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Abstract

Attractor neural networks (ANNs) are one of the leading theoretical frameworks for the
formation and retrieval of memories in networks of biological neurons. In this framework,
a pattern imposed by external inputs to the network is said to be learned when this
pattern becomes a fixed point attractor of the network dynamics. The storage capacity
is the maximum number of patterns that can be learned by the network. In this paper,
we study the storage capacity of fully-connected and sparsely-connected networks with a
binarized Hebbian rule, for arbitrary coding levels. Our results show that a network with
discrete synapses has a similar storage capacity as the model with continuous synapses,
and that this capacity tends asymptotically towards the optimal capacity, in the space
of all possible binary connectivity matrices, in the sparse coding limit. We also derive
finite coding level corrections for the asymptotic solution in the sparse coding limit. The
result indicates the capacity of networks with Hebbian learning rules converges to the
optimal capacity extremely slowly when the coding level becomes small. Our results
also show that in networks with sparse binary connectivity matrices, the information
capacity per synapse is larger than in the fully connected case, and thus such networks
store information more efficiently.

1 Introduction

It is widely believed that memories are stored in the brain through synaptic modifica-
tions in an activity-dependent way. This idea has been implemented in attractor neural
network models, where the connectivity strength between neurons is determined by Heb-
bian synaptic plasticity rules [1,2]. In this framework, a pattern is said to be learned if it
becomes a fixed point attractor of the network dynamics. An extensively studied ques-
tion is, how many patterns can be stored in such networks? Classical studies of memory
modeling synapses as continuous variables in networks of binary neurons have shown that
such networks can store a number of uncorrelated random patterns p that scales linearly
that network size, pmax = αcN where αc is of order 1 in the large N limit [2–4]. However,
there is evidence suggesting that synapses in brain structures involved in memory, such
as the hippocampus and neocortex, are more digital than analog [5–8].

A number of studies have addressed the question of the storage capacity of networks
with discrete synapses. Krauth and Mézard showed that networks can potentially have a
large capacity when all synapses are required to be binary [9], using Gardner’s approach
[4], with an upper bound for capacity αcmax = 0.83 discrete synapses, instead of αcmax =
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2 for continuous synapses. Sompolinsky studied the storage capacity of a network with
a specific binarized Hebbian rule [10, 11], and showed its capacity is remarkably close
to the capacity of the Hopfield network [1], whose synapses are continuous variables
(αc = 0.10 instead of 0.14). However, these authors only studied the unbiased case,
in which the coding level f (i.e. fraction of active neurons in a pattern) is 0.5, while
neuronal activity in areas involved in memory is typically very sparse (e.g. [12])- for
instance, the coding level in the human medial temporal lobe has been estimated to
be around 1% [13]. The upper bound for capacity in networks with arbitrary coding
levels and discrete synapses was computed by Gutfreund and Stein [14]. The capacity
in networks with Hebbian plasticity and binary synapses has only been computed in the
unbiased case, and the capacity for arbitrary coding levels remains an open question. In
this paper, we generalized Sompolinsky′s calculation on the Hopfield model with binary
synapses when coding level f = 0.5, to the model with fully connected or sparsely
connected binary synaptic connectivity with arbitrary coding levels. Our results show
that the network with binarized Hebbian rule has a similar capacity as the model with
continuous synapses for any coding level, and that this capacity tends asymptotically
towards the optimal capacity obtained by Gutfreund and Stein [14], in the space of all
possible binary connectivity matrices. Our results also show that a network with sparse
binary connectivity can have a larger information capacity per synapse than a fully
connected network, and thus can allow a network to store information more efficiently.

2 Results

2.1 Storage capacity of fully-connected network with binary synapses

We consider a fully-connected neural network with N binary (0,1) neurons. The activity
of neuron i (i = 1, ..., N) is described by a binary variable, Vi = 0, 1. Each neuron is
connected to other neurons through the connectivity matrix W . The activity of neuron
i at time t is determined by the asynchronous update rule (see Appendix VI for details):

Vi (t+ 1) = Θ[hi (t)− θ], (1)

where

hi (t) =

N
∑

j 6=i

WijVj (t) , (2)

is the local field, defined as the total input of neuron i, where θ is an activation threshold
(constant independent of Vi), and Θ is the Heaviside function. We also consider in
Appendix a more general case of dynamics with stochastic updates characterized by a
temperature T , but we focus in the main text in the zero temperature, deterministic
limit.

The storage capacity of the network whose dynamics is defined by Eq.(1) and Eq.(2)
is determined by the connectivity matrix W . This connectivity matrix W depends on
p random uncorrelated patterns ~ηµ, µ = 1, ..., p, that are described by independent
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Bernoulli random variables:

P (ηµi ) = fδ(ηµi ,1)
+ (1− f) δ(ηµi ,0)

, (3)

where δ is the Kronecker delta function, and where f is the coding level (the fraction
of active neurons). The storage capacity α is defined as the maximal number of stored
patterns p divided by the network size N , α = p/N .

In this paper, we construct connectivity matrix W from the patterns ~ηµ using a
‘clipped’ learning rule:

Wij =

√
p

N
F





1

f(1− f)
√
p

p
∑

µ=1

(ηµi − f)
(

ηµj − f
)



 , (4)

where F is given by:

F (x) =

√

π

2
sign(x), (5)

where the prefactor
√

π/2 is used for convenience. Thus, Wij is only allowed to take
two distinct values. With the nonlinear function F (x) given by Eq. (5), Wij can be
positive or negative. In neurobiological networks, synaptic weights are sign-constrained,
and their sign depends on whether the presynaptic neuron is excitatory or inhibitory.
The network with the connectivity matrix given by Eqs. (4,5) leads to local fields of the
form

hi =
∑

j

WijVj =

√
2πp

N

∑

j

Θ(xij)Vj −
√

πp

2

1

N

∑

j

Vj, (6)

where Θ(x) is the Heaviside function, and xij is the argument of F in Eq. (4). Eq. (6)
shows that the network is equivalent to a purely excitatory network with binary weights
(the first term in the r.h.s of Eq. (6)) with an instantaneous linear inhibition (the second
term in the r.h.s of Eq. (6)).

Notice also that when F (x) = x, Eq.(4) yields the learning rule in the model of
Tsodyks and Feigel’man (TF) [2], where Wij is a continuous variable. Therefore, we can
interpret the learning rule of Eq.(4) as first learning patterns ~ηµ using the TF learning
rule, and then clipping the weight into discrete values at the end of the learning phase.
In the following, we call this model the Clipped Tsodyks-Feigel’man (CTF) model.

The nonlinearity of F (x) in Eq.(5) makes the storage capacity more difficult to
calculate than the one of a network with a linear learning rule. In 1986, Sompolinsky
introduced a method to compute the storage capacity of Hopfield networks with non-
linear learning rules [10, 11]. In particular he showed that in the large N limit, these
networks are equivalent to a linear learning rule with an added random Gaussian noise,

Wij =
J

Nf(1− f)

p
∑

µ

(ηµi − f)
(

ηµj − f
)

+ δij , (7)

where J is an embedding strength, and δij is a random symmetric Gaussian matrix.
Both J and the variance of the random Gaussian matrix ∆2

0 = N〈δ2ij〉/(J2α) can be
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calculated as a function of F (x) [11]. For F (x) given by Eq.(5), the embedding strength
J and ∆2

0 are given by (see details in Appendix):

J = 1, ∆2
0 =

π

2
− 1. (8)

2.1.1 Calculation of the storage capacity for arbitrary coding level f

To compute the storage capacity of a network with a learning rule given by Eq.(7), we
use standard methods and introduce the Hamiltonian

H =
1

2

∑

i 6=j

WijViVj + θ
∑

i

Vi, (9)

where Wij is given Eq.(7). The typical free energy of the system can be derived using
the replica method [3, 10, 15]. The calculation allows us to derive order parameters
characterizing the system (such as the overlap of network state with stored patterns),
and its storage capacity. Using a replica symmetric ansatz, the free energy of the system
can be characterized by five order parameters m,Q, q,R, r, where

m =
1

N

∑

i

η̃1i Vi,

Q =
1

N

∑

i

Vi,

q =
1

N

∑

i

V 2
i ,

(10)

and where R and r are conjugate variables of Q and q, and are defined by Eqs.(43)
in Appendix II. The order parameter m measures the retrieval quality of a pattern
stored in memory. Solutions with m̃ ≡ m

f(1−f) ∼ 1 represent ‘retrieval states’ in which
the network goes to a fixed point close to one of the stored patterns. Solutions with
m̃ = 0 corresponds to no retrieval. The order parameter Q and q represent the average
neural activity and square of neural activity of the network (see Appendix II for more
details). The mean-field equations of the system are obtained using a saddle point
method. The full equations are given by Eq.(48) in Appendix II for arbitrary coding
levels and temperature. In the zero-temperature limit, the equations simplify to the
following set of equations:
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m̃ = Φ(a1)− Φ(a2),

r̃ = fΦ(a1) + (1− f)Φ(a2),

a1 =
θ̃ − (1− f)m̃− Y

√

r̃α(1 + ∆2
0(1− C)2)

,

a2 =
θ̃ + fm̃− Y

√

r̃α(1 + ∆2
0(1− C)2)

,

Y =
αCf

2(1− C)
+

1

2
αCf∆2

0,

C =
f

2παr̃
(fe−a2

1
/2 + (1− f)e−a2

2
/2)

(11)

where m̃ = m/f(1− f), θ̃ = θ/f,∆2
0 = ∆2/α and Φ (x) =

∫∞
x Dz.

0 1 2 3

0

0.5

1

Figure 1: Overlap as a function of storage load α for the Tsodyks-Feigel’man model
(TF) and the clipped Tsodyks-Feigel’man model (CTF), for f = 0.02. The solid lines
represent the theoretical prediction and squares represent the simulation results with a
network of size N = 4000 (mean and standard deviation computed over five independent
realizations). Dashed lines mark the storage capacity for CTF and TF. For both models,
the neuronal activity threshold θ is chosen as the one that optimizes capacity. For the
parameters chosen here (f = 0.02), θ̃ ≡ θ/f ≈ 0.6.

Once f, α, θ are given, Eq.(11) can be solved numerically to obtain the order pa-
rameters, including the rescaled overlap with the retrieved pattern, m̃. Fig.1 shows m̃
as a function of α for both TF and CTF models for f = 0.02. The figure shows that
analytical results are in good agreement with simulations, using a network with 4, 000
neurons. The maximal capacity of the network αc is given by the largest value of α
for which there exist retrieval states (i.e. states with non-zero m̃), optimized over the
threshold θ. Fig.1 shows that the maximal capacity of the CTF model is lower than
the one of the TF model, as expected, but only by a factor of about 1.5. This maximal
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Figure 2: Comparison between storage capacity of Hebbian rules and the respective up-
per bounds. GUBC: Gardner Upper Bound for networks with Continuous weights [4].
GUBB: Gutfreund and Stein Upper Bound for networks with Binary weights [14]. See
more details about capacity upper bounds in Appendix IV. (A) Storage capacity of TF
and CTF models as a function of coding level f . When f → 0, both capacities increase
as 1/f ln(1/f). Cyan and magenta lines represent the storage capacity for a sparsely
connected network with continuous weights (STF) and a network with binary weights
(SCTF). The storage capacities of fully connected and sparsely connected networks con-
verge when f → 0. Notice that for fully-connected network, storage capacity is defined
as αc = p/N while for the sparsely-connected network, storage capacity is defined as
αs = p/cN , where c ≪ 1.(B) Comparison between storage capacity and upper bounds
as a function of coding level f . Even at f = 10−2, for both TF and CTF models,
the capacity is only around a third of the respective bounds, and thus the asymptotic
solution Eq.(12) is approached very slowly. (C) Comparison between the numerical so-
lution and asymptotic solutions. Solid lines are the numerical solutions of TF and CTF
models, the dotted lines with the same color are the corresponding asymptotic solutions
in the sparse coding limit (Eq.(13)), and dashed lines represent asymptotic solutions
with finite coding level corrections (Eq.(14,15)). (D) Stored information per synapse as
a function of coding level. When the coding level f goes to 0, the information stored
in synapses increases but with an extremely slow rate for both TF and CTF models.
Dotted lines represents stored information of asymptotic solutions in the sparse coding
limit (i.e., I(α = (2f |lnf |)−1) for continuous weights case and I(α = (πf |lnf |)−1) for
binary weights case).
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capacity αc is plotted as a function of f in Fig.2A.

2.1.2 Sparse coding limit

In the biologically relevant sparse coding limit f → 0, the mean-field Eq.(49) take a
rather simple form:

m̃ = Φ

(

θ̃ − m̃(1− f)
√

r̃α(1 + ∆2
0)

)

− Φ

(

θ̃ + m̃f
√

r̃α(1 + ∆2
0)

)

,

r̃ = fΦ

(

m̃f
√

r̃α(1 + ∆2
0)

)

+ (1− f)Φ

(

θ̃
√

r̃α(1 + ∆2
0)

)

,

(12)

where θ̃ = θ/f is a rescaled threshold, r̃ = r/f2, and Φ (x) =
∫∞
x Dz is the complemen-

tary cumulative distribution function of the standard Gaussian distribution.
With additional analysis (see details in Appendix III), we find that the maximum

capacity in this limit is obtained when θ̃ ∼ 1, and the maximum capacity is:

αc ≃
1

πf |log f | . (13)

which can be compared with the capacity of TF model obtained by [2], αc ≃ 1/(2f | log f |).
Thus, the two capacities differ by a factor π/2 ∼ 1.57. We next address the question
of how close this capacity is to an upper bound in the space of all possible binary con-
nectivity matrices. This upper bound was computed by Gutfreund and Stein [14] for
arbitrary coding levels. The f → 0 behavior could not be determined in a simple form
in that paper, however it was shown that the upper bound must be smaller or equal
than 1/(πf | log f |). Our asymptotic result, Eq. (13), indicates that the upper bound
for binary connectivity matrices is indeed asymptotically 1/(πf | log f |), and thus the
clipped TF model becomes asymptotically optimal in the sparse coding limit. This is
similar to what happens in networks with continuous synapses, for which it was shown
that the storage capacity of the TF model tends to the upper bound of storage capacity
obtained by Gardner [4], in the space of all continuous synaptic matrices in the sparse
coding limit. Thus, in spite of their remarkable simplicity, both TF and CTF models
provide close to optimal learning rules for models with continuous and discrete weights,
respectively. For convenience, we summarize the storage capacity of different models in
Table 1 [1, 2, 4, 9, 10].

2.1.3 Leading correction to sparse coding limit

We can see that the capacities of networks with Hebbian rules in the unbiased case
(f = 0.5) are much smaller than the corresponding upper bounds, while they converge to
the corresponding upper bounds in the sparse coding limit. However, solving numerically
mean-field Eqs.(49) for finite coding level f , we find that the capacities of TF and CTF
converge to the upper bounds extremely slowly (see Fig. 2B). As shown in Fig.2B, the
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capacity of Hebbian rule Upper Bound

f = 0.5, continuous Wij ∼ 0.14 2

f = 0.5, binary Wij ∼ 0.1 ∼ 0.83

f → 0, continuous Wij (2f | log f |)−1 (2f | log f |)−1

f → 0, binary Wij (πf | log f |)−1 (πf | log f |)−1

Table 1: Comparison between the storage capacity of Hebbian rules and upper bounds
computed using Gardner approach.

capacity of Hebbian rules is only around 1/3 compared to their corresponding upper
bounds when the coding level f = 10−2. This is mainly because the optimal threshold
θ̃ approaches 1 extremely slowly when f decreases (for instance, for f = 0.02, θ̃ ∼ 0.6).
With additional analysis (see Appendix III), we derived the leading correction to the
asymptotic solution at the finite coding level :

αc ≃
θ̃2opt

πf | log f | ,
(14)

where the optimal threshold θ̃opt is obtained by solving the equation

2θ̃2opt

∣

∣

∣
log(1− θ̃opt)

∣

∣

∣

(1 − θ̃opt)2
= |log f | . (15)

Notice that when coding level f → 0, θ̃opt → 1 and Eq.(14) recovers the asymptotic scal-
ing of Eq.(13). The asymptotic solutions Eq.(13) and Eq.(14) are compared in Fig.2C,
and we can see that Eq.(14) agrees with the numerical solutions very well when the
coding level f is small. This result indicates that, in the biological sparse coding limit
(i.e., coding level is small but finite), the capacities of models with Hebbian rules are still
notably smaller than the maximal capacities, in the space of all possible connectivity
matrices.

While the storage capacity in terms of numbers of patterns stored per synapse di-
verges in the sparse coding limit, the information stored per pattern decreases in that
limit since it is proportional to the binary entropy of f . As a result, the total information
stored per synapse remains finite in the sparse coding limit, both in the TF model [2]
and in the corresponding Gardner bound [4]. Fig.2D shows the information capacity in
bits per synapse for different models as a function of f ,

I = − α

ln 2
(f ln f + (1− f) ln(1− f)) (16)

We find that when the coding level f decreases, the information capacity of TF and
CTF increases quickly, while the corresponding upper bounds decrease slowly. When f
goes to 0, the information capacity I of TM and CTM further increase and eventually
converge to the optimal information capacity, but the convergence rate is extremely low.
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2.2 Storage capacity of sparsely-connected network with binary synapses

Cortical networks are characterized by low connection probabilities between neurons
(e.g. [16]). In the case we interpret the low synaptic efficacy state to be zero, the network
we have studied so far has a 50% connection probability, much higher than observed
connection probabilities in cortex, which are of order 10% for excitatory neurons at short
distances (< 100µm). This motivates the study of networks with sparser connectivity.
Here, we study two cases - one in which sparse connectivity is uncorrelated with learning,
and the other one where sparse connectivity is an outcome of learning with a high
synaptic threshold.

2.2.1 Sparse connectivity uncorrelated with learning

We first consider the case where learning occurs on top of a sparse random Erdos-Renyi
‘structural’ connectivity matrix,

Wij =
cij

√
p

Nc
F





1

f(1− f)
√
p

p
∑

µ=1

(ηµi − f)
(

ηµj − f
)



 , (17)

where F (x) is the same as the clipped function Eq.(5) for fully-connected case, and
cij = 1, 0 is a random binary matrix, with

P (cij) = cδ(cij ,1) + (1− c) δ(cij ,0), (18)

where 0 < c ≪ 1 is the connection probability. The storage capacity of learning rule
Eq.(17) can be calculated similarly as the model in [17] in the sparse connectivity limit
c ≪ 1, and the mean-field equations for finite coding level f are given as (see details in
Appendix V):

m̃ = Φ

(

θ̃ − m̃(1− f)
√

αsq(1 + ∆2
0)

)

− Φ

(

θ̃ + m̃f
√

αsq(1 + ∆2
0)

)

,

q = fΦ

(

θ̃ − m̃(1− f)
√

αsq(1 + ∆2
0)

)

+ (1− f)Φ

(

θ̃ + m̃f
√

αsq(1 +∆2
0)

)

,

(19)

where αs = p/cN and where other order parameters are defined in Eq.(10). The nu-
merical solution of Eq.(19) are compared with fully-connected case in Fig.2A. In the
sparse coding case, the mean-field Eq.(19) coincide with the mean-field Eq.(12), as ex-
pected [17]. We see that the capacity, in terms of number of patterns stored divided
by number of connections per neuron, is larger in the sparsely connected case than in
the fully connected case, as expected from previous results in networks with continuous
synapses [17,18].
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2.2.2 Sparse connectivity induced by learning

In this section, we consider the case where sparse connectivity is obtained by adding a
threshold to the clipped function. Here we generalize the clipped function Eq. (5) to:

FT (x) =
√
2π(Θ(x− T )−M), (20)

where M is given by

M =
1√
2π

∫ ∞

−∞
ΘT (x)e

−x2/2dx, (21)

where ΘT (x) = Θ(x − T ), and T is the threshold that can be used to increase the
sparseness of network connectivity, interpreting the low synaptic state as a 0 state.
With such a connectivity matrix, the connection probability R1 is given by:

R1 =
1

2

(

1− erf(
T√
2
)

)

(22)

In this case, the embedding strength J and additional noise introduced by clipped
function Eq.(20) ∆2

0 = N〈δ2ij〉/J2α are

J = e−T 2

,∆2
0 =

π

2
eT

2

(

1− erf

(

T√
2

)2
)

− 1 (23)

Notice that the noise strength ∆2
0 = N〈δ2ij〉/J2α is an increasing function of T . The

storage capacity of the learning rule Eq.(4,20) is determined by mean-field Eq.(12) for
a given connection probability R1 and coding level f . As shown in Fig.3A, the storage
capacity αc decreases when the threshold increases, and consequently the connection
probability R1 decreases. Unsurprisingly, the storage capacity decreases as the fraction
of non-zero synapses decreases. However, storing information with a smaller number of
synapses also carries benefits in terms of efficiency of information storage.

To quantify this efficency, we calculate the information stored in the network per
non-zero synapse, Ie:

Ie = − α

R1 ln 2
(f ln f + (1− f) ln(1− f)) (24)

The relation between Ie, R1 and f is shown in Fig.3B. We see that the information
capacity per synapse increases when the excitatory connectivity becomes more sparse.
This is mainly because we only keep connections for which the Hebbian term (i.e. the
argument of the clipping function F in Eq. (20) is large. In this way, the network can
encode information more efficiently when excitatory connections become sparse. Note
that maximizing storage capacity subject to a constraint of minimizing the fraction of
active synapses would lead to an optimal connection probability R∗

1, whose precise value
would depend on the cost of maintenance of an active synapse. One can define a cost
function C = α − λR1, where the second term represents the cost of maintenance of
active synapses. For a given λ, we can obtain R∗

1 that maximize C. As shown in Fig.4B,
the more costly synaptic maintenance is, the sparser the resulting connectivity. And the
optimal connection probability R∗

1 ∼ 0.1 when λ ∼ 10.
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Figure 3: Storage capacity and information capacity for a network with sparse excitatory
binary connections. (A) Storage capacity as a function of connection probability R1 and
coding level f . The storage capacity decreases when R1 decreases. (B) Information
capacity per active synapse, as a function of f and R1. The information per synapse Ie
increases when f and R1 decrease. This indicates that for learning rule Eqs.(4,20), both
sparse coding and sparse connectivity can improve the coding efficiency of the network.
This result also indicates that the network can have an optimal R1 to balance storage
capacity and coding efficiency.
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Figure 4: Connection probability that optimizes capacity subject to a synapse mainte-
nance cost λ. (A) Cost function C as a function of R1 and λ. (B) Optimal connection
probability R∗

1 for different λ. We can see that the more costly synaptic maintenance
is, the sparser the resulting connectivity. In both (A) and (B), coding level is set to be
f = 0.01.
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3 Discussion

We have calculated the storage capacity of an attractor neural network endowed with
binary synaptic weights at arbitrary coding levels. Our results show that a network with
a binarized Hebbian learning rule has a capacity that is close to the capacity of a network
with continuous weights at any coding level, since the decrease in capacity is only about
1.5 compared to continuous weights. Our results generalize the results obtained by
Sompolinsky for a coding level f = 0.5 [11], to arbitrary coding levels. Furthermore,
our analysis shows that the storage capacity of CTF tends in the sparse coding limit
to the upper bound of storage capacity, in the space of all possible binary connectivity
matrices. We also provide a finite coding level correction for this asymptotic solution,
and the results indicate the capacities of TF and CTF converge extremely slowly to
the optimal capacity when the coding level decreases, since the corrections are of order
1/
√

log(1/f). In particular, for f = 0.01 [13], the capacity of the clipped model is
only about a third of the upper bound. Our results also show that sparse connectivity
matrices can allow these networks to have a larger information capacity per synapse and
thus encode information more efficiently.

The binary connectivity matrices used in this paper were constructed using a clipped
function whose argument is an analog variable containing information about all stored
patterns. This assumes that the synapse can store continuous information during the
learning phase, before binarizing this information. An alternative scenario is that the
synapse is required to be discrete during all learning phases. Tsodyks, Amit and Fusi
studied models with discrete synapses under an online learning setting in which synapses
only have information about the currently shown pattern to make a transition between
states. They showed that this leads to a drastic decrease in storage capacity when the
coding level is f = 0.5 [19–21], since in that case the total number of stored patterns can
scale at most as

√
N , implying a vanishing amount of information stored per synapse

in the large N limit. Later work found that a storage capacity of order 1 bit/synapse
can be recovered in the sparse coding limit (f ∼ log(N)/N), even when synapses are
required to be discrete during all phases of learning [21,22].

Another scenario studied by multiple authors consists in synapses with binary weights
with multiple hidden states (describing e.g. different configurations of protein interac-
tion networks on the post-synaptic side) [23–26]. With appropriate structure of hidden
states, such synapses can greatly extend the time for which synaptic connectivity can
remain correlated with a pattern shown at a particular time. This scenario has been
primarily studied using a signal-to-noise analysis quantifying the degree of correlation
of the synaptic matrix with patterns presented to the network. To our knowledge, this
scenario has never been implemented in attractor network models, and thus the storage
capacity in these multi-state models is still an open question. More experimental data
will be necessary to understand which class of models best captures synaptic plasticity
in neurobiological synapses.

12



Appendix

I. Calculation of J and ∆0

To compute J and ∆0 in Eq. (8) we use the same strategy as Sompolinsky [10,11]. We
first calculate the average overlap between a given pattern and the local field when the
network is retrieving that pattern. Let us denote η̃µi = ηµi − f . For the learning rule
given by Eq. (7), we have:

〈η̃1i
∑

j

η̃1jWij〉 = Jf (1− f) (25)

Similarly, the average overlap for clipped learning rule Eq. (4) is:
〈

η̃1i
∑

j

η̃1jWij

〉

=

√
p

N

〈

∑

j

η̃1i η̃
1
jF

(
∑p

µ η̃
µ
i η̃

µ
j√

pf (1− f)

)〉

= f (1− f) 〈xF (x)〉
.

(26)

where

x =

∑p
µ η̃

µ
i η̃

µ
j√

pf (1− f)
. (27)

In the large p limit, x becomes a random variable drawn from a standard Gaussian distri-
bution, x ∼ N (0, 1) according to the Central Limit Theorem. Thus, from Eqs. (25,26),
we obtain the embedding strength J as:

J = 〈xF (x)〉, (28)

In order to obtain the variance δij of Eq. (7), we calculate the variance of synaptic
weights for both linear and clipped learning rules. In the linear case, we have:

N2〈W 2
ij〉 = N2 J2

f2 (1− f)2N2

〈(

p
∑

µ

η̃µi η̃
µ
j

)2〉

= pJ2

〈(

p
∑

µ

η̃µi η̃
µ
j

f (1− f)
√
p

)2〉

= NαJ2.

(29)

The < · > in Eq. (29) goes to 1 when p → ∞. For the clipped F (x), the variance of the
weights is:

N2〈W 2
ij〉 = N2 1

N2
p

〈

F 2

(

p
∑

µ

η̃µi η̃
µ
j

f (1− f)
√
p

)〉

= p〈F 2 (x)〉
= NαJ̃2,

(30)

13



where we denote 〈F 2 (x)〉 as J̃2. From Eqs. (29,30), we can see the additional noise
introduced by a nonlinear F (x) is:

〈δ2ij〉 =
α

N

(

J̃2 − J2
)

. (31)

Let ∆2
0 denote N〈δ2ij〉/J2α, we have:

∆2
0 =

(

J̃2

J2
− 1

)

. (32)

For F (x) given by Eq. (5), we obtain the embedding strength and noise parameter as

J = 1, ∆2
0 = π/2− 1. (33)

II. Storage capacity of the fully-connected CTF model

The Hamiltonian for the learning rule (7) is

H =
1

2

∑

i 6=j

WijViVj + θ
∑

i

Vi, (34)

whereWij is determined from Eqs.(7,33). We can calculate the corresponding free energy
by using the replica method (see e.g. [2, 3]). To compute the average logarithm of the
partition function over the distribution of all random binary patterns 〈logZ〉 directly,
we can use the relation:

〈logZ〉 = lim
n→0

〈Zn〉 − 1

n
. (35)

For the Hamiltonian in equation (34), we have:

〈〈Zn〉〉 ∝
〈〈

TrV a exp





βJ

f(1− f)2N

∑

µa

(
∑

i

η̃µi V
a
i )

2 +
β

2

∑

ija

δijV
a
i V

a
j − βθ

∑

ia

V a
i





〉〉

,

(36)

where a = 1, . . . , n is the replica index and the double brackets mean the average over
both V a

i and ηµi . We are interested in the overlaps between the network state and the
patterns stored in memory. We assume that the network has a macroscopic overlap with
a single stored pattern (µ = 1 the one currently being retrieved by the network) and
define the following order parameters:

ma ≡ 1

N

∑

i

η̃1i V
a
i ,

mµa ≡ 1√
N

∑

i

η̃µi V
a
i .

(37)
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The partition function can be rewritten in terms of these order parameters as

〈〈Zn〉〉 ∝
〈〈

TrV a

∫

(

∏

µa

dmµ
a

βN

2π

)

× exp
(

− βJN

2f(1− f)

∑

a

m2
a +

βJ

f(1− f)

∑

a

ma

∑

i

η̃1i V
a
i

− βJ

2f(1− f)

∑

µa

(mµ
a)

2 +
βJ√

Nf(1− f)

∑

µa

mµ
a

∑

i

η̃µi V
a
i

+
β

2

∑

ija

V a
i V

a
j δij − βθ

∑

ia

V a
i

)〉〉

.

(38)

The terms including ηµi and δij in equation (38) can be averaged,

〈

exp

(

βJ√
Nf(1− f)

∑

µa

mµ
a

∑

i

η̃µi V
a
i

)

〉

∝ exp





β2J2

2Nf(1− f)

∑

iµab

V a
i V

a
j m

µ
am

µ
b



 ,

(39)

〈

exp





β

2

∑

ija

V a
i V

a
j δij





〉

∝ exp

(

Nβ2J2∆2
∑

ab

(

1

N

∑

i

V a
i V

b
i

)(

1

N

∑

i

V a
i V

b
i

))

,

(40)

where ∆2 = N〈δ2ij〉/J2. We then introduce the order parameters:

Qa =
1

N

∑

i

V a
i ,

qab =
1

N

∑

i

V a
i V

b
i ,

(41)

and use the integral representation of δ function :

δ

(

NQa −
∑

i

V a
i

)

=

∫

dRa

2π
e−Ra(NQa−

∑
i V

a
i ),

δ

(

Nqab −
∑

i

V a
i V

b
i

)

=

∫

drab
2π

e−rab(Nqab−
∑

i V
a
i V b

i ).

(42)

Combining Eqs. (38,39,40,41,42), the partition function can be written as:

〈〈Zn〉〉 ∝
∫

(

∏

a

dQadRa

)





∏

a〈b
qabrab



 e−Nβg(β,m,Q,q,R,r), (43)
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where

g =
J

2f(1− f)

∑

a

m2
a + θ

∑

a

Qa −
1

β

∑

a

RaQa − βJ2∆2
∑

ab

q2ab −
1

β

∑

a〈b
rabqab

− 1

β
log TraV exp





βJ

f(1− f)

∑

a

η̃1maV
a −

∑

a

RaV
a −

∑

a〈b
rabV

aV b





− α

β
log

∫

(

∏

a

dma

)

exp



− βJ

2f(1− f)

∑

a

m2
a +

β2J2

2f(1− f)

∑

a6=b

mambqab



 .

(44)

The free energy per neuron is given as:

G/N = lim
n→0

1

n
min g (β,m,Q, q,R, r) . (45)

In the large N limit, min g (β,m,Q, q,R, r) is dominated by its value at saddle points.
Next we will give the saddle point equations using replica symmetric ansatz. We assume
that saddle-point values of the order parameters are not dependent on their replica index:

ma = m,

Qa = Q,Ra = R,

qab = q, rab = r (a 6= b) .

(46)

Now the free energy per neuron is simplified to:

G/N =
m2

2f(1− f)
+

α

2β
{log (1− βJ (Q− q))− βJq

1− βJ (Q− q)
}

− rq

2β
+

RQ

β
+ θQ− 1

4
βJ2∆2

(

q2 −Q2
)

− 1

β

∫

Dz log

(

1 + exp

(

βJ

f(1− f)
mη̃ +R− r

2
+

√
rz

))

.

(47)

The saddle point equations are obtained by setting the derivatives of G/N to 0:

m

f(1− f)
=

∫

Dz
〈〈

η̃K

(

β

(

Jmη̃

f(1− f)
+

1

β

(

R− αβ2r̃ + β2J2∆2q

2

)

+
√

αr̃ + J2∆2qz

))

〉〉

,

R− αβ2r̃ + β2J2∆2q

2
=

α

2

β(Q− q)J

1− βJ (Q− q)
− βθ +

1

2
β2 (Q− q) J2∆2,

r̃ =
J2q

(1− Jβ (Q− q))2
,

Q =

∫

Dz
〈〈

K

(

β

(

Jmη̃

f(1− f)
+

1

β

(

R− αβ2r̃ + β2q

2

)

+
√

αr̃ + J2∆2qz

))

〉〉

,

q =

∫

Dz
〈〈

K2

(

β

(

Jmη̃

f(1− f)
+

1

β

(

R− αβ2r̃ + β2q

2

)

+
√

αr̃ + J2∆2qz

))

〉〉

,

(48)
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where r̃ = 1
β2α

(

r − β2J2∆2q
)

, K (x) = (1 + exp (−x))−1, and Dz = dz
exp(−x2/2)√

2π
. In

the zero temperature limit β → ∞, these saddle points equations can be simplified to:

m̃ = Φ(a1)− Φ(a2),

r̃ = fΦ(a1) + (1− f)Φ(a2),

a1 =
θ̃ − (1− f)m̃− Y

√

r̃α(1 + ∆2
0(1− C)2)

,

a2 =
θ̃ + fm̃− Y

√

r̃α(1 + ∆2
0(1− C)2)

,

Y =
αCf

2(1− C)
+

1

2
αCf∆2

0,

C =
f

2παr̃
(fe−a2

1
/2 + (1− f)e−a2

2
/2)

(49)

where m̃ = m/f(1− f), θ̃ = θ/f,∆2
0 = ∆2/α and Φ (x) =

∫∞
x Dz.

III. Sparse coding limit

In the sparse coding limit f → 0, C goes to zero and Y goes to zero. Eqs. (49) become:

m̃ = Φ





θ̃ − m̃(1− f)
√

r̃α
(

1 + ∆2
0

)



− Φ





θ̃ + fm̃
√

r̃α
(

1 + ∆2
0

)



 ,

r̃ = fΦ





θ̃ − fm̃
√

r̃α
(

1 + ∆2
0

)



+Φ





θ̃
√

r̃α
(

1 + ∆2
0

)



 ,

(50)

In the small f limit, m̃ ∼ 1 requires:

Φ

(

θ̃ − m̃(1− f)
√

αfπ/2

)

∼ 1, Φ

(

θ̃ + m̃f
√

αfπ/2

)

≪ 1 (51)

Furthermore, α is maximized when r̃ is minimized, which requires the stronger condition

Φ

(

θ̃ + m̃f
√

αfπ/2

)

≪ f, (52)

which leads to r̃ ∼ f . Using lim
x→+∞

Φ (x) ≃ 1
x
√
2π

exp
(

−x2

2

)

, in the small f limit, Eq.(52)

gives:

√

αf

2θ̃2
exp

(

− θ̃2

πfα

)

≪ f. (53)
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Rewriting α = k/f log
(

f−1
)

, we find that Eq. (53) is satisfied provided k < θ2/π.

Thus, the maximum storage capacity α increase with θ̃2 as:

αc ≃
θ̃2

πf | log f | .
(54)

In the sparse coding limit, the optimal threshold is obtained at θ̃ = 1 (the maximum
value of θ̃), and thus

αc =
1

πf | log f | . (55)

This storage capacity coincide with the optimal capacity obtained by Gutfreund for the
Ising interaction case (see Appendix IV for details).

We next ask the question of how close the threshold can be to 1, when the coding
level f is small but finite. The threshold needs to be sufficiently far from one, so that
the argument of the function Φ in the first condition in Eq. (51) is large and negative.
We find that for thresholds that are close to 1, the maximal capacity is

α =
(1− θ̃)2

πf
∣

∣

∣
log(1− θ̃)

∣

∣

∣
)
. (56)

Eqs.(54,56) give the optimal threshold θopt (i.e., the optimal value of θ̃) as a solution to
the equation

2θ2opt |log(1− θopt)|
(1 − θopt)2

= |log f | , (57)

The maximum storage capacity is

αc ≃
θ2opt

πf | log f | .
(58)

where θopt is given as a function of f by Eq. (57). When f → 0, θopt → 1 and Eq.(58)
becomes the Gutfreund bound Eq.(55). However, this convergence is extremely slow, as
shown in Fig. 2.

IV. Bounds for capacity

Gardner Upper Bound for networks with Continuous weights (GUBC). This
bound was calculated by Gardner in 1987 for networks with continuous weights. The
upper bound is obtained when the volume of the space of solutions for the weights {Jij}
vanishes (see details in [4]). By solving the Eq.(37) and Eq.(38) in [4], one can obtain
the GUBC for arbitrary coding levels. This result is shown by the red curve in Fig.2.

In the sparse coding limit, the asymptotic solution is given in Eq.(40) in [4], where:

αcmax =
1

2f |lnf | . (59)
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Gutfreund and Stein Upper Bound for networks with Binary weights (GUBB).
This bound was calculated by Gutfreund and Stein in 1990 [14]. They extended Gard-
ner’s formalism to the case of networks with binary weights. Using a replica symmetric
ansatz, the solution space of binary weights vanishes when capacity reaches:

αcmax =
2

π
GUBC (60)

In the sparse coding limit, Eq.(59) and Eq.(60) give:

αcmax =
1

πf |lnf | . (61)

However, it can be shown that replica symmetry is broken, and Eq.(60) is an overesti-
mate. A better estimate of the upper bound for networks with binary weights is given
by zero entropy condition (see [14] for details), obtained by solving Eqs.(20-24) and
Eqs.(29-34) in [14]. This zero entropy line is shown by the blue curve in Fig.2.

By numerically solving Eqs.(20-24, 29-34) in [14] and Eqs.(37-38) in [4], one can see
that the zero entropy line is getting close to the Gardner line (Eq.(60)) when the coding
level decrease. This numerical result indicates that Eq.(61) is also a good estimate for
the zero entropy line in the sparse coding limit.

V. Storage capacity of the sparsely-connected CTF model

Using similar calculations as in Appendix I, one can obtain that the nonlinear learning
rule Eq.(17) can be transformed to a linear learning rule:

Wij =
cij

cNf(1− f)

p
∑

µ

(ηµi − f)
(

ηµj − f
)

+ δij , (62)

where the variance of δij =
α∆2

0

N = α
N (1 + π

2 ), and where the connection probability
c ≪ 1. In this case, the local field hi can be written as:

hi =
N
∑

i 6=j

WijVj

=
1

cf(1− f)N
η̃1i

N
∑

j

cij η̃
1
jVj

+
1

cf(1− f)N

∑

µ>1

N
∑

j

cij η̃
µ
i η̃

µ
j Vj

+

N
∑

j

δijVj ,

(63)
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where η̃1i denote the pattern that is currently being retrieved by the network. When
N and p are large, the second and third term in the r.h.s. of Eq. (63) Y1 and follow a
Gaussian distribution with zero mean. Introducing order parameters m̃ = m/f(1 − f)
and q defined in Eq.(19), Eq.(63) can be simplified to:

hi = η̃1i m̃+ Y, (64)

where the variance of Y is:

var(Y ) = αs(∆
2
0 + 1)q (65)

and αs = p/cN .

m̃ =
1

Nf(1− f)

N
∑

j

η̃1jΘ(η̃1j m̃+ Y − θ), (66)

q =
1

N

N
∑

j

Θ2(η̃1j m̃+ Y − θ). (67)

Averaging Eq.(66,67) over η and the Gaussian noise Y , the mean-field equations for
order parameters m̃ and q are

m̃ = Φ

(

θ̃ − m̃(1− f)
√

αsq(1 + ∆2
0)

)

− Φ

(

θ̃ + m̃f
√

αsq(1 + ∆2
0)

)

,

q = fΦ

(

θ̃ − m̃(1− f)
√

αsq(1 + ∆2
0)

)

+ (1− f)Φ

(

θ̃ + m̃f
√

αsq(1 +∆2
0)

)

,

(68)

Note that these equations coincide with the fully connected case in the sparse coding
limit, as in the case of continuous weights [2, 17].

VI. Numerical simulations

The simulations in Fig.1 used a network with 4,000 neurons and coding level f = 0.02.
The overlaps m̃ are averaged over five independent realizations. Simulations consist in
a learning phase in which the connectivity matrix Wij is built, and a retrieval phase in
which network dynamics run until it reaches a fixed point. For each input pattern µ, we
choose as initial conditions {Vi = ηµi }. Overlaps m are obtained by averaging over all
mµ.
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