the helical pitch is given by the
combination p = 2π/k∗A2L [29].

In the next steps, we carry out self-consistent field the-
ory (SCFT) calculations in the usual way [28, 31] (see
Fig. 2 for the essence of SCFT). Given a field, w(r,u),
which represents the interactions between segments, we
can calculate the propagator, q(r,u, s), of a polymer sub-
ject to this field. The propagator is the partition function
for a portion of a WLC up to a point on the chain, s,
which is fixed at spatial position r, and has orientation
u. The propagator for a WLC obeys

∂q

∂s
=

[
L

2ξ
∇2
u − Lu · ∇ − w(r,u)

]
q(r,u, s) (7)

which is solved with uniform initial conditions, q(r,u, s =
0) = 1. The back propagator, q†(r,u, s), is the partition
function for the rest of the chain and is solved similarly,
but starting from the other end of the molecule, thus
replacing s with 1− s. Segment concentrations are then
given by

ψ(r,u) =
V

Q

∫ 1

0

dsq(r,u, s)q†(r,u, s) (8)

where

Q =

∫
drduq(r,u, 1) (9)

is the partition function for a WLC subject to the field
w(r,u).

What is presented above describes how we find the
statistics of polymers subject to the field, w(r,u). We
now consider how to calculate w(r,u). The field repre-
sents the interactions of a polymer with other polymers
and thus reflects the energies described in Eqs. (5) and
(6). The field equation found by differentiating the in-
ternal energy is given by

w(r,u) = −
∫
du′[νP2(u · u′)]ψ(r,u′)

+γ

∫
du′(u · ∇ × 〈u′〉+ Lk∗)2ψ(r,u′), (10)

which represents the potential produced by polymers
with a configuration given by ψ(r,u′). The first term
corresponds to the Maier-Saupe interactions, while the
second corresponds to the cholesteric interactions.

We now have a way of finding the configuration,
ψ(r,u′), given the potential, w(r,u), and a way of find-
ing the potential given the configuration. Applying these
two conditions simultaneously gives us a self-consistent
solution, corresponding to the single most-likely config-
uration. This is the essence of self-consistent field the-
ory (SCFT). We solve for the self-consistent solution by
starting with an initial guess for the field and adjusting
it iteratively, using Anderson mixing [32, 33].

SCFT calculations are carried out by starting from
an initial guess for w(r,u), followed by calculating the
ψ(r, r) as above and adjusting the w(r,u) to satisfy Eq.
(10). A mean-square error between the left- and right-
hand sides of Eq. (10) of 10−4 is sufficient for our calcu-
lations. We can then write the free energy per unit chain
as

F

nckBT
= − lnQ− 1

2V

∫
druw(r,u)ψ(r,u). (11)

The equilibrium behavior of chiral nematic poly-
mers was evaluated by imposing a twist angle for the
cholesteric phase (and a twist angle of 0 for the isotropic
and nematic phases), as described in Ref. 29. The equi-
librium cholesteric pitch was calculated by minimizing
the free energy with respect to the twist angle, followed
by comparing the free energies of the other phases. SCFT
calculations were conducted with a spatial resolution of
∆ = 0.01L and an angular resolution of 20 points in the
θ direction and 32 points in ψ. Equation (7) is solved
with 5× 104 steps in s, using an Euler step.

0.3

0.2

0.1

0.0

(F
C
−
F N

)/
nk

BT

2.01.51.00.5

kL

FIG. 4: Free energy, per chain, of the cholesteric phase rel-
ative to the isotropic phase, as it varies with k, the magni-
tude of the helical wave vector. The curve was calculated at
γ = 4.5133 and ν = 132.528.

III. RESULTS

In this work, we consider the behavior of nc polymer
chains contained in a volume V . Each chain consists of
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FIG. 5: (Left) Optimal twist wave vector, k∗, and rescaled k∗A2 (along with the rescaling factor A), obtained with ν = 132.528,
as a function of cholesteric interaction strength, γ. The rescaled wave vector k∗A2 tends to the energy minimizing value of
k∗A2 = 1/L as γ → ∞. We did not extend to higher γ as calculations become unstable. (Right) Helical pitch, p = 2π/k∗A2L,
and A2 at ν = 132.528 as a function of γ. The helical pitch approaches the expected (energy-minimizing) value 2π, as γ
increases.
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FIG. 6: (Left) Optimal twist wave vector k∗, rescaled wave vector k∗A2, and A, obtained with γ = 4.5133, as a function of
nematic interaction strength, ν. The rescaled k∗A2 increases and tends to 1/L as ν increases. We did not extend to higher ν
as calculations become unstable. (Right) Helical pitch, p = 2π/k∗A2L, and A2 at γ = 4.5133 as a function of ν. The pitch p
approaches 2π, as ν → ∞.

N monomers and the monomer density is then given by
ρ0 = ncN/V . The chains interact with each other via
the Maier-Saupe (MS) and cholesteric (C) interactions
described in Eq. 5 and Eq. 6, respectively, in the previ-
ous section. Throughout this work, we fix κ = 1 for sim-
plicity. Changing κ has quantitative but no qualitative
effects on the results. Also, we typically use L/`p = 20
as for collagen [10, 28, 34], unless otherwise stated.

We start by considering the distributions of orienta-
tions of polymers in the phases of interest: cholesteric,
nematic, and isotropic. In the isotropic phase, there is no
directional preference for monomers or polymers. Thus
the distribution is uniform: ψ(r,u) = 1/4π. For the
cholesteric and nematic phases, Fig. 3 illustrates typical
distributions obtained with γ = 4.5133 and ν = 132.528.
Note that with these parameter choices the isotropic, ne-
matic, and cholesteric phases have the same free energy

(see Fig. 8). The monomer orientation distribution in
the nematic phase is peaked along ±n, the nematic di-
rector. This reflects the fact that in the nematic phase,
a parallel arrangement is equivalent to an anti-parallel
arrangement. Polymers may be reversed (reflected) with
no change to the relevant physics. Mathematically, we
see this as the quadratic dependence of the interaction
energy on the dot product u · u′ in Eq. 5.

In the cholesteric phase, there is a single orientation
peak, as shown in Fig. 3. This arises from the na-
ture of cholesteric interactions that depend on the chi-
rality of the molecules. Traveling one direction along
the molecules (e.g., increasing s) is different from trav-
eling the other way (decreasing s). Monomers point-
ing along the −u direction are reflections of monomers
pointing in the u direction. In chiral molecules, “an-
tiparallel” monomers would therefore have the opposite
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FIG. 7: (Left) Free energy, per chain, of the cholesteric phase relative to the nematic phase, as it varies with cholesteric
interaction strength, γ. Free energies are calculated at the optimal twist angle, with the same ν = 132.528 as in Fig. 5. (Right)
Free energy, per chain, of the cholesteric phase relative to the nematic phase, as it varies with nematic interaction strength, ν.
Free energies are calculated at the optimal twist angle, with the same γ = 4.5133 as in Fig. 6.

chirality. Mathematically, this enters in the linear term
2k∗u ·∇×〈u′〉(r) in Eq. (6) and leads to a preference for
a particular segment orientation and a particular twist
direction, i.e., nematic planes rotating clockwise with in-
creasing z in Fig. 1, as opposed to anticlockwise, as would
occur for molecules with the opposite chirality.

The next step is to determine the optimal pitch for
the cholesteric phase, by evaluating the free energy as a
function of k, the magnitude of the helical or twist wave
vector. Fig. 4 shows an example calculation obtained
with the choices: γ = 4.5133 and ν = 132.528, as in
Fig. 3; in this work, γ is given in units of L2 but ν is
dimensionless. The free energy has a clear minimum,
indicating a preference for a particular (optimal) value
of k. The cholesteric energy UC in Eq. 6 is minimized
when k = k∗ = 1/L.

We have three adjustable parameters in this model:
the strengths of nematic and cholesteric interactions, de-
noted as ν and γ respectively, and the preferred pitch of
an “ideal” cholesteric phase, 2π/κ (with κ set to 1). We
explore the effect of changing the relative strengths of
cholesteric and nematic interactions, while fixing κ = 1.

The graph on the left in Fig. 5 shows how the opti-
mal helical wave vector k∗, obtained with ν = 132.528,
changes as we vary the strength of cholesteric interac-
tions γ. As noted earlier and discussed in Ref. 29, the
helical pitch is no longer equal to 2π/k∗L when |u| < 1,
as is the case for γ <∞. It is larger than 2π/k∗L, since
entropy tends to diminish the helical organization, thus
stretching the pitch. Also shown is the rescaled k∗L,
i.e., k∗A2L, as well as A (right axis). As γ increases,
k∗A2L increases gradually and approaches 1, at which
the cholesteric energy in Eq. 6 is minimized.

The graph on the right in Fig. 5 summarizes our results
for the helical pitch p = 2π/k∗A2L along with the calcu-
lated values of A2. The helical pitch decreases monoton-
ically and tends to 2π as γ increases. Only in the limit

γ → ∞ will the pitch reduce to the one, at which the
cholesteric energy in Eq. 6 is minimized: p = 2π,

We are also interested in k∗ as we vary the nematic
interaction strength, ν. The graph on the left in Fig. 6
shows k∗ as a function of ν for γ = 4.5133. Once again, at
large interaction strength, k∗ → 1/L, for the same reason
as in Fig. 4: stronger interaction strength leads to a more
peaked distribution, ψ(r,u), suppressing entropic effects;
for larger ν, the polymers are better aligned and there
will be less entropy to lose when forming a cholesteric
structure. Also shown in Fig. 6 is k∗A2 and A, as a func-
tion of ν. In contrast to k∗L, k∗A2L increases gradually
and approaches 1, i.e., the energy minimizing value, sim-
ilarly to what is shown in Fig. 5.

The graph on the right in Fig. 6 shows the helical pitch
p = 2π/k∗A2L as a function of ν (along with A2). The
pitch decreases monotonically with ν and approaches the
expected limiting value 2π as ν → ∞. This observation
is paralleled by what the right graph in Fig. 5 suggests.

In order to examine the relative stability of the
cholesteric and nematic phases, we consider the differ-
ence in free energy between these phases as a function of
γ. A sample calculation is illustrated in the graph on the
left in Fig. 7 obtained with ν = 132.528 as in Fig. 5. At
higher cholesteric interaction strengths, the cholesteric
becomes more stable. This signals a phase transition to
the cholesteric phase.

The relative stability of cholesteric and nematic phases
also changes when the nematic interaction strength ν is
varied while γ is held fixed at γ = 4.5133. This is illus-
trated in the graph on the right in Fig. 7. Strangely, in-
creasing the nematic interaction strength appears to sta-
bilize the cholesteric phase, not the nematic phase. First,
note that this is not a general feature of a cholesteric
system described by the sum: UB + UMS + UC (see
Sec. II). For smaller γ (< 4.5133), increasing ν in-
deed stabilizes the nematic phase, as evidenced below.
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FIG. 8: Phase diagram, depicting the boundaries between the cholesteric, isotropic and nematic phases in the ν-γ space. The
diagrams are shown for (A) L/`p = 0.5 (rod-like), (B) 1, (C) 10, (D) 20 (collagen-like). Here ISO labels the region where the
isotropic phase is stable; similarly, CHOL and NEM stand for cholesteric and nematic, respectively. As L/`p increases, the
polymers become more flexible. As a result, the isotropic phase is stable in a wider space. The dot in each diagram is the triple
point, where the three phases coexist.

It proves useful to consider increasing ν for some large
γ: γ > 4.5133. In this case, the cholesterol energy com-
petes with the entropic cost for forming the cholesteric
phase. For sufficiently large γ, the competition is tilted
toward the cholesteric phase, irrespectively of the ne-
matic energy UMS. Otherwise, the system tends to bal-
ance UB + UMS + UC with entropy. As ν increases, the
entropy becomes less important and the polymers in the
system can align better. Whether this will induce a tran-
sition to nematic or cholesteric phases depends on the
balance between UMS and UC. The free energy result in
Fig. 6 indicates that once the polymers tend to align, the
system can benefit from cholesteric ordering more than
from nematic ordering, when γ >∼ 4.5133.

Combining these free energy calculations allows us to
construct a phase diagram. Here, the control parameter
is L/`p. The boundary between different phases is where
the free energy (per molecule) is the same for the two
phases. Recall that free energies are calculated at the
optimal twist angle. The boundary is set by the compe-
tition between energy and entropy, which is dictated by
the value of L/`p. Fig. 8 shows phase diagrams in the
ν-γ space, obtained with different choices of L/`p: (A)

L/`p = 0.5 (rod-like), (B) 1, (C) 10, (D) 20 (collagen-
like). On the diagram, ‘ISO,’ ‘CHOL,’ and ‘NEM’ refer
to the isotropic, cholesteric, and nematic phases, respec-
tively. The region labelled as ISO, for instance, is where
the isotropic phase is stable; other regions can be under-
stood similarly. Indeed, L/`p controls the width of each
region (e.g., ISO). The dot is the triple point where all
these phases coexist.

The shape and width of the boundaries between dif-
ferent phases are determined by the interplay between
entropy, UB (Eq. 4), UMS (Eq. 5), and UC (Eq. 6). Note
that the isotropic phase is stable in a wider parameter
space for larger L/`p, i.e., when the polymers are more
flexible, since the entropic penalty for forming ordered
states is higher, as reflected in the diagram.

First, the boundary between the isotropic and
cholesteric phases is convex upward. This means that the
cholesteric phase is more easily reached for larger ν, as is
most obvious in (D). This is well aligned with the free en-
ergy in Fig. 6, which indicates that the cholesteric phase
becomes more stable as ν increases, as long as γ >∼ 4.5133
(i.e., above the triple point). For this large range of γ,
the cholesteric system can benefit by lowering UC (Eq. 6);
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the role of UMS is to align the polymers from an isotopic
phase, reducing the entropic penalty for the formation of
a cholesteric phase. Indeed, this is best reflected in the
diagram in (D), which represents the largest L/`p value
used in Fig. 8. In this case, the boundary is nearly flat.
As a result, increasing ν will promote the formation of a
nematic phase, as long as γ <∼ 4.5133.

The boundary between the isotropic and nematics
phases is straight vertical. For the range of γ below the
triple point, the isotropic and nematic transition is con-
trolled by the value of ν, independently of γ, since the
cholesteric phase is unstable in this range of γ (see Fig. 5).
This explains the shape of this boundary.

In contrast, the boundary between the cholesteric and
nematics phase is convex downward. For small γ, in-
creasing ν promotes the formation of nematic phases, as
expected. For γ near the triple point, however, increas-
ing ν makes the nematic phase unstable to the cholesteric
phase, as is most obvious in (D). This is correlated with
the free energy curve in Fig. 6, which indicates that the
cholesteric phases is more stabilized for larger ν.

IV. DISCUSSION

We have presented a theoretical approach to a
cholesteric system consisting of semiflexible polymers
with chirality (e.g., collagen). The resulting approach
combines Meier-Saupe (MS) nematic interactions and
chiral interactions inspired by the Oseen-Frank (OF)
model into self-consistent field theory (SCFT). It thus
extends the scope of SCFT to cholesteric molecules. A
distinguishing feature of this approach is that the direc-
tor vector is allowed to vary in orientation and thus fol-
lows a probability distribution, which is set by SCFT
equations. As a result, it takes into account the en-
tropy of the system, associated with the orientational
degrees of freedom. It can benefit from a wide spec-
trum of theoretical and computational methods devel-
oped for SCFT [30, 31]. Indeed, it enables us to study
the transition from an isotropic to cholesteric phase, as
the strength of cholesteric interactions increases.

Using our approach, we have studied how MS ne-
matic and chiral interactions orchestrate in determining
the phase behavior of cholesteric molecules with varying
chain stiffness; we have constructed a phase diagram in
the ν-γ plane that shows regions of stability for isotropic,
nematic, and cholesteric phases. First, the boundaries
between different phases merge into a triple point, where

all these phases are equally stable. Also, the region,
where the isotropic phase stable, is wider for larger L/`p
(i.e., more flexible). As a result, the coexistence (triple)
point of isotropic, nematic, and cholesteric phases shifts
towards larger values of ν and γ, as L/`p increases.

For collagen-like molecules (i.e., L/`p = 20), the ne-
matic interactions reduce the entropic penalty for form-
ing ordered structures and can thus stabilize cholesteric
phases, unless γ is sufficiently small below the triple
point. This is correlated with our observation that
MS interactions narrow the distribution of polymer seg-
ment orientations (the data not shown). It makes the
cholesteric-phase stable region wider than expected from
a picture in which chain flexibility is ignored.

Organization of biomolecules into ordered structures
often occurs near an interface, presented by the experi-
mental or biological setting, or in the presence of crowd-
ing molecules (e.g., proteoglycans) [10–12]. In earlier
studies on nematic polymers [28], we showed that pla-
nar confinement tends to align the polymers in paral-
lel to the wall; above the onset of nematic transition,
this alignment propagates into the bulk phase. Similar
considerations with cholesteric molecules will clarify if
planar confinement promotes nematic or cholesteric or-
dering. Another determining factor is the presence of
crowding molecules, which controls the assembly of colla-
gen [10–12]. In contrast to what the conventional Oseen-
Frank promises, self-consistent-field theory (SCFT) can
be extended to take into account this complexity explic-
itly through energy terms and the associated fields. Also,
similarly to the way we formulated the cholesteric energy
in Eq. 1 in SCFT, one can include the energy associated
with such deformations as splay, splay-bend, and saddle-
splay in SCFT as outlined in Ref. [29]. Finally, our SCFT
model has an additional parameter, i.e., the density of
polymer segments ρ0, which can be tuned to experimen-
tal conditions. Our approach presented here constitutes
a first step toward constructing a more complete free en-
ergy approach to collesteric molecules in SCFT.
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