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We identify the poles and zeros of the scattering matrix of a simple quantum graph by means of
systematic measurement and analysis of Wigner, transmission, and reflection complex time delays.
We examine the ring graph because it displays both shape and Feshbach resonances, the latter
of which arises from an embedded eigenstate on the real frequency axis. Our analysis provides a
unified understanding of the so-called shape, Feshbach, electromagnetically-induced transparency,
and Fano resonances, on the basis of the distribution of poles and zeros of the scattering matrix
in the complex frequency plane. It also provides a first-principles understanding of sharp resonant
scattering features, and associated large time delay, in a variety of practical devices, including
photonic microring resonators, microwave ring resonators, and mesoscopic ring-shaped conductor
devices. Our analysis is the first use of reflection time difference, as well as the first comprehensive
use of complex time delay, to analyze experimental scattering data.

I. INTRODUCTION9

We are concerned with the general scattering proper-10

ties of complex systems connected to the outside world11

through a finite number of ports or channels. The sys-12

tems of interest have a closed counterpart, described by13

a Hamiltonian H, that has a spectrum of modes. Exci-14

tations can be introduced to, or removed from, the in-15

teraction zone of the scattering system by means of the16

M ports or channels. The scattering matrix S relates a17

vector of incoming (complex) waves |ψin〉 on the chan-18

nels to the outgoing waves |ψout〉 on the same channels19

as |ψout〉 = S |ψin〉. The scattering matrix is a com-20

plex function of energy (or equivalently frequency) of the21

waves, and contains all the information about the scat-22

tering properties of the system [1–4].23

Lately, there has been renewed interest in the prop-24

erties of the scattering matrix in the complex frequency25

plane [5]. This landscape is decorated with the poles26

and zeros of the scattering matrix, most of which lie off27

of the real frequency axis. Identifying the locations of28

these features gives tremendous insight into the scatter-29

ing properties of the system, and the movement of these30

features in the complex plane as the system is perturbed31

is also of great interest. Knowledge of pole/zero informa-32

tion has practical application in the design of microwave33

circuits [6], microwave bandpass filters [7], (where unifor-34

mity of transmission time delay is critical [8]), transmis-35

sion through mesoscopic structures [9], and the creation36

of embedded eigenstates [5, 10, 11], among many other37

examples. Knowledge of the S-matrix singularities in the38

complex plane allows one to create coherent virtual ab-39

sorption through excitation of an off-the-real-axis zero40
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[12], or virtual gain through the excitation of an off-the-41

real-axis pole [13]. There is also interest in finding the42

non-trivial zeros of the Riemann zeta function by map-43

ping them onto the zeros of the scattering amplitude of a44

quantum scattering system [14]. Perturbing a given sys-45

tem and bringing a scattering zero to the real axis enables46

coherent perfect absorption of all excitations incident on47

the scattering system [15–17]. Engineering the collision48

of zeros and poles to create new types of scattering singu-49

larities is also of interest for applications such as sensing50

[5, 18–21].51

In unitary (flux conserving) scattering systems, time52

delay is a real quantity measuring the time an injected53

excitation resides in the interaction zone before escaping54

through the ports [22, 23]. This is a well-studied quantity55

in the chaotic wave scattering literature, and it’s statisti-56

cal properties have been extensively investigated [24–35].57

Recently, a complex generalization of time delay that ap-58

plies to sub-unitary scattering systems was introduced,59

and this quantity turns out to be much richer than its60

lossless counterpart [36–38]. It has been demonstrated61

that complex Wigner-Smith time delay is sensitive to the62

locations and statistics of the poles and zeros of the full63

scattering matrix. One of the goals of this paper is to ex-64

tend the use of complex Wigner-Smith time delay (τW ,65

the sum of all partial time delays) to the transmission66

(τT ), reflection (τ
(1)
R , τ

(2)
R , ...), and reflection time differ-67

ences (τ
(1)
R −τ

(2)
R , etc.)[39, 40] of arbitrary multiport scat-68

tering systems. (Note that τT and τR are complex, even69

for unitary scattering systems.) This in turn yields new70

information about the poles and zeros of the reflection71

and transmission sub-matrices of S. One additional nov-72

elty of our approach is the explicit inclusion of uniform73

attenuation in the description of the scattering system,74

a feature that is neglected in many other treatments of75

time delay, as well as treatments of scattering matrix76
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poles and zeros.77

Here our attention is fixed on a simple, but remark-78

ably important, scattering system, namely the quantum79

ring graph. In this context, a graph is a network of80

one-dimensional bonds (transmission lines) that meet at81

nodes. One can solve the Schrodinger equation for waves82

propagating on the bonds of metric graphs, and enforce83

boundary conditions at the nodes [41–43]. The result84

is a closed system in which complicated interference of85

waves propagating on the bonds and meeting at the nodes86

gives rise to a discrete set of eigenmodes. Connecting this87

graph to M ports (infinitely long leads) creates the scat-88

tering system of interest to us here [44–49]. The ring89

graph, consisting of just two bonds connecting the same90

two nodes, which in turn are connected to M = 2 ports91

(see Fig. 1(a)), is a ubiquitous and important scattering92

system. It appears in many guises in different fields, but93

there is no unified treatment of its scattering properties,94

particularly with regard to time delay, to our knowledge.95

Among other things, it forms the basis of non-reciprocal96

Aharonov-Bohm mesoscopic devices, as well as various97

types of superconducting quantum interference devices.98

The scattering properties of ring graphs have been stud-99

ied theoretically by a number of groups for their em-100

bedded eigenstates [50, 51], and for conditions of perfect101

transmission [52, 53].102

Ring graphs with circumference Σ that are on the103

order of the wavelength or longer, are utilized as res-104

onators in several areas of research and applications.105

Such resonators can display very narrow spectral fea-106

tures, which are accompanied by large time delays.107

Ring resonators very elegantly and simply illustrate sev-108

eral different types of resonances which are known by109

a variety of names, including: shape modes, Feshbach110

modes [51, 54, 55], Fano modes [56], electromagnetically-111

induced transparency (EIT) modes [57], topological res-112

onances [58–60], bound states in the continuum [10, 61–113

64], quasinormal modes [65, 66], etc. Here we use the114

shape/Feshbach terminology to discuss the modes, but115

our results apply to ring graphs in all contexts. To il-116

lustrate the ubiquity and importance of the ring graph,117

we next discuss some of the diverse manifestations and118

properties of this simple graph.119

Fano resonances have been studied by many authors120

in the context of quantum transport through graph-like121

structures [9, 67, 68]. The Fano resonance arises from122

the constructive and destructive interference of a narrow123

discrete resonance (typically a bound state of the closed124

system) with a broad spectral line or continuum excita-125

tion, thus creating two scattering channels [69, 70]. The126

interference of these two channels gives rise to the cele-127

brated Fano resonance profile [56, 67].128

EIT is a quantum phenomenon that arises from129

interference between transitions taking place between130

multiple states [57]. It has a classical analog that can be131

realized in a wide variety of coupled oscillator scenarios132

[71]. For example, an EIT/Fano resonance feature was133

proposed for a generic resonator coupled to an optical134

transmission line [72]. EIT phenomena have also been135

created through metamaterial realizations in which a136

strongly coupled (bright resonator) and weakly coupled137

(dark resonator) oscillator are brought into interference138

to completely cancel transmission, and at the same time139

create ‘slow light’ (enhanced transmission time delay),140

all at one wavelength [73–75].141
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FIG. 1. (a) Schematic diagram of a generic ring graph con-
nected to two infinite leads. The two bonds have length L1

and L2. (b) shows the picture of the experimental microwave
ring graph, where a coaxial cable and a coaxial microwave
phase shifter are used as the two bonds. (c) shows a schematic
of the experimental setup with the microwave network ana-
lyzer included. The two dashed red lines indicate the calibra-
tion plane for the 2× 2 S-matrix measurement.

In terms of applications, ring resonators have been143

employed in microwave circuit devices for many years144

[76, 77]. It was recognized that pairs of nearly degener-145

ate modes exist in this structure and their interference146

could be used to advantage [77, 78]. Microstrip ring res-147

onators are routinely created with intentional defects or148

stubs in one arm, or are coupled asymmetrically, to cre-149

ate interference of the nearly degenerate modes [77].150

EIT-like resonant features have been created in optical151

microring resonators coupled to transmission lines by152

a number of groups. A classical analog of EIT was153

demonstrated with two photonic ring resonators coupled154

to optical fibers [79]. A set of two coupled microspheres,155

acting as ring resonators, showed the classical analog of156

EIT for light, and demonstrated large transmission time157

delay [80]. An integrated optical waveguide realization158

of the ring graph, with one arm hosting a variable159

delay element, has been used to create EIT dips with160

associated large transmission delay [81]. Other work161

has used a pair of Silicon microring photonic resonators162

to create a non-reciprocal diode effect for light (1630163

nm) by exploiting a Fano resonance and nonlinearity [82].164

165

Mesoscopic ring graph structures made of metals166

and semiconductors have been studied extensively for167

evidence of electron interference in their transport168

properties [83–85]. Much of this work is focused on rings169
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immersed in a magnetic field and showing quantum170

interference properties arising from the Aharonov-Bohm171

(AB) effect [86, 87]. Aharonov-Bohm rings with a172

localized trapping site in one arm have been proposed173

to generate non-reciprocal transmission time delay [88],174

and asymmetric transport [89].175

176

Finally, superconducting quantum interference devices177

(SQUIDs) are based on a loop graph structure that sup-178

ports a complex superconducting order parameter. The179

closed loop structure creates a quantization condition for180

the magnetic fluxoid, and the addition of one or more181

Josephson junctions to the ring bonds, along with the182

addition of two leads, creates a sensitive magnetic flux to183

voltage transducer known as a dc SQUID [90–92].184

The purpose of this paper is to apply the complex time185

delay approach to experimental data on a microwave186

realization of the ring graph with the goal of identifying187

the complete set of scattering poles, as well as scattering,188

transmission and reflection zeros, of the graph. With189

this information we are able to thoroughly characterize190

the scattering properties of this system, and at the same191

time establish a basis that unifies the many disparate192

approaches to describing the scattering properties of this193

remarkable graph.194

195

The outline of this paper is as follows. In Section II, we196

present expressions for the complex times delays in terms197

of singularities of the scattering matrix. In Section III,198

we discuss the properties of the ring graph, including the199

predicted locations of its poles and zeros in the complex200

plane. Section IV presents our experiment on the mi-201

crowave realization of the ring graph and measurements202

of the scattering matrix, and Section V presents the com-203

plex time delays extracted from the measured S-matrix204

as a function of frequency, as well as fits to reveal the205

locations of the scattering singularities. Section VI uses206

the results from Section V to reconstruct det[S] over the207

entire complex frequency plane. This is followed by dis-208

cussion of all the results in Section VII, and then conclu-209

sions in Section VIII.210

II. COMPLEX TIME DELAYS AND211

SCATTERING POLES AND ZEROS212

A useful theoretical framework for the complex time
delay analysis is the so called effective Hamiltonian for-
malism for wave-chaotic scattering [4, 27, 93–95]. It
starts with defining an N ×N self-adjoint matrix Hamil-
tonian H whose real eigenvalues are associated with
eigenfrequencies of the closed system. Further defining
W to be an N ×M matrix of coupling elements between
the N modes of H and the M scattering channels, one
can build the unitary M ×M scattering matrix S(E) in
the form:

S(E) = 1M − 2πiW †
1

E −H + iΓW
W, (1)

where we defined ΓW = πWW †. Note that in this ap-213

proach the S-matrix poles En = En − iΓn (with Γn > 0)214

are complex eigenvalues of the non-Hermitian effective215

Hamiltonian matrix Heff = H − iΓW 6= H†eff.216

A standard way of incorporating the uniform absorp-
tion with strength η is to replace E → E + iη in the S
matrix definition. Such an S-matrix becomes subunitary
and we denote S(E + iη) := Sη(E). The determinant of
Sη(E) is then given by

detSη(E) := detS(E + iη) (2)

=
det[E −H + i(η − ΓW )]

det[E −H + i(η + ΓW )]
(3)

=

N∏
n=1

E + iη − zn
E + iη − En

, (4)

where Eq. (3) follows from Eq. (1), and Eq. (4) expresses217

the determinants in terms of the eigenvalues of the non-218

Hermitian matrices involved. Here the S-matrix zeros219

zn are complex eigenvalues of the non-Hermitian matrix220

H†eff = H + iΓW , i.e. zn = E∗n.221

Using the above expression, the Wigner-Smith (which222

we shall abbreviate as Wigner) time delay can be very223

naturally extended to scattering systems with uniform224

absorption as suggested in [36] by defining:225

τW (E; η) :=
−i
M

∂

∂E
log detS(E + iη) (5)

= Re τW (E; η) + iIm τW (E; η), (6)

Re τW (E; η) =
1

M

N∑
n=1

[
Γn − η

(E − En)2 + (Γn − η)2
+

Γn + η

(E − En)2 + (Γn + η)2

]
, (7)

Im τW (E; η) = − 1

M

N∑
n=1

[
E − En

(E − En)2 + (Γn − η)2
− E − En

(E − En)2 + (Γn + η)2

]
. (8)

We note that the complex Wigner time delay is a sum226 of Lorentzians whose properties depend on the poles and227
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zeros of the full scattering matrix, as well as the uniform228

absorption. Prior work has shown that Eqs. (7) and (8)229

provide an excellent description of the experimental com-230

plex time delay for isolated modes of a lossy tetrahedral231

microwave graph [36]. The statistical properties of com-232

plex time delay in an ensemble of tetrahedral graphs are233

also in agreement with those based on Eqs. (7) and (8)234

and the random matrix theory predictions for the distri-235

bution of Γn [38].236

We can define the scattering matrix as S =

(
R T ′

T R′

)
in terms of the reflection sub-matrix R and transmis-
sion sub-matrix T [20, 21, 96, 97]. For a system with

uniform absorption, the determinant of the transmission
sub-matrix can be written as:

detTη(E) = (−2πi)M
det(E −H + iη) det

(
W †2

1
E−H+iηW1

)
det[E −H + i(η + ΓW )]

,

(9)

where the coupling matrix W = [W1 W2], is decomposed237

into its port-specific N ×M coupling matrices W1/2. We238

can extend the transmission time delay [20] into a com-239

plex quantity:240

τT (E; η) := −i ∂
∂E

log detT (E + iη) (10)

= Re τT (E; η) + iIm τT (E; η), (11)

Re τT (E; η) =

N−M∑
n=1

Im tn − η
(E − Re tn)2 + (Im tn − η)2

+

N∑
n=1

Γn + η

(E − En)2 + (Γn + η)2
, (12)

Im τT (E; η) = −

{
N−M∑
n=1

E − Re tn
(E − Re tn)2 + (Im tn − η)2

−
N∑
n=1

E − En
(E − En)2 + (Γn + η)2

}
. (13)

Here tn = Re tn + iIm tn denote the complex zeros of241

det(T ), while En = En − iΓn are the same poles defined242

in Eq. (4). Note in Eqs. (12) and (13) that the number243

of zero-related terms is smaller than the number of pole-244

related terms [20].245

Recent interest in the zeros of the S-matrix in the com-
plex energy plane has motivated the use of the Heidelberg
model to introduce the concept of reflection time delays
[39, 40]. To begin with, consider the special case of a
two-channel (M = 2) flux-conserving scattering system
which can be described by the 2 × 2 unitary scattering
matrix:

S(E) =

(
R1(E) t12(E)
t21(E) R2(E)

)
. (14)

The two reflection elements R1,2(E) at both channels246

may have zeros rn in the complex energy plane.247

In the presence of uniform absorption strength η,
the full scattering matrix S becomes sub-unitary, and
|R1(E + iη)| 6= |R2(E + iη)| in general. In that case, the
reflection element R1(E+ iη) at channel 1 can be written

in a similar form to the detSη and detTη formalism:

R1(E + iη) =
det
[
E −H + i(η − Γ

(1)
W + Γ

(2)
W )
]

det[E −H + i(η + ΓW )]
(15)

=

N∏
n=1

E + iη − rn
E + iη − En

, (16)

where ΓW = Γ
(1)
W + Γ

(2)
W , and rn = un + ivn are the posi-

tions of reflection zeros, which are the complex eigenval-

ues of H+ i(Γ
(1)
W −Γ

(2)
W ). Similarly, the reflection element

R2(E + iη) at channel 2 can be written as

R2(E + iη) =
det
[
E −H + i(η − Γ

(2)
W + Γ

(1)
W )
]

det[E −H + i(η + ΓW )]
(17)

=

N∏
n=1

E + iη − r∗n
E + iη − En

. (18)

Thus, the reflection time delays in uniformly absorbing
systems are introduced as

τ
(1)
R (E; η) := −i ∂

∂E
logR1(E + iη) (19)

and

τ
(2)
R (E; η) := −i ∂

∂E
logR2(E + iη). (20)

In full analogy with the complex Wigner time delay248

model, the complex reflection time delay for channel 1,249

τ
(1)
R (E; η), is given by250
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Re τ
(1)
R (E; η) =

N∑
n=1

[
vn − η

(E − un)2 + (vn − η)2
+

Γn + η

(E − En)2 + (Γn + η)2

]
, (21)

Im τ
(1)
R (E; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn − η)2
− E − En

(E − En)2 + (Γn + η)2

]
. (22)

Similarly, we also have the complex reflection time delay251 for channel 2, τ
(2)
R (E; η):252

Re τ
(2)
R (E; η) =

N∑
n=1

[
−vn − η

(E − un)2 + (vn + η)2
+

Γn + η

(E − En)2 + (Γn + η)2

]
, (23)

Im τ
(2)
R (E; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn + η)2
− E − En

(E − En)2 + (Γn + η)2

]
. (24)

Notice that the two reflection time delays share the253

same terms arising from the S-matrix poles, thus another254

useful quantity, the complex reflection time difference,255

can be defined as δTR(E; η) := τ
(1)
R (E; η) − τ

(2)
R (E; η)256

[39, 40]:257

Re δTR(E; η) = Re τ
(1)
R (E; η)− Re τ

(2)
R (E; η) =

N∑
n=1

[
vn − η

(E − un)2 + (vn − η)2
+

vn + η

(E − un)2 + (vn + η)2

]
, (25)

Im δTR(E; η) = Im τ
(1)
R (E; η)− Im τ

(2)
R (E; η) = −

N∑
n=1

[
E − un

(E − un)2 + (vn − η)2
− E − un

(E − un)2 + (vn + η)2

]
. (26)

The reflection time difference is determined solely by the258

position of the reflection zeros, and has no contribution259

from the poles.260

Our approach to defining and utilizing multiple types261

of complex time delay overcomes a number of issues262

with prior treatments. First, we treat poles and zeros263

on an equal footing, as both contribute significantly to264

the complex time delay. Secondly, the imaginary part265

of the time delay provides redundant, but nevertheless266

useful, information about the pole/zero locations. The267

imaginary part has one advantage over the real part268

in terms of fitting to find pole and zero locations: the269

imaginary part changes sign at each singularity, leading270

to smaller tails at the locations of nearby singularities.271

This is particularly useful for systems with a dense set272

of modes. In all examples below, we fit both quantities273

simultaneously using a single set of fitting parameters.274

Finally, our approach directly includes the effect of uni-275

form loss, frequently ignored in most prior treatments of276

time delay. Note that we have previously examined the277

effects of varying lumped loss on the complex Wigner278

time delay [36], and observed the resulting independent279

motion of the poles and zeros in the complex plane280

(i.e. violating the condition that zn = E∗n, for example)281

[39, 40, 98, 99].282

283

We note in passing that the use of complex time delay284

will enhance the study of scattering phenomena governed285

by pole/zero distributions. We have demonstrated this286

in the context of CPA [36, 100], and the generation287

of “cold spots”, in complex scattering systems [100].288

Further opportunities await for the generalized Wigner-289

Smith operator [101], and for the generation of “slow290

light.”291

292

Finally, we note that although the Wigner-Smith293

time delay is purely real for unitary scattering systems,294

the reflection and transmission time delays are always295

complex, due to the fact that they are derived from296

sub-unitary parts of the full S-matrix. Thus a proper297
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treatment of these delays must take into account their298

complex nature, even in the flux-conserving limit.299

300

III. THE RING GRAPH301

Ring graph structures have appeared in quantum302

graph studies, mesoscopic devices, microwave ring303

resonators, optical micro-ring resonators, and supercon-304

ducting quantum interference devices. It is a generic305

and important structure for wave systems because it is306

a simple way to introduce wave interference phenomena307

in a controlled manner.308

309

As shown in the schematic diagram in Fig. 1(a), the310

ring graph has two bonds, of lengths L1 and L2, con-311

necting two nodes. We assume that the bonds of the312

graph support travelling waves in both directions, with313

identical propagation and loss characteristics. The nodes314

are also connected to infinite leads (ports). Coupling be-315

tween the leads and ring graph is provided by means of316

a 3-way tee junction with ideal scattering matrix317

Stee =

−1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3

 .

We shall investigate the M = 2 scattering matrix S318

between the left lead and the right lead in Fig. 1(a).319

Two cases are of interest to us here: i) rationally-related320

bond lengths L1 and L2, including the case L1 = L2,321

and ii) irrationally-related lengths L1 and L2.322

323

A metric ring graph with L1 = L2 can support two324

distinct eigenmodes. Each involves spanning the circum-325

ference of the graph Σ = L1 +L2 with an integer number326

of wavelengths of the wave excitation. One mode, which327

we call the shape resonance, has a maximum of the328

standing wave pattern at the nodes of the graph [50].329

The second mode has a standing wave pattern that is330

rotated one quarter of a wavelength relative to the first331

and has zero amplitude at the nodes. Such an embedded332

eigenstate on a ring graph with rationally-related bond333

lengths can have a compact eigenfunction even though334

the graph extends to infinity. In other words, the335

eigenmode is nonzero over most of the ring graph,336

but has zero amplitude at the locations of the leads,337

preventing the mode from extending into the leads. This338

means that the the eigenvalue can be in a continuum of339

states, but the eigenstate can have no amplitude on the340

leads of the graph. Small perturbations to the length(s)341

of the bond will move the pole off of the real axis342

and produce a narrow high-Q resonance, along with a343

nearby complex zero. This is known as a Feshbach mode.344

345

Waltner and Smilansky [51] have made predictions for
the S-matrix zeros and poles for both shape and Fes-
hbach resonances of the ring graph. In the case of a

symmetrical graph (i.e. L1 = L2), or for graphs with ra-
tionally related lengths, the scattering properties of the
graph show shape resonances only. The S-matrix poles
of the shape resonances are given by

ES,symmn = nc/Σ− i c ln 3/(πΣ), (27)

where Σ = L1 + L2 is the total electrical length of the
ring graph, c is the speed of light in vacuum (here we
specialize to the case of microwave ring graphs), and n is
the mode index (n = 1, 2, 3, ...). The S-matrix zeros are
simply the complex conjugates of the poles:

zS,symmn = nc/Σ + i c ln 3/(πΣ). (28)

The Feshbach modes are not visible in this case.346

In the case of a non-symmetrical graph (i.e. δ = L1 −
L2 6= 0 and L1/L2 is not rational, the graph has both
shape and Feshbach resonances. In the limit of nδ � Σ,
the S-matrix poles of the Feshbach resonances are given
by

EF,asymmn ≈ nc/Σ− i (c/2π)[(2πnδ)2/(8Σ3)], (29)

while the poles of the shape resonances become347

ES,asymmn ≈ (nc/Σ + α) − i [c ln 3/(πΣ) + β], where348

α = ncδ2 ln 3/(2Σ3) and β = (c/2π)[(2 ln 3)2 −349

(2πn)2]δ2/(8Σ3) are small changes compared to the orig-350

inal pole locations, Eq. (27). Again the S-matrix zeros351

are complex conjugates of the pole locations: zF,asymmn =352

[EF,asymmn ]∗ and zS,asymmn = [ES,asymmn ]∗. These predic-353

tions will be tested in our analysis of complex time delay354

data below.355

We note that the imaginary part of the Feshbach pole356

(and zero) in Eq. (29) increases in magnitude as (nδ)2.357

The Warsaw group has studied the length asymmetry358

(δ) dependence of the lowest frequency (n = 1) pole of359

the ring graph [60]. A cold atom collision experiment has360

observed the flow of the shape and Feshbach resonance361

poles as the system is perturbed [55]. In contrast with362

earlier work, we study the dependence of the poles and363

zeros at two fixed bond lengths upon the mode index n,364

among other things.365

366

IV. EXPERIMENT367

A picture of the ring graph experimental setup is shown368

in Fig. 1(b). A 15-inch (38.1 cm) long coaxial cable is369

used as the fixed length bond L1, while a mechanically-370

variable coaxial phase shifter is used as the variable371

length bond L2. The coaxial cable has a center con-372

ductor that is 0.036 in (0.92 mm) in diameter, a Teflon373

dielectric layer (with εr = 2.1 and µr = 1), and an outer374

conductor that is 0.117 in (2.98 mm) in diameter. The375

center conductor is silver-plated copper-clad steel, while376

the outer conductor is copper-tin composite. The elec-377

trical length of the cable is given by the product of the378
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geometrical length and the index of refraction,
√
εrµr.379

The phase shifter is a Model 3753B coaxial phase shifter380

from L3Harris Narda-MITEQ that provides up to 60 de-381

grees of phase shift per GHz. The measurement cables382

(leads) are connected to the ring graph through two Tee383

junctions, acting as the nodes. When the graph is sym-384

metrical (i.e. L1 = L2), the total electrical length of the385

graph is Σsymm = 1.0993 m. The graph shows a mean386

spacing between shape modes of ∆f = 0.2729 GHz, giv-387

ing rise to a Heisenberg time τH = 2π/∆f of 23.02 ns.388

We measure the scattering response from all the modes389

spanning the frequency range from 0 to 10 GHz, encom-390

passing modes n = 1 to n = 37.391

𝐿1 = 𝐿2

𝐿1 ≠ 𝐿2

FIG. 2. Transmission spectrum |S21|2 vs. frequency mea-
sured for the first 18 modes of a microwave ring graph. Main
figure shows the transmission of non-equal lengths (L1 6= L2)
between the phase shifter and the coaxial cable, while the in-
set shows the case of equal lengths (L1 = L2). The sinusoidal
wiggles come from the shape resonances, while the narrow
dips come from the Feshbach resonances. Note that the data
in the inset shows no narrow resonances.

To make the graph asymmetric (L1 6= L2) we set the392

phase shifter to produce δ = 0.577 cm. Thus we maintain393

the condition nδ � Σ up to n = 37.394

The time delay analysis involves taking frequency395

derivatives of the measured S-matrix phase and ampli-396

tude data, and this demands fine frequency resolution397

and careful measurement. In order to obtain high-quality398

data, we first conducted a careful calibration of the Ag-399

ilent model N5242A microwave vector network analyzer400

(VNA), utilizing an intermediate frequency (IF) band-401

width of 100 Hz and a frequency step size of 84.375 kHz402

(about 3×10−4 of the mean spacing between shape reso-403

nances). The calibration process creates boundary condi-404

tions for the microwaves that are equivalent to the pres-405

ence of the two infinite leads connected to the nodes of406

the ring graph. In other words, waves exiting the system407

will never return. In addition, the scattering matrix is408

evaluated at the plane of calibration as the ratio of ingo-409

ing and outgoing complex waves measured at that point.410

The plane of calibration is at the two nodes labelled by411

red dashed lines in Fig. 1(c). We then measured the412

2 × 2 S-matrix of the graphs with the same settings of413

the VNA. By doing so, we minimize the measurement414

noise and acquire high resolution data. The phase of415

the S-matrix data was unwound into a continuous vari-416

ation to eliminate artificial discontinuities in time delay417

due to 2π phase jumps. We also developed an algorithm418

for taking numerical derivatives of the experimental data419

utilizing variable frequency window smoothing settings.420

Given the number of data points in a smoothing window,421

we obtained the overall slope through a line fitting of all422

the data samples. The size of the smoothing window can423

be dynamically adjusted based on the variability of the424

phase and amplitude with frequency. All of these steps425

are required to generate high-quality time delay data for426

further analysis. Note that the numerical derivatives are427

taken on the raw S-matrix data without any normaliza-428

tion step or background subtraction, etc. There is no429

need to augment or modify the raw S-matrix data, as it430

contains all the information about the graph, including431

coupling, loss, and scattering singularities.432

The two types of modes present in the ring graph,433

namely shape resonances and Feshbach resonances, are434

illustrated in the measured transmission |S21|2 vs. fre-435

quency plot shown in Fig. 2. The inset in Fig. 2 shows436

the transmission spectrum when the two bond lengths are437

equal (L1 = L2). In this case only the shape resonances438

appear in the scattering data. For the main plot in Fig.439

2, we tuned the electrical length of the phase shifter so440

that the two bonds lengths are not equal (L1 6= L2) and441

not rationally related. The narrow Feshbach resonances442

occur at lower frequencies than the shape resonances and443

their separation from the shape resonances grows with444

mode number n, as predicted by Eq. (29), and demon-445

strated in the following analysis.446

V. COMPLEX TIME DELAY ANALYSIS ON447

RING GRAPH DATA448

In the case of a symmetrical graph, we analyze the449

complex Wigner time delay and transmission time de-450

lay properties of the shape resonances alone. Figure 3451

shows the complex Wigner (τW ) and transmission (τT )452

time delay as a function of frequency over 18 modes of the453

ring graph. The two time delays are calculated from the454

measured S-matrix based on Eqs. (5) (Wigner) and (10)455

(Transmission), respectively. Note that in all compar-456

isons of data and theory we treat frequency f and energy457

E as equivalent. We also reconstruct the two time de-458

lays based on the models from Eqs. (7) & (8) (Wigner)459

and Eqs. (12) & (13) (Transmission), using the scatter-460

ing matrix poles prediction from Eq. (27) and the zeros461

from Eq. (28). The poles are calculated based on the462

measured dimension (electrical length) of the ring graph,463
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FIG. 3. Comparisons between the experimental data and the
modelling for the complex Wigner time delay (upper plot) and
for the complex transmission time delay (lower plot), both
normalized by the Heisenberg time τH , as a function of fre-
quency for a symmetric (L1 = L2) microwave ring graph. The
modelling data are plotted on top of the experimental data,
and are in good agreement.

and the zeros are assumed to be the complex conjugates464

of the poles. The modelled complex time delays are plot-465

ted with the experimental data in Fig. 3, and are in good466

agreement. (Due to uncertainties in the lengths of the467

components, we adjusted Σ slightly to precisely match468

the τW frequency dependence in Fig. 3.) Note that in469

the complex transmission time delay modelling we use470

only the pole information (there are no transmission ze-471

ros in this case due the absence of an interfering mode472

[69]), while in the complex Wigner time delay modelling473

we use both the pole and zero information.474

We note that although the model is in very good agree-475

ment with the data in Fig. 3 there are a number of sharp476

vertical features in the data that are not reproduced by477

the model. Theoretical treatments of a delta function478

scatterer in the ring graph shows that imperfections in479

a symmetric graph (L1 = L2) can give rise to Feshbach480

resonances [51, 102]. We interpret the spikes seen in τW481

and τT as arising from impedance discontinuities in the482

phase shifter and its coaxial connectors, acting effectively483

as delta-function scatterers. To verify this, we measured484

a symmetric graph made up of two identical fixed-length485

(15 inch) coaxial cables and found that there are no sharp486

(a)

(b)

FIG. 4. Comparison between fitted pole location parameters
(En = En− iΓn) and predictions for multiple Feshbach modes
of the asymmetric microwave ring graph (L1 6= L2). Inset (a)
shows the comparison between fitted real parts of the zeros
and the poles, along with the prediction by Eq. (29) shown as
a straight purple line. Inset (b) shows such a representative
fit to τW (f) for a single Feshbach mode (n = 7).

vertical features in the time delays in that case.487

Next we analyze the complex Wigner time delay and488

transmission time delay properties for the Feshbach reso-489

nances of the ring graph. We tuned the electrical length490

of the phase shifter so that the two bonds lengths are491

not equal or rationally related (with δ ≈ 0.577 cm),492

and a set of Feshbach resonances appear, as in Fig. 2.493

We followed the same procedure to calculate the com-494

plex Wigner and transmission time delay from the newly495

measured S-matrix. Note that the shape resonances are496

always present in the system. We first removed the ef-497

fects of the shape resonances from the overall time delay498

data by subtracting their contributions to the time de-499

lay data. The contributions from the shape resonances500

are modelled in the same way as demonstrated in Fig.501

3. (Σ has been slightly adjusted to accommodate the502

length change of the ring graph system.) We then fit503

the remaining complex time delay data with the model504

Eqs. (7) & (8) (Wigner) and Eqs. (12) & (13) (Trans-505

mission), for each individual Feshbach mode. Both the506

zero and pole locations, as well as the uniform absorption507

strength η, are used as fitting parameters in this process.508

Note that the real and imaginary parts of each time de-509

lay are fit simultaneously with a single set of parameters.510

We also constrain the zeros to be complex conjugates of511

the poles during the Wigner time delay fitting. One fit-512

ting example is shown in Figs. 4(b) (Wigner) and 5(b)513

(Transmission), respectively. The fitting process was re-514

peated for all 37 modes measured, and all fits were very515

successful (see Appendix C for further discussion about516

the transmission zeros). The fit parameters for the com-517
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(a)

FIG. 5. Comparison between fitted pole location parameters
(En = En−iΓn) obtained from the complex Wigner time delay
(blue circles) and the complex transmission time delay (red
triangles) for Feshbach modes of the asymmetric ring graph.
The lower part of the figure shows the comparison between
fitted uniform attenuation (−η) obtained from the complex
Wigner time delay (yellow stars) in Fig. 4 and fitted imagi-
nary parts of the transmission zeros (Im tn−η) obtained from
the complex transmission time delay (green triangles) on all
measured Feshbach modes. Inset (a) shows a representative
fit to τT (f) for a single Feshbach mode (n = 7).

plex zeros and poles, as well as the uniform attenuation,518

are plotted in Figs. 4 (Wigner) and 5 (Transmission),519

respectively.520

We note that Eq. (29) predicts that the resonance521

width Γn (imaginary part of the pole) increases as522

(c/2π)[(2πnδ)2/(8Σ3)]. Putting the measured values of523

Σ and δ into this expression gives the red solid curve524

in Fig. 4, which demonstrates very good agreement be-525

tween the data and the prediction in Eq. (29). Figure526

4 also shows the uniform absorption strength η increases527

with frequency. A more detailed discussion of uniform528

loss, with comparisons to independent measurements and529

modeling, can be found in Appendix B.530

There is an interesting competition between Γn and η531

with regards to the complex Wigner time delay in this532

graph. Figure 4 shows that Γn crosses over the value533

of η at approximately mode 27. Equation (7) shows534

that this will give rise to a change in sign of the nearly-535

resonant contribution to Re[τW ]. This crossover-related536

sign change is clearly evident in the full plot of Re[τW ]537

vs. frequency in Fig. 12. Further, Fig. 4(a) shows the538

fitted real parts of the zeros and poles from the complex539

Wigner time delay, and they both increase in proportion540

to n, as predicted in Eqs. (27) and (28) [51]. The solid541

red line in Fig. 4(a) shows the prediction based on the542

measured value of Σ.543

In Fig. 5, we plot the fitted imaginary location of the544

poles (in the form of Γn + η) from the complex trans-545

(a)

(b)

(c)

Frequency (GHz)

FIG. 6. Fitting example of reflection time difference/delay
for a single pair of shape and Feshbach resonances for a ring
graph with L1 6= L2. (a) shows an example of fitting com-

plex reflection time difference (δTR = τ
(1)
R − τ (2)R ) experiment

data for mode n = 7. The left feature is due to the Feshbach
resonance, while the right one is due to the shape resonance.
Parts (b) and (c) demonstrate the reconstruction of the indi-
vidual reflection time delays on both ports, compared to the
data, using the fitted reflection zeros and Wigner poles (see
Fig. 4) information. All time delays are presented normalized
by the Heisenberg time τH of the loop graph.

mission time delay data together with the previously ex-546

tracted Wigner poles data from Fig. 4, and they agree547

very well. This validates the hypothesis that the two548

time delays (τW and τT ) share the same pole informa-549

tion. Fig. 5 also shows the fitted imaginary parts of the550

zeros (in the form of Im tn − η) from the complex trans-551

mission time delay for the Feshbach modes, together with552

the previously extracted uniform attenuation value (−η)553

from Fig. 4, and they match very well. This implies554

the transmission zeros are purely real (i.e. Im tn = 0),555

and the data is consistent with this interpretation. Fur-556

ther detailed discussion on the transmission zeros can be557

found in Appendix C.558

For the reflection time delay analysis, there are two559

sets of zeros and poles, one each from the shape and Fes-560

hbach resonances. One can use the reflection time dif-561

ference quantity to simplify the analysis, as it contains562

only the contribution from the zeros. Figure 6 illustrates563

the reflection time delay/difference analysis process. Fig-564

ure 6(a) is an example of fitting the complex reflection565

time difference to Eqs. (25) and (26) for a single pair566

of shape and Feshbach resonances. The fitting process567

was repeated for all 37 × 2 modes utilizing two sets of568

the reflection zeros (rFn = uFn + ivFn & rSn = uSn + ivSn )569

as fitting parameters (along with a single value for η for570

each pair), and all fits were very successful. We then571

examined the complex reflection time delay data for the572
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FIG. 7. Summary of all zeros and poles in the complex fre-
quency plane for shape and Feshbach resonances extracted
from Wigner/Transmission/Reflection time delay analysis for
the first 37 modes of the microwave ring graph. The Wigner
zeros zSn (blue squares) and poles ESn (red squares) of the shape
resonances are located far from the real axis. The Wigner ze-
ros zFn (blue circles) and poles EFn (red circles) of the Feshbach
resonances are close to, and symmetrically arrayed about, the
real axis. The transmission zeros tFn (blue crosses) of the Fes-
hbach resonances lie on the real axis. The reflection zeros
rFn &rSn of the Feshbach resonances (dark red triangles) and
the shape resonances (green squares) are symmetrically ar-
rayed about the real axis.

individual channels, by putting the extracted two sets of573

reflection zeros (rFn & rSn) and the previously extracted574

Wigner poles (EFn & ESn ) into the modelling formula Eqs.575

(21) – (24). The modelling prediction (with no further fit-576

ting adjustments) are plotted with the experimental data577

in Figs. 6(b) and 6(c), and they agree remarkably well.578

This indicates that the individual reflection time delays579

also share the same pole information with the other time580

delays.581

Finally, we present a summary of all zeros and poles582

extracted from the time delays analysis for the first 37583

modes of the microwave ring graph in Fig. 7.584

VI. S-MATRIX RECONSTRUCTION OVER585

THE COMPLEX PLANE586

Now that we have all the zeros and poles information587

for the scattering system, we would like to examine the588

modelling for detS on the real frequency axis utilizing589

Eq. (4). We reconstructed detS based on Eq. (4) and590

the extracted Wigner zeros and poles information sum-591

marized in Fig. 7. Figure 8 shows the comparison be-592

tween the modelling of detS and the experimental data593

for a symmetric graph that has the shape resonances only,594

while Fig. 9 shows a similar plot with both the Shape595

FIG. 8. Comparison of modelling (red line) and experimental
data (blue line) for detS with shape resonances only in a
symmetrical (L1 = L2) ring graph. The modelling data is
calculated from Eq. (4) using the Wigner zeros and poles for
the shape resonances (see the blue and red squares in Fig. 7).
Upper plot shows the magnitude of detS, while the lower plot
shows the phase of detS.

and Feshbach resonances present in the scattering sys-596

tem. The modelling agrees very well with the experiment597

for both the magnitude and phase of detS. Note that a598

small delay (0.08 ns) had to be added to the model to599

show detailed agreement with the data. We attribute600

this to about 2.4 cm of un-calibrated transmission line601

outside of the loop graph, occurring in the third port of602

each of the tee junctions.603

Reconstructing the S-matrix over the entire complex604

frequency plane is generally difficult to accomplish exper-605

imentally. Here we construct complex detS on the com-606

plex frequency plane (E or f being complex) by contin-607

uation of Eq. (4), along with the extracted Wigner zeros608

and poles information. Fig. 10 (and Fig. 18) shows a 3D609

reconstruction of the complex detS for an asymmetric610

ring graph evaluated over the complex frequency plane611

with both the shape and Feshbach resonances present.612

We can see a series of dips and peaks, which reveal the613

zero and pole locations in the complex frequency domain.614

Other methods exist for S-matrix reconstruction.615

One approach is to use harmonic inversion, in which616

frequency domain data is transformed into the time617

domain and fit to a time-decay made up of a sum of618

many poles [103–105]. This technique is quite successful619

for finding poles, but does not directly determine620
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FIG. 9. Comparison of modelling (red dashed line) and exper-
imental data (blue line) for detS with both shape and Fesh-
bach resonances in an asymmetrical (L1 6= L2) ring graph.
The modelling data is calculated from Eq. (4) using the
Wigner zeros and poles for the shape resonances (see the blue
and red squares in Fig. 7) and the Wigner zeros and poles for
the Feshbach resonances (see the blue and red circles in Fig.
7). Upper plot shows the magnitude of detS, while the lower
plot shows the phase of detS.

the zeros of the S-matrix. Note that complex time621

delay can be used to augment a harmonic inversion622

search for S-matrix poles. Another approach to finding623

scattering poles is to use numerical methods to find624

outgoing-only solutions to wave equations in terms of625

quasinormal modes, and therefore identify the complex626

pole positions [65, 66]. A more complete approach is627

to use Weierstrass factorization of the S-matrix, and628

to also include solutions to the wave equations that629

involve ingoing-only solutions to identify the zeros of S630

[106, 107]. This approach allows one to re-expresses the631

scattering matrix in terms of a sum of Lorentzians due632

to the poles, with residues that depend on both the zeros633

and the poles. Note that here we retrieve only det[S],634

but the full S matrix can also be reconstructed [106, 107].635

636

If a passive zero loss system hosts an embedded eigen-637

state, i.e., a mode with zero-decay rate, the correspond-638

ing S-matrix pole will lie on the real frequency axis. In639

a passive system with finite loss, this is only possible if640

there is also a degenerate S-matrix zero occurring at the641

same real frequency, where they merge and cancel each642

other [5, 11, 18]. This seems to describe the Feshbach643

poles and zeros of the ring graph in the limit as n → 0.644

To measure the degree of coincidence of the pole and zero,645

we can evaluate the residue of the Feshbach poles as a646

function of mode number. The residue of det[S] due to a647

single (assumed simple) Feshbach pole is given by ρFn =648

det[S(E)](E−EF,asymmn )|E→EF,asymm
n

. This in turn can be649

written as ρFn ∝
E−zF,asymm

n

E−EF,asymm
n

(E−EF,asymmn )|E→EF,asymm
n

=650

EF,asymmn − zF,asymmn , which is just the distance between651

the Feshbach pole and zero. Figure 11 shows the absolute652

magnitude of ρFn as a function of mode number based on653

the extracted Feshbach poles and zeros. It is clear that654

in the limit of index going to zero that the pole and zero655

approach each other, consistent with the development of656

an embedded eigenstate. Also shown in Fig. 11 is the as-657

sociated ‘Q’ value of the pole in terms of the ratio EFn /Γ
F
n658

of the modes.659

VII. DISCUSSION660

Our comprehensive discussion of Wigner, transmission,661

and the reflection complex time delays in section II of the662

paper gives us the opportunity to address the question:663

what is the general strategy to maximize the real part of664

all the complex time delays? From Eq. (7) we see that665

the real part of τW is maximized when the imaginary part666

of a scattering pole Γn is equal to the uniform attenuation667

rate η. This divergence of the Wigner time delay has668

been previously demonstrated in the context of coherent669

perfect absorption by several groups [36, 37]. Also, for670

the microwave ring graph studied here, we see from the671

plot of τW vs. frequency in Fig. 12 that this condition672

is nearly met somewhere around 7 GHz. With tuning673

of either δ and/or η we could achieve the divergence of674

Re[τW ] for one or more modes.675

From Eq. (12) we see that the real part of τT is max-676

imized when the imaginary part of a transmission zero677

Im[tn] is equal to the uniform attenuation rate η. In our678

data on the microwave ring graph, the imaginary part679

of the transmission zero is always negative and much680

smaller in magnitude than the uniform attenuation, so681

the associated divergence is not visible here. The data682

for complex τT vs. frequency for all 37 modes is shown683

in Fig. 13. The transmission time delay shows nearly si-684

nusoidal oscillations arising from the shape modes, and a685

series of spikes arising from the Feshbach modes. As ex-686

pected, the transmission time delays are generally small687

in magnitude and show no irregular variations associated688

with a near degeneracy of Im[tn] and η.689

Finally, from Eqs. (21), (23), and (25) we see that690

the real part of either τ
(1)
R or τ

(2)
R , and the magnitude of691

δTR = τ
(1)
R − τ

(2)
R , is maximized when the imaginary part692

of a reflection zero vn is equal to either plus or minus the693

uniform attenuation rate, ±η. For our microwave ring694

graph, we see from the plots of complex τR vs. frequency695

in Fig. 14 that this condition is nearly met for a number696

of modes, including modes 1 and 14. The extreme val-697
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FIG. 10. Complex representation of detS evaluated over the complex frequency plane for several modes of an asymmetric
(L1 6= L2) ring graph. detS is calculated from Eq. (4) using complex frequency and the Wigner zeros and poles for the shape
resonances (see the blue and red squares in Fig. 7) and the Wigner zeros and poles for the Feshbach resonances (see the blue
and red circles in Fig. 7). The 3D plot represents | detS| on a log scale and reveals the zeros (dips) and poles (peaks) at different
locations in complex frequency. The base plane shows contour lines of the magnitude of |detS| in the complex frequency plane.
The colorbar on the right shows the phase of the constructed detS. The inset shows a 2D top view of Arg[detS] for a single
pair of shape and Feshbach zeros and poles.

ues of reflection time delay, on the order of hundreds of698

Heisenberg times, dwarfs those of the Wigner and trans-699

mission times. In this case we have vF1 = −8.65 × 10−5
700

GHz, vS1 = 1.05×10−4 GHz and η = 3.79×10−5 GHz for701

mode 1, and vF14 = 0.0010 GHz, vS14 = 0.0045 GHz and702

η = 0.0044 GHz for mode 14, resulting in large values for703

the real and imaginary parts of τR.704

To summarize, we note that divergences in all time705

delays can be tuned into existence through variation of706

uniform attenuation η, or perturbations that systemati-707

cally vary En, Γn, tn, or rn.708

What is the practical limit for the maximum value of709

time delay? Constructing time delay from experimental710

S-parameter data requires two nearby data points with711

which we calculate a finite difference approximation to712

the derivative of ln(det[S]). However, the singularity is713

at a single point in frequency, hence we can never achieve714

the true divergence this way, although we can get arbi-715

trarily close by taking finer steps in parameter space. On716

the other hand, one can tune to the CPA condition of a717

physical system containing a non-zero loss and create an718

unbounded time delay at one frequency, as demonstrated719

with CPA experiments in microwave graphs [36].720

The introduction of complex time delay analysis now721

offers the opportunity to study the detailed evolution of722

poles and zeros in the complex plane when scattering723

systems are subjected to a variety of perturbations.724

A number of methods to controllably drive poles and725

zeros around the complex plane have been developed726

in different contexts. As an example in the case of727

the ring graph, several authors have examined the728

question of what trajectory an embedded eigenvalue729

pole leaves the real axis as the ring graph is perturbed730

[50, 60, 108]. Another opportunity is the manipulation731

of reflection zeros in the complex frequency plane for732

multi-port scattering systems to create what are known733
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FIG. 11. Plot of residue ρFn and the ‘quality factor’ of the
Feshbach poles, versus mode index n, for an asymmetric mi-
crowave loop graph. The blue filled circles show the absolute
magnitude of the residue |ρFn | as a function of mode index
based on the extracted Feshbach poles and zeros, while the
red open diamonds show the associated ratio of EF

n /Γ
F
n of the

Feshbach poles.

as reflectionless scattering modes (RSM) [19, 109].734

Reflection (τR) and reflection difference (δTR) complex735

time delays will enable monitoring of reflection zeros so736

that they can be tuned to the real axis to establish RSMs.737

738

Wave chaotic systems have scattering properties that739

are very sensitive to changes in boundary conditions.740

This makes such systems well suited to act as sensors of741

perturbation, such as motion or displacement of objects742

located in the scattering domain, through the concept of743

scattering fidelity [110–114]. In addition, there exists a744

class of sensors that are based on the coalescence of two745

or more eigenmodes [115, 116]. In all cases, the longer746

the dwell time of a wave in a monitored space, the greater747

its sensitivity to small perturbations [37, 117].748

Finally, we discuss a number of important issues asso-749

ciated with our approach to modeling the complex time750

delays. In this paper we have taken two distinctly dif-751

ferent approaches to modeling the measured time delay.752

In the case of the shape resonances, the poles and zeros753

are relatively far removed from the real axis; the ratio of754

imaginary part of the pole (and zero) to the mean spac-755

ing is approximately ΓSn/∆E
S
n ∼ 0.35. In this case, many756

poles and zeros contribute to the Wigner time delay (as757

an example) at any given point on the real frequency axis.758

For this reason, we fit all of the pole and zero locations at759

once for the data in Fig. 3. In addition, the product over760

modes in Eq. (4) extends over ±200 modes in order to761

properly reproduce detS in Figs. 8 and 9. On the other762

hand, when poles and zeros are close to the real axis, it763

is possible to treat each pole/zero pair individually. This764

is the case for the Feshbach resonances where we find the765

ratio of imaginary part of the pole to the mean spacing766

is roughly ΓFn /∆E
F
n ∼ 0.01. In this case the contribution767

to the time delay in a given narrow frequency window is768

dominated by the nearest pole and zero. This is the case769

for the fits shown in the insets of Figs. 4 and 5, and the770

fits shown in Fig. 6. We have checked this assumption by771

a number of methods. First, our correct recovery of the772

measured detS on the real axis, as shown in Fig. 9, is a773

clear test of the assumption that the fitting of individual774

Feshbach poles and zeros is adequate to model the global775

scattering matrix at arbitrary real frequencies. Secondly,776

we have checked that adding terms to the complex time777

delay arising from neighboring poles and zeros has no ef-778

fect on our fitting of individual mode data, such as those779

shown in the insets of Figs. 4 and 5.780

There is one additional potential limitation of the781

above description of complex time delay. Assuming a782

single uniform value of the loss parameter η at a given783

frequency is an approximation, especially for our ring784

graph. The graph has a variable phase shifter in it that785

is not a homogeneous transmission line. There may be786

point-like loss centers that exist in this microwave graph,787

which we are not modelling properly with just a uniform788

attenuation. Also, in the fitting of complex time delay789

vs. frequency, we assume that the value of η is con-790

stant in the narrow frequency range around each pair of791

shape/Feshbach modes (as in Fig. 6), although we be-792

lieve that this is a good approximation for the data and793

analysis presented here.794

VIII. CONCLUSIONS795

We provide a comprehensive analysis of the ring796

graph scattering response in terms of poles and zeros797

of the S-matrix, and the reflection and transmission798

submatrices. We have treated the complex Wigner-799

Smith, reflection and transmission time delays on equal800

footing, all in one experimental setting. We also create801

a faithful reconstruction of the complex determinant802

of the S-matrix over the complex frequency plane803

from the experimentally extracted poles and zeros.804

More generally, we provide the first comprehensive805

treatment of complex Wigner, transmission, reflection,806

and reflection difference time delays. We also provide a807

prescription for maximizing the real part of all complex808

time delays in terms of the poles and zeros of the scat-809

tering matrix, and the uniform attenuation in the system.810
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(a) (b)

FIG. 12. Complex Wigner time delay τW (normalized by the Heisenberg time τH) determined from measured S-matrix data
for 37 modes (0 − 10 GHz) in an asymmetrical (L1 6= L2) microwave ring graph. The extreme values of τW are dominated
by Feshbach resonances. Note the sign change of the Re[τW ] extreme values near 7 GHz, which corresponds to the crossover
between Γn and η in Fig. 4. Insets (a) and (b) show zoom-in details of the complex Wigner time delay for individual modes
on either side of the crossover.

Appendix A: Additional Data816

Here we present the complex Wigner-Smith (τW ) (Fig.817

12), transmission (τT ) (Fig. 13), and reflection (τR)818

(Fig. 14) time delays over the full measurement fre-819

quency range (0 – 10 GHz), including all 37 modes of820

the asymmetrical (L1 6= L2) microwave ring graph. Ex-821

amining the complex time delays over a broad range of822

frequency brings out new aspects of the data, as discussed823

in Section VII.824

Figure 12 shows the complex Wigner time delay ex-825

tracted from the experiment over the entire measurement826

frequency range. We have already noted in Section V the827

change in sign of Re[τW ] as a function of frequency due828

to the crossover of the imaginary part of the Feshbach829

pole Γn and the uniform attenuation η. Another feature830

to note is that the shape resonances produce a relatively831

small variation in τW compared to the sharp features832

arising from the Feshbach modes. Both features together833

create time delays on the scale of at most 10’s of Heisen-834

berg times in this particular experimental realization and835

frequency range.836

Figure 13 shows the complex transmission time delay837

extracted from the experiment over the entire measure-838

ment frequency range. We note that the magnitude of839

the transmission time delays are limited in magnitude to840

approximately 2 times the Heisenberg time in this case.841

The reason for such small variations is that the transmis-842

sion time delays have contributions from both the zeros843

and the poles, and the two contributions have similar844

magnitudes but opposite signs. Thus the resulting trans-845

mission time delays are rather small compared to τW and846

τR. Further detailed discussion of τT is given in Appendix847

C.848
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(a)

(b)

FIG. 13. Complex transmission time delay τT determined from measured S-matrix data for 37 modes (0 − 10 GHz) in an
asymmetrical (L1 6= L2) microwave ring graph normalized by the Heisenberg time τH . The extreme values of τT are dominated
by Feshbach resonances. The nearly sinusoidal variations of Re[τT ] and Im[τT ] with frequency are due to the shape resonances.
Insets (a) and (b) show the zoom-in details of the complex transmission time delay for two individual modes.

The reflection time delays shown in Fig. 14 show sig-849

nificantly larger range of variation as compared to the850

Wigner and transmission time delays. To see why this851

is the case, we can examine Eqs. (21) – (24), which852

model the behavior of the reflection time delays. One853

can see that the width and the extreme value of the first854

Lorentzian term is determined by |vn ± η|. The reflec-855

tion zeros rn = un + ivn are the complex eigenvalues of856

H + i(Γ
(1)
W − Γ

(2)
W ). In our experimental setup, we have857

very similar coupling properties for ports 1 and 2, i.e.858

Γ
(1)
W ≈ Γ

(2)
W . Thus, the imaginary part of the reflection859

zeros vn should be fairly small. At low frequencies, the860

uniform attenuation η is also very small, and is com-861

parable to vn. This leads to a very small width of the862

Lorentzian resonance, which in turn produces very large863

extreme values of the reflection time delay, on the order864

of 100’s of Heisenberg times, at low frequencies. At larger865

frequencies, however, the uniform attenuation η becomes866

fairly large, and dominates the width of the Lorentzian867

resonance. Therefore, the reflection time delays change868

back to the order of a few Heisenberg times.869

Appendix B: Uniform Attenuation Estimation for870

Coaxial Cable871

We estimate the uniform attenuation η in the ring
graph system both theoretically and experimentally.
From [118], we derived the corresponding expression for
the uniform attenuation (Γ) of a homogeneous coaxial
cable, expressed in terms of an angular frequency:

Γ =
1

2

[
2πf tan δ +

√
2πfρ

2µ0

1
√
εr

1

ln (b/a)
(
1

a
+

1

b
)

]
,

(B1)
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FIG. 14. Complex reflection time delays τ
(1)
R , τ

(2)
R and their difference δTR = τ

(1)
R − τ (2)R determined from measured S-matrix

data for 37 modes (0− 10 GHz) in an asymmetrical (L1 6= L2) microwave ring graph, normalized by the Heisenberg time τH .
Insets show the zoom-in details of the complex reflection time delay/difference for individual sets of shape and Feshbach modes.

where f is the linear frequency, tan δ = 0.00028 and εr =872

2.1 are the dielectric loss tangent the relative dielectric873

constant of the Teflon dielectric, ρ = 4.4× 10−8 Ω ·m is874

the resistivity of the metals in the cable, µ0 = 4π× 10−7
875

H/m is the permeability of vacuum, and a = 0.46× 10−3
876

m and b = 1.49 × 10−3 m are the radii of the inner and877

outer conductors, respectively. These values are typical878

for the coaxial cables used in our experiments.879

We also performed a direct measurement of the uni-880

form attenuation for the components making up the ring881

graph. We connected the coaxial cable and the phase882

shifter from Fig. 1(b) in series and measured the trans-883

mission S21 insertion loss as a function of frequency. The884

comparison of uniform attenuation between direct mea-885

surement (from S21), fitting results (η) and the modelling886

(Γ) is plotted in Fig. 15. The agreement between these887

three independent estimates is reasonably good. Note888

that the coaxial phase shifter is not a uniform coaxial889

structure, and evidence of internal resonances are visible890

in Fig. 15 above 7 GHz. Note that the fit η values are891

slightly higher than the direct loss measurement below 7892

GHz, but then are slightly lower above that frequency.893
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This comparison gives us confidence that the values of894

η extracted from complex time delay analysis are quite895

reasonable.896

FIG. 15. Comparison of three different ways to determine the
uniform attenuation of the loop graph: by means of direct
measurement of insertion loss through S21, fitting results to
complex time delays (η), and direct modelling (Γ). The blue
line shows the data obtained by measuring the S21 insertion
loss of a serial connection of the coaxial cable and the phase
shifter shown in Fig. 1(b). The yellow stars show the fitting
results for η from the complex Wigner time delay analysis in
Fig. 4. The red line shows the theoretical modelling (Eq.
(B1)) of Γ/2π in a coaxial cable.

Appendix C: Transmission Zeros897

In the transmission zeros analysis for the Feshbach res-
onances, we fit the experimental data to Eqs. (12) and
(13), after removing the contributions from the shape res-
onances. We may rewrite the complex transmission time
delay as τT = τZT + τPT [20], where τZT and τPT are the
contributions from zeros and poles, respectively. Then
Eqs. (12) and (13) can be rewritten as

Re τZT (E; η) =

N−M∑
n=1

Im tn − η
(E − Re tn)2 + (Im tn − η)2

,

(C1)

Im τZT (E; η) = −
N−M∑
n=1

E − Re tn
(E − Re tn)2 + (Im tn − η)2

,

(C2)

Re τPT (E; η) =

N∑
n=1

Γn + η

(E − En)2 + (Γn + η)2
, (C3)

Im τPT (E; η) =

N∑
n=1

E − En
(E − En)2 + (Γn + η)2

. (C4)

We plot τZT and τPT for a single Feshbach mode (n = 1)898

in Fig. 16. Here τPT is calculated using the pole in-899

formation extracted from the complex Wigner time de-900

lay analysis (see Fig. 4), since all three time delays901

share the same poles. τZT can then be obtained through902

τZT = τT − τPT , where τT is the experimental data. Fig.903

16 shows that τZT and τPT are approximately equal in904

magnitude, both much larger than τT , but have oppo-905

site signs. From [20, 21] we learned that the transmis-906

sion zeros tn will be on the real axis, i.e. Im[tn] = 0,907

such that Im[tn] − η = −η. For this (n = 1) Fesh-908

bach mode, the imaginary part of the pole Γn is very909

small compared to the uniform attenuation η (see Fig.910

4), thus we have Γn + η ≈ η. Under such condi-911

tions, Eqs. (C1) – (C4) can be written as Re[τZT ]n=1 =912

−η/[(E−Re tn)2+η2], Re[τPT ]n=1 ≈ +η/[(E−En)2+η2],913

Im[τZT ]n=1 = −(E − Re tn)/[(E − Re tn)2 + η2], and914

Im[τPT ]n=1 ≈ (E − En)/[(E − En)2 + η2]. Since Re tn ≈915

En, we then arrive at [τZT ]n=1 ≈ −[τPT ]n=1, which is con-916

sistent with what is shown in Fig. 16. This also explains917

why τT = τZT + τPT is so small for this Feshbach mode918

(n = 1) (see Fig. 16(a)).919

(a) (b)

(c)

Frequency (GHz)

FIG. 16. Complex transmission time delay data for a single
Feshbach mode (n = 1) and its contributions from zeros and
poles. (a) shows the total complex transmission time delay
data (τT ), while (b) and (c) show the contribution from the
zero (τZT ) and the pole (τPT ), respectively. Here τT is from
experimental data, while τPT is calculated based on Eqs. (C3)
& (C4) with the pole information extracted from the complex
Wigner time delay analysis (see Fig. 4). τZT is obtained by
τZT = τT − τPT .

When analyzing the transmission time delay data,920

one may assume either a single zero or a conjugate921

pair of zeros in the modelling [20, 21]. We tried using922

a conjugate pair of zeros to fit the data, but were923

unable to achieve reasonable fitting results. A pair of924

zeros would contribute to the real part of transmission925

time delay with a local extremum at E = Re tn of926
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Re[τZT ] = 2η
(Im tn)2−η2 . Unfortunately this expression927

demands negative values for (Im tn)2 for our data,928

therefore the pair of zeros assumption is inconsistent929

with the data. On the other hand, the contribution of930

a single zero to Re[τT ] is Re[τZT ] = −η
(E−Im tn)2−η2 , with931

peak value −η−1. We plot the comparison between the932

peak value of Re[τZT ] (from data) vs −η−1 (from Fig. 4)933

for all 37 modes in Fig. 17, and they agree extremely934

well, justifying our single-zero hypothesis. In summary,935

placing all of the transmission zeros on the real axis is936

consistent with the data.937

938

FIG. 17. Comparison between the peak value of Re[τZT ] and
−η−1 for all 37 modes of the microwave ring graph. Blue cir-
cles show the peak value of Re[τZT ] from experimental data,
while red triangles show −η−1 calculated from the data in Fig.
4. Both quantities are presented normalized by the Heisen-
berg time τH of the loop graph.

Appendix D: Additional det[S] Reconstruction Plot939

We show in Fig. 18 the reconstruction of complex940

det[S] over the complex frequency plane from a different941

perspective compared to Fig. 10, highlighting the phase942

variation in the region between the shape and Feshbach943

resonances.944
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K. Życzkowski, and L. Sirko, Experimental simulation1105

of quantum graphs by microwave networks, Physical Re-1106

view E 69, 056205 (2004).1107

[47] O. Hul, O. Tymoshchuk, S. Bauch, P. M. Koch, and1108

L. Sirko, Experimental investigation of wigner’s reaction1109

matrix for irregular graphs with absorption, Journal of1110

Physics a-Mathematical and General 38, 10489 (2005).1111

[48] M.  Lawniczak, O. Hul, S. Bauch, P. Seba, and L. Sirko,1112

Experimental and numerical investigation of the reflec-1113

tion coefficient and the distributions of Wigner’s reac-1114

tion matrix for irregular graphs with absorption, Phys-1115

ical Review E 77, 056210 (2008).1116

[49] M.  Lawniczak, S. Bauch, O. Hul, and L. Sirko, Experi-1117

mental investigation of the enhancement factor for mi-1118

crowave irregular networks with preserved and broken1119

time reversal symmetry in the presence of absorption,1120

Physical Review E 81, 046204 (2010).1121

[50] P. Exner and J. Lipovsk, Resonances from perturba-1122

tions of quantum graphs with rationally related edges,1123

Journal of Physics A: Mathematical and Theoretical 43,1124

105301 (2010).1125

[51] D. Waltner and U. Smilansky, Scattering from a ring1126

graph - a simple model for the study of resonances, Acta1127

Physica Polonica A 124, 1087 (2013).1128

[52] A. Drinko, F. M. Andrade, and D. Bazeia, Narrow peaks1129

of full transmission in simple quantum graphs, Physical1130

Review A 100, 062117 (2019).1131

[53] A. Drinko, F. M. Andrade, and D. Bazeia, Simple quan-1132

tum graphs proposal for quantum devices, The Euro-1133

pean Physical Journal Plus 135, 451 (2020).1134

[54] H. Feshbach, Unified theory of nuclear reactions, Annals1135

of Physics 5, 357 (1958).1136

[55] M. Chilcott, R. Thomas, and N. Kjærgaard, Experimen-1137

tal observation of the avoided crossing of two s-matrix1138

resonance poles in an ultracold atom collider, Phys. Rev.1139

Research 3, 033209 (2021).1140

[56] U. Fano, Effects of configuration interaction on intensi-1141

ties and phase shifts, Physical Review 124, 1866 (1961).1142

[57] M. Fleischhauer, A. Imamoglu, and J. P. Marangos,1143

Electromagnetically induced transparency: Optics in1144

coherent media, Reviews of Modern Physics 77, 6331145

(2005).1146

[58] S. Gnutzmann, H. Schanz, and U. Smilansky, Topologi-1147

cal resonances in scattering on networks (graphs), Phys-1148

ical Review Letters 110, 094101 (2013).1149

[59] E. N. Bulgakov and D. N. Maksimov, Topological bound1150

states in the continuum in arrays of dielectric spheres,1151

Physical Review Letters 118, 267401 (2017).1152

[60] M.  Lawniczak, J. c. v. Lipovský, M. Bia lous, and1153
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