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In strongly magnetized neutral plasmas, electron motion is reduced perpendicular to the magnetic
field direction. This changes dynamical plasma properties such as temperature equilibration, spatial
density evolution, electron pressure, and thermal and electrical conductivity. In this paper we report
measurements of free plasma expansion in the presence of a strong magnetic field. We image laser-
induced fluorescence from an ultracold neutral Ca+ plasma to map the plasma size as a function of
time for a range of magnetic field strengths. The asymptotic expansion velocity perpendicular to
the magnetic field direction falls rapidly with increasing magnetic field strength. We observe that
the initially Gaussian spatial distribution remains Gaussian throughout the expansion in both the
parallel and perpendicular directions. We compare these observations with a diffusion model and
with a self-similar expansion model and show that neither of these models reproduces the observed
behavior over the entire range of magnetic fields used in this study. Modeling the expansion of a
magnetized ultracold plasma poses a nontrivial theoretical challenge.

I. INTRODUCTION

Ultracold neutral plasmas (UNPs) are useful tools in
understanding transport properties of strongly coupled
systems. They provide an idealized platform for mea-
suring plasma transport properties [1–5] and can simu-
late high energy-density plasmas (HEDPs) over a limited
range of conditions [2, 6–15]. The high optical opacity
and short dynamic time scales in HEDPs pose challenges
to experimentally measuring transport properties with
high fidelity. For this reason interpretations of HEDP
measurements rely heavily on molecular dynamics (MD)
simulations [16] and plasma models [17, 18] to under-
stand transport in these complex systems. UNPs have
the advantage of low density (107 to 1013 cm−3) and low
temperature (0.05 to 2 K), resulting in accessible real-
time measurements of plasma properties [2, 3, 19, 20] in
the strongly-coupled plasma regime. Transport proper-
ties measured in this idealized environment can be used
to verify plasma models and MD simulations [9, 21–25].

Transport properties in magnetized plasmas continues
to be a significant research area in the plasma physics
community [26–36], including studies of UNPs [37–41].
Recent work in UNP magnetic confinement opens an ex-
citing new avenue of magnetized plasma transport re-
search [42].

In this work we present UNP expansion measurements
in the presence of a strong, uniform magnetic field. Using
circularly polarized state-selective laser induced fluores-
cence, we measure the plasma size as a function of time
and deduce the asymptotic expansion rate. This work
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extends previous measurements reported in Ref. 37 to
greater magnetic field strengths. We compare our results
to a diffusion model [37] and show that it fails to repro-
duce our measured expansion rates. We also consider
a self-similar expansion model [43]. While this model
matches the zero-field results, it fails to reproduce the
magnetized plasma measurements. Modeling the expan-
sion of magnetized plasmas poses a nontrivial theoretical
challenge. UNPs provide a platform for measuring pos-
sible theories with high accuracy.

The degree of magnetization for species s can be pa-
rameterized using the ratio,

αs =
Ωcs
νsi

(1)

where Ωcs = eB/ms is the cyclotron frequency of species
s, mass ms, in magnetic field B, and νsi is the species-
ion collision frequency [44]. When αs > 1, the species
is magnetized, meaning that the collision dynamics are
significantly changed by the magnetic field.

We explore Ca+ UNP expansion with the applied field
strength ranging from B = 0 to 0.12 T. The electron
magnetization parameter spans from zero to αe = 350.
The ions are always unmagnetized. At the highest field
values, the ion cyclotron frequency is Ωci = 3× 105 s−1,
νii = 1× 107 [45], making αi ≤ 0.03.

In this paper we measure the transverse and parallel
expansion of our Ca+ UNP and compare the experimen-
tal data to an ambipolar diffusion model [37] and a self-
similar expansion model. We show that neither of these
reproduces the experimental data over the entire range
of magnetic field strengths.
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FIG. 1. Experimental details. a) Partial energy level diagram
for Ca showing ionization laser wavelengths. I.P. = Ionization
Potential. b) A circularly polarized 393 nm probe laser beam
illuminates the UNP. Fluorescence photons are collected by a
1:1 optical relay system, optically filtered, and imaged onto
an ICCD camera. c) Frequency-integrated UNP fluorescence
image when B = 0 and t = 0. The ŷ and ẑ directions are
labeled. The image is 496×496 pixels, with a pixel spacing
of 13.0 µm per pixel, making the image size 6.4×6.4 mm.
d) Cross-sectional view of magnetic field coils and mounting
hardware. The coils are centered on the UNP.

II. EXPRIMENTAL DETAILS

Working at somewhat lower density, approximately 3
million neutral Ca atoms are trapped in a magnet-optical
trap (MOT) using 423 nm laser beams [9, 25]. The Ca+

plasma is formed by ionizing 80% of the Ca atoms by two
color resonant photoionization using 5 ns laser pulses at
423 nm and 390 nm, as shown in Fig. 1a. The photon
energy of the 390 nm laser above the ionization limit
controls the electron temperature, Te. In this work Te =
96 K to effectively eliminate three-body recombination.

The Ca+ plasma is observed using laser-induced fluo-
rescence. The entire plasma is illuminated by a 393 nm
circularly-polarized probe laser beam driving the Ca+

393 nm 4s 2S1/2 → 4p 2P3/2 transition. The RMS width
of the probe laser beam is 1620 ± 90 µm. The fluores-
cence from the plasma is optically filtered and imaged
onto a image-intensified CCD (ICCD) camera using a
1:1 imaging system, see Fig. 1b. Plasma fluorescence is
measured with the probe laser frequency set to 11 dif-
ferent offset frequencies relative to the atomic resonance,
ranging from ±200 MHz in 40 MHz steps. The sum of
these images provides a side-on view of the plasma, as
shown in Fig. 1c.

The plasma density is calculated by combining mea-
surements of both the neutral atoms and the plasma ions.
We use resonant absorption imaging of the neutral atom
cloud to determine the density, rms width, and number
of atoms in the MOT. We determine the ionization frac-
tion by measuring MOT fluorescence before and after the
ionizing laser pulses. We allow the neutral atom cloud to
expand before ionization to reduce the density relative to
the MOT and to smooth out any local density variations.

FIG. 2. Timing schematic and partial energy level diagram.
a) Timing sequence for the experiment. The MOT fields turn
off and the neutral atom cloud begins expanding slightly 500
µs before the ionizing laser pulses form the plasma. During
this time interval, a uniform field with B ranging up to 0.12
T turns on. b) Zeeman splitting of the 4s 2S1/2 − 4p 2P3/2

transition. Because the laser beam propagates along the mag-
netic field direction, only ∆m = ±1 transitions are allowed.
The mlower = ±1/2 → mupper = ±3/2 transitions shift at
∆f/B = 13.99 GHz/T. The mlower = ±1/2 → mupper =
∓1/2 transitions shift at ∆f/B = 23.35 GHz/T.

Using the MOT density, the ionization fraction, the rms
MOT width, and the initial plasma rms width, we calcu-
late the plasma density. The initial plasma spatial den-
sity distribution is Gaussian and spherically symmetric,
n(r) = n0 exp

(
−r2/2σ2

0

)
, with σ0 = 400 ± 20 µm and

n0 = 3.4 ± 0.2 × 1015 m−3. The ion temperature is set
by disorder-induced heating to be approximately 2 K [9].

A constant uniform magnetic field is made using
electrical coils separated by 11 mm inside the vac-
uum chamber in a near-Helmholtz configuration. The
magnetic field strengths used in this paper are B =
0, 0.005, 0.011, 0.020, 0.051, and 0.123T. The magnetic
field direction defines the ẑ direction in Fig. 1c. The
coils are wrapped onto a stainless steel spool mounted
to the optical imaging system, as shown in Fig. 1d. The
spool is cut to eliminate eddy currents when the magnetic
field changes. The stainless steel housing is grounded to
suppress electric fields arising from the potential differ-
ence between the coils. Currents ranging up to 150 A are
supplied to the coils to produce magnetic field strengths
up to 0.12 T.

The current in the coils turns on 500 µs prior to ion-
ization to allow the magnetic field to approach a steady
state value. During this time the MOT laser beams and
MOT magnetic field are turned off and the neutral atom
cloud freely expands. The neutral atom cloud expansion
is not influenced by the applied magnetic field. Once
the atoms are ionized the magnetic field remains on for
≈ 50 µs before turning off. This is repeated at a rate of
10 Hz. Timing details are shown in Fig. 2a.

III. ZEEMAN SHIFTS

The magnetic field splits the 4s 2S1/2 → 4p 2P3/2 tran-
sition into several Zeeman components, as shown in Fig.
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2b. The linear Zeeman shift is calculated as,

∆E = µBgLmjB (2)

where µB is the Bohr magneton, gL = 1.333861(25) and
gL = 2.00225664(9) are the Landé g-factors for the 2P3/2

and 2S1/2 levels, respectively [46–48], and mj is the mag-
netic angular momentum quantum number.

Zeeman splitting of the excited and ground states of
Ca+ opens pathways to several optically dark states. To
eliminate the dark ground state, the probe laser beam
propagates along the magnetic field direction. It is circu-
larly polarized and selections rules only allow ∆m = ±1
transitions. This prevents optical pumping into the
2S1/2(m = −1/2) state. There is a small probability

after excitation that ions in the 2P3/2(mj = 3/2) state
will decay into optically dark D states. In our previous
work, these dark states were optically pumped back into
the excited states to allow for long measurement times
[2, 9]. With a magnetic field, repumping is less practi-
cal because there are 5 optically allowed transitions into
the 2D5/2 and 2D3/2 Zeeman states. Rather than opti-
cally pumping out these dark states, the probe laser is
turned on at some time ∆t after plasma formation and
observed by the ICCD camera for only 100-200 ns, as
shown in Fig. 2c. The finite pulse width contributes
approximately 1.5 MHz to the observed linewidth of the
393 nm transition. Because we integrate over frequency
to determine the areal density, this additional width is
negligible.

IV. IMAGE DATA REDUCTION AND
ANALYSIS

The ICCD camera records a spatially resolved fluores-
cence image at a specific time after the plasma is formed.
For a specific frequency of the probe laser, the fluores-
cence intensity in the camera is proportional to the num-
ber of ions Doppler- and Zeeman-shifted into resonance
with the probe laser beam at a particular point in space
and time. The Doppler shift arises from both the ion
thermal velocity and the plasma hydrodynamic expan-
sion velocity.

Camera images are recorded at 11 laser frequencies at
times t = 0.1, 1, 2, 5, 10, 20 µs for each magnetic field
strength. We process these images to extract the rms
size of the plasma transverse and parallel to the mag-
netic field. From this data the asymptotic expansion ve-
locity is calculated in both the parallel and perpendicular
directions.

A. Analysis of σ‖

Summing the 11 camera images at a particular time
and magnetic field strength create a projection of the
spatial density distribution onto the yz plane, as shown

FIG. 3. Fluorescence images and σ‖ analysis for B = 0 at a
delay time of 10 µs. Panels a), b), and c) show fluorescence
images for three different values of the probe laser frequency
detuning, as indicated in the panels. The images are inte-
grated along the y direction and plotted in panel d). Circles
show the measured data. The solid black, blue, and red lines
show Voigt fits to the data. The fitted peak amplitude and
pixel locations are used to fit the Gaussian envelope (shown
as a gray solid line). Eight additional measurements are not
shown, for clarity.

in Fig. 1c. At late times, as the hydrodynamic velocity
increases, the Doppler shift at large ±z exceeds the probe
laser detuning frequency. Therefore the late-time images
only explore the central regions of the plasma along the
magnetic field direction, ẑ.

The analysis for plasma expansion in the z-direction
for σ‖ is illustrated in Fig. 3, for B = 0, and Fig. 4,
for B = 0.020 T. In a plasma image recorded with the
probe laser frequency fixed at a particular value, the z-
axis in the image can be mapped onto the plasma hydro-
dynamic expansion velocity. For a self-similar expansion,
applicable when B = 0, the mapping is 1:1. The z-axis is
directly proportional to hydrodynamic velocity through
the Doppler shift. In Fig. 3a-c, the fluorescence images
for three different probe laser detunings are shown at a
delay time of ∆t = 10 µs after the plasma is formed
when B = 0. As the probe laser frequency changes,
the location of the fluorescence also changes. Ions that
are Doppler-shifted into resonance with the probe laser
frequency scatter photons most strongly. Voigt profile
fits to the integrated fluorescence signal are plotted in
black, blue, and red in Fig. 3d. We fit the corresponding
peak locations and amplitudes to a Gaussian envelope
profile to determine the rms width of the plasma in the
z-direction.

When the magnetic field is present, the fluorescence
measurements are consistent with a self-similar plasma
expansion along the magnetic field direction, just as in
the B = 0 case. In Fig. 4 fluorescence images for three
different probe laser detunings are shown at a delay time
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FIG. 4. Fluorescence images and σ‖ analysis for B = 0.020 T
at a delay time of 10 µs. Panels a), b), and c) show fluo-
rescence images for three different values of the probe laser
frequency detuning, as indicated in the panels. The horizontal
and vertical axes are pixel number in the images. The images
are integrated along the y direction and plotted in panel d).
The four Zeeman transitions indicated in Fig. 1c) are clearly
visible. Also shown in d) are lineshape fits as described in
the text. The vertical dashed lines show the locations of the
1
2
→ 3

2
transitions used to fit the Gaussian envelope. The rms

width of this envelope is σ‖, and it is plotted in Fig. 5. The
gray solid line is the expected Gaussian envelope from the hy-
drodynamic model at 10 µs. Eight additional measurements
are not shown, for clarity.

of 10 µs after the plasma is formed when B = 0.020 T.
Four transitions are clearly visible, indicating that our
probe laser polarization is not purely σ+ polarized. These
correspond to the mlower−mupper transitions 1/2→ 3/2,
−1/2 → 1/2, 1/2 → −1/2, and −1/2 → −3/2 shown
in Fig. 2b. Correspondingly, we fit these images to the
sum of four Voigt profiles with the amplitudes, center
frequencies, and widths as fit parameters. We constrain
the relative separation between peaks to be consistent
with Eq. (2) and the known Lande-g factors, assuming
a linear mapping of the hydrodynamic velocity onto the
z-axis. We also constrain the Lorentzian and Gaussian
widths to be the same for all peaks in the fit. As shown
in Fig. 4d, the fits are in excellent agreement with the
data. The number of Zeeman components used in the
fits, and the number visible in the line shapes, depends
on both the value of the magnetic field strength and the
delay time. We note that this analysis only probes the
central region of the plasma. It seems likely that near
the edges of the plasma, as the density falls, the plasma
description becomes kinetic.

Finally, in Fig. 5 we show the rms width of the plasma
as a function of time for several different magnetic field
strengths. The data at 5, 10, and 20 µs are slightly offset
in the plot to better illustrate the data and associated
estimated error bars. Although there is some scatter in

FIG. 5. Time-evolution of the plasma envelope along the z-
direction. The points show the measured Gaussian envelope
rms width, σ‖, as described in the text. The values of the
magnetic field strength in Tesla is indicated in the legend.
The solid black line shows the expected rms width using the
measured initial plasma parameters σ0 = 0.4 mm and Te0 =
96 K. The values at 5, 10, and 20 µs are slightly offset in
time to better show the data. These data suggest that the
plasma expanion in the z-direction, parallel to the magnetic
field, is Gaussian and self-similar because it agrees with a
hydrodynamic model near the plasma center.

the measurements, these data suggest that the expansion
in the magnetic field direction is self-similar. This is per-
haps expected, as the magnetic field does not exert any
forces in the z-direction.

B. Analysis of σ⊥

The rms width of the plasma in the y-direction, σ⊥(t),
is determined by summing the fluorescence images over
all laser detunings and then integrating along the z-
direction. The fluorescence signals are corrected slightly
for the Gaussian profile of the probe laser beam along
the y-direction by dividing the integrated fluorescence
profiles by a Gaussian with an rms width of 1.62 ± 0.09
mm.

To model the data, we considered four different line-
shapes: Lorentzian, Voigt, Gaussian, and super-Gaussian
of order 4. These data and model fits are shown in Fig.
6. The super-Gaussian (red line) and Lorentzian (blue
line) models are poor representations of the data. When
considering the entire data set, the Voigt (green line) and
Gaussian (magenta line) profiles are nearly indistinguish-
able. Based on this analysis, the Gaussian appears to be
the best model for all cases. This suggests a self-similar
Gaussian expansion in the perpendicular direction, con-
sistent with the Gaussian transverse expansion data re-
ported in Ref. [37]. This observation suggests that we
use a hydrodynamic model to interpret the perpendicular
expansion data.

The measured rms widths of the plasmas as a function
of time for different magnetic field strengths is shown in
the left panel of Fig. 7. The expansion data are fit to a
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FIG. 6. Model selection for σ⊥(t). Plots of the projections
of the fluorescence signals along the y-axis for different delay
times and magnetic field strengths. The black dots show the
data. The magenta line shows a Gaussian fit. The blue line
shows a Lorentzian fit. The yellow line shows a Voigt fit. The
red line shows a super-Gaussian fit of order 4. The Gaussian
and Voigt fits are indistinguishable in nearly all cases.

hydrodynamic model,

σ⊥(t, B) = σ0

[
1 +

(
t

τ(B)

)2
]1/2

, (3)

with σ0 and τ(B) as fit parameters. In an unmagnetized
B = 0 hydrodynamic UNP model, the expansion time is
τ2 = (miσ0)/(kBTe0) [49]. However, in our model when
B 6= 0, τ is only phenomenological. It merely parameter-
izes the plasma expansion in the perpendicular direction.
The expansion curves derived from Eq. (3) are shown as
solid lines in Fig. 7a, and reproduce the data well. The
fitted values of σ0 and τ are given in Table I. At late
times, when t � τ , σ(t) ≈ (σ0/τ)t and the asymptotic
expansion velocity is

vexp ≡ σ0/τ(B). (4)

In the opposite limit, when t� τ , σ(t) ≈ σ0[1+t2/(2τ2)].
We next explore the functional dependence of vexp on

B. To do this, we fit vexp to three different models, each
of which has two parameters. The best model is selected
visually by evaluating its representation of the data. The
three models are an exponential form,

vexp = a exp(−B/b), (5)

and a power-law form,

vexp = a(b+B)−p. (6)

The values of a and b are least-squares fit parameters.
The power-laws we explore are p = 1

2 and 1. The p = 1
2

model was suggested in Ref. [37]. In Eq. (6) we have
added an offset parameter b relative to Ref. [37] to allow
the model to cover the entire range of B, including the
B = 0 data.

FIG. 7. Analysis of σ⊥. a) Plots of σ2
⊥(t) for different values

of the magnetic field. The magnetic field strength in Tesla is
indicated in the legend. The points are the fitted rms widths
σ⊥(t, B) using Eq. (3). The vertical lines indicate the esti-
mated systematic uncertainty associated with the finite Gaus-
sian width of the probe laser beam. If the expansions were
diffusive, the squared widths would increase linearly in time.
b) vexp = σ0/τ(B) plotted vs. B (black points). Also plot-
ted are model fits to the data as described in the text. Inset:
Semilogarithmic plots of power-law fits [Eq. (6)] to subsets of
the data, as explained in the text. The exponential fit is the
best representation of the entire data set. The power laws fit
well in different limits.

TABLE I. Values of the fit parameters σ0 and τ(B) obtained
by fitting the data in Fig. 7a to Eq. (3). The numbers
in parenthesis following the numbers in the table are the es-
timated statistical uncertainties in the last digits. For the
B = 0.123 T data, the least squares fitting routine cannot
estimate the uncertainty in τ .

B σ0 (mm) τ(B) µs
0.000 0.42(3) 3.5(3)
0.005 0.45(4) 5.5(6)
0.011 0.45(2) 9.1(8)
0.020 0.44(2) 17(2)
0.050 0.40(1) 74(60)
0.123 0.40(1) 6E4

The model that best represents the entire data set is
the exponential fit,

vexp = (12.1 mm/µs) exp[−B/(0.013 T)]. (7)

The coefficient 12.1 mm/µs is equal to σ0/τ(0). The
characteristic field in the exponential, 0.013 T, is close to
the value obtained when setting αe = 1 in Eq. (1).

Fits of subsets of the data can reveal asymptotic and
transitional dependencies on the magnetic field. The in-
set of Fig. 7b show a p = 1

2 power-law fit to the data be-
tween B = 0.005 and B = 0.050 T (red line). Also shown
is a p = 1 power-law fit to the data from B = 0.011 to
B = 0.123 T (green line).

In this experiment we measure the evolution of the ion
density distribution. Information regarding the electron
temperature and density evolution can only be inferred.
Similarly, we can calculate the ion kinetic energy, but
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not the electron energy or the overall electrical poten-
tial energy. The hydrodynamic expansion model used for
both σ‖ and σ⊥ suggests an anisotropic adiabatic plasma
expansion. This model assumes quasi-neutrality, with
ni ≈ ne and a uniform temperature for electrons through-
out the plasma. The magnetic field could influence the
evolution of the electron temperature and density. Even
in the presence of a magnetic field, at time t = 0 the elec-
trons begin with an isotropic velocity distribution with
an average kinetic energy of Ee/(3kB/2) = 96 K. As the
plasma expands, a temperature anisotropy could develop
due to adiabatic cooling of the electrons in the parallel di-
rection. The ion expansion, which is what we observe in
the experiments, occurs over several microseconds (see
Table I), which corresponds to thousands of electron-
ion collision times and tens of thousands of electron-
electron collision times. Any temperature anisotropy for
the weakly coupled electrons, if it exists, will be small
[30, 50].

V. COMPARISON TO THEORETICAL MODELS

In this section, we compare the observed self-similar
Gaussian density evolution to two popular models. We
will show that a diffusion model fails to reproduce the ob-
served time-evolving transverse density profile. We also
show that a straightforward implementation of an ex-
plicitly self-similar expansion model predicts expansion
dynamics at odds from the experimental data.

A. Ambipolar Diffusion model

Ambipolar diffusion is often invoked to model cross-
field electron and ion motion in magnetized plasmas [37].
The diffusion equation in the presence of a uniform mag-
netic field in 1D-cylindrical coordinates is given by

∂n

∂t
=

1

r

∂

∂r
rD⊥

∂n

∂r
− Floss(n, t), (8)

where n(r, t) is the radial density distribution of the
plasma and Floss represents expansion of the plasma
along the magnetic field direction. In Ref. [37] expan-
sion along the magnetic field lines was assumed to follow
a self-similar (Gaussian) hydrodynamic model. The loss
term assumed the form,

Floss(n, t) = n
t

τ2 (1 + t2/τ2)
, (9)

where τ = [(miσ
2
0)/(kBTe)]

1/2 is the characteristic ex-
pansion time for the plasma.

We solve Eq. (8) numerically. The equation is dis-
cretized in space using a second order centered finite dif-
ference method, which is numerically integrated using
the method of lines [51] with the implicit Runge-Kutta
(Radau) method.

FIG. 8. Numerical solutions for the diffusion equation, Eq.
(8), for B = 0.005 T, n0 = 3× 1015 cm−3, and σ0 = 0.4 mm.
a) Scaled plots of the density profile n(y, t). The values of t
in µs are indicated in the legend. b) The rms width of the
distribution as a function of time. For higher values of B, the
expansion proceeds more slowly. However, the fast initial rise
followed by a slower rise with a gradually decreasing slope is
true for all values of B. This is in opposition to the measured
behavior in Fig. 7a and Eq. (3).

The diffusion coefficient appropriate for a wide range
of magnetic field strengths is [52]

D⊥ = D0
ν2ei

ν2ei + Ω2
ce

, (10)

where D0 = kBTe/meνei is the diffusion coefficient with
no magnetic field and νei is the electron-ion collision fre-
quency [44]. In the limit Ωce � νei, this diffusion coef-
ficient matches the expression used in [37]. We expect
numerical solutions of Eq. (8) to be most appropriate
when the plasma is magnetized.

The numerical solutions of n(r, t) are shown in Fig. 8
for B = 0.005 T. In panel a) the radial density profile
is plotted. Although the profile begins as a Gaussian
profile, diffusion flattens the center of the distribution
where the density is higher. In the wings of the distribu-
tion, where the density drops, diffusion effectively turns
off. For higher values of B, the expansion proceeds more
slowly.

In Fig. 8b we plot the rms width of the distribution,

wrms =

√√√√(∑
i

y2i ni

)
/

(∑
i

ni

)
, (11)

where the index i runs over the grid points in the calcu-
lation, yi is the spatial grid point and ni is the density at
that grid point. The rms width increases rapidly at first,
followed by a slower rise with gradually decreasing slope.
This behavior is qualitatively the same for all values of
the magnetic field strength. It contradicts the ansatz and
conclusion of Ref. 37, the measured behavior in Fig. 7a,
and the hydrodynamic model in Eq. (3). If the magne-
tized UNP expansion was diffusive, plots of σ2

⊥(t) would
be linear in time (see Fig. 7a).
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The failure of the diffusion model for UNPs is not en-
tirely surprising. Ambipolar diffusion is most appropri-
ate in weakly ionized plasmas in which the neutral atoms
provide a significant drag force [52]. Furthermore, Eq. (8)
does not include ion inertia, which is a dominant feature
in UNP expansion. Ultracold neutral plasmas are es-
sentially fully-ionized electron-ion plasmas. The neutral
atoms that remain are at such a low density that they
have no influence on the expansion dynamics [53].

B. Self similar unmagnetized plasma expansion
model

A self-similar plasma expansion model [43, 54] works
well for unmagnetized UNPs. The fluid equations of mo-
tion for species s can be written,

∂us(r, t)

∂t
= −us(r, t) ·∇us(r, t)

− kB
msns(r, t)

[Ts(r, t)∇ns(r, t)]

+
qs
ms

[E(r, t) + us(r, t)×B(r, t)] (12)

where us is the hydrodynamic flow velocity and E and
B are the electric and magnetic fields. This equation
includes advection, pressure, and the Lorentz force.

We first consider a spherically symmetric two compo-
nent plasma, consisting of only ions (Z = 1) and elec-
trons in the absence of a magnetic field. Neglecting the
ion pressure term, the equations of motion for the ions

and electrons are written

∂ui
∂t

+ ui
∂ui
∂r

= − e

mi

∂Φ

∂r
(13)

∂ue
∂t

+ ue
∂ue
∂r

=
e

me

∂Φ

∂r
− kB
mene

∂

∂r
(neTe) (14)

where we have rewritten E = −∇Φ in terms of the po-
tential Φ. In the usual way, multiplying Eq. (14) by me

and recognizing that the left-hand side of the equation is
negligibly small gives an expression for ∂Φ/∂r, reducing
Eq. (13) to,

∂ui
∂t

+ ui
∂ui
∂r

= − kB
mine

∂

∂r
(neTe). (15)

The electron density on the right-hand side of Eq. (15)
is not known exactly. We use the ion density as an ap-
proximation of the electron density profile (the so-called
quasi-neutral approximation). Further assuming that Te
has a uniform spatial profile, a Gaussian density profile
of the form,

n(r, t) = n0

(
σ0
σ(t)

)3

exp

[
−r2

2σ(t)2

]
, (16)

is a solution to Eq. (15) [49, 55–57]. In this density
profile, σ(t) is defined for B = 0 in Eq. (3) and n0 is
the plasma density at r = 0 and t = 0. The self-similar
expansion model is plotted against our data in Fig. 5
and Fig. 7a and is a reasonable representation of the
unmagnetized data.

C. Self similar magnetized plasma expansion model

In this section we apply the self-similar model to the
case of non-zero magnetic field. The system of equations,
in cylindrical coordinate, is composed by the continuity
equation of each species s = i, e

∂ns
∂t

+
1

r

∂

∂r
(rnsur,s) +

∂

∂z
(nsuz,s) = 0, (17)

the electron equations of motion,

∂ur,e
∂t

+ ur,e
∂ur,e
∂r
−
u2θ,e
r

= −kBTe
me

1

ne

∂ne
∂r

+
e

me

∂Φ

∂r
− Ωceuθ,e, (18)

∂uθ,e
∂t

+ ur,e
∂uθ,e
∂r

+
uθ,eur,e

r
= Ωceur,e, (19)

∂uz,e
∂t

+ uz,e
∂uz,e
∂z

= −kBTe
me

1

ne

∂ne
∂z

+
e

me

∂Φ

∂z
, (20)
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and the ion equations of motion,

∂ur,i
∂t

+ ur,i
∂ur,i
∂r
−
u2θ,i
r

= − e

mi

∂Φ

∂r
, (21)

∂uθ,i
∂t

+ ur,i
∂uθ,i
∂r

+
uθ,iur,i
r

= 0, (22)

∂uz,i
∂t

+ uz,i
∂uz,i
∂z

= − e

mi

∂Φ

∂z
. (23)

The right hand side of Eq. (19) represents the E × B
drift. In writing these equations, we assume that there
is no angular dependence in each component of the
flow velocities, i.e. uα,s(r, θ, z, t) = uα,s(r, z, t) where
α = r, θ, z, no z dependence for the perpendicular compo-
nents, i.e. uθ,s(r, z, t) = uθ,s(r, t), ur,s(r, z, t) = ur,s(r, t),
and no radial dependence of the ẑ velocity component,
i.e. uz,s(r, z, t) = uz,s(z, t) as indicated by the cylin-
drical symmetry of the problem. We have also neglected
the collision terms because the self-similar model assumes
ue = ui. Furthermore, in the ion equation of motion we
neglect the cyclotron frequency terms and the ion pres-
sure term.

As with the unmagnetized case, we assume that plasma
expansion in the ẑ direction is driven by electron pressure
alone. This leads to a so-called “collisionless” model in
the ẑ direction, consistent with previous work [49, 56].
For a self-similar expansion model, this means that the
collisions do not modify the distribution functions.

We assume a self-similar ion density expression,

ni(r, z, t) =
n0,i

σ2
⊥(t)σ‖(t)

exp

[
− r2

σ2
⊥(t)

− z2

σ2
‖(t)

]
, (24)

with σ⊥(t) = σ0(1 + t2/τ2⊥)1/2 and σ‖(t) = σ0(1 +

t2/τ2‖ )1/2, where τ⊥ and τ‖ are characteristic expansion

times in the perpendicular and parallel directions. They
can depend on B, but not on t or r. Substituting the
above expression in the continuity equation of the ions
we obtain

2ni

[(
z2

σ2
‖
− 1

2

)
1

σ‖

dσ‖

dt
+

(
r2

σ2
⊥
− 1

)
1

σ⊥

dσ⊥
dt

]

+
1

r

∂rniur
∂r

+
∂niuz
∂z

= 0. (25)

Separating the perpendicular and parallel equations we
find the following

2

(
z2

σ2
‖
− 1

2

)
1

σ‖

dσ‖

dt
− 2

z

σ2
‖
uz,i +

∂uz,i
∂z

= 0, (26)

2

(
r2

σ2
⊥
− 1

)
1

σ⊥

dσ⊥
dt

+
ur,i
r
−2

r

σ2
⊥
ur,i+

∂ur,i
∂r

= 0, (27)

whose solutions are

uz,i(z, t) =
z

σ‖

dσ‖

dt
, ur,i(r, t) =

r

σ⊥

dσ⊥
dt

. (28)

The electric field in Eq. (21) is obtained from the elec-
tron equations of motion. The steady state solution of
Eq. (19), valid when t� Ω−1ce , leads to

uθ,e(r) =
Ωcer

2
. (29)

Substituting this into Eq. (18), and neglecting the Burg-
ers’ term, ur,e∂ur,e/∂r ≈ 0, leads to an expression for the
electric field

∂Φ

∂r
=
me

e

Ω2
ce

4
r +

kBTe
e

1

ne

∂ne
∂r

. (30)

For typical experimental conditions, when B > 0.005 T,
n−1e ∂ni/∂r ≈ −r/σ2

0 , and Te = 96 K, the two terms on
the right hand side of Eq. (30) are of the same order
of magnitude. When B = 0, ∂Φ/∂r is negative. For
B > 0.005 T, it is positive and scales as B2. Substituting
Eq. (30) into Eq. (21) we have

∂ur,i
∂t

+ ur,i
∂ur,i
∂r

= −me

mi

(
Ω2
ce

4

)
r − c2

ni

∂ni
∂r

(31)

= −
(

1

4

e2B2

memi

)
r + 2

c2

σ2
⊥
r (32)

∂ur,i
∂t

+ ur,i
∂ur,i
∂r

= −
[

ΩceΩci
4

− 2
c2

σ2
⊥

]
r, (33)

where c =
√
kBTe/mi and have used the density distri-

bution from Eq. (24). Finally, by using ur,i = r
σ⊥

∂σ⊥
∂t

from the continuity equation we arrive at

∂2σ⊥
∂t2

= −ΩceΩci
4

σ⊥(t) + 2
kBTe
mi

1

σ⊥(t)
(34)

In the above equation, Te = Te(t) and is dominated by
adiabatic expansion in the parallel direction. The tem-
perature equation is,

∂Te
∂t

+ ue ·∇Te = −2Te∇ · ue

= 2
Te
ne

[
∂ne
∂t

+ ue ·∇ne
]
. (35)

Using the self-similar density from Eq. (24) and invoking
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TABLE II. Table of assumptions made in each model. For both the self-similar and ambipolar diffusion models, we list the
physical quantities represented in the plasma equations, the assumptions made, and the mathematical consequences.

Physics B = 0 Self-similar Ambipolar Diffusion

Quasi-neutrality ne ≈ ni ne ≈ ni

e momentum eqn ∂ue/∂t = 0, ue ·∇ue ≈ 0, ue ≈ ui ∂ue/∂t = 0 ue ·∇ue ≈ 0, ue 6= ui

→∇Pe = eneE →∇Pe = eneE + neνei(ue − ui)

ion momentum eqn Pi = 0, ue ≈ ui ∂ui/∂t = 0 ue ·∇ui ≈ 0, ue 6= ui

→ ∂ui/∂t+ ui ·∇ui = qniE →∇Pi = qniE + neνie(ui − ue)

e pressure adiab: Pe(r, t) = ne(r, t)kBTe(t) no adiabatic
isotherm: Pe(r, t) = ne(r, t)kBTe isotherm: Pe(r) = ne(r, t)kBTe

ion pressure Pi = 0 isotherm: Pi = nikBTi

an isothermal approximation (∇Te = 0) gives,

1

Te

dTe
dt

= 2
1

ne

[
∂ne
∂t

+ ue ·∇ne
]

=

(
4z2

σ2
‖
− 2

)
1

σ‖

dσ‖

dt
− 4

z

σ2
‖
uz

= −2
1

σ‖

dσ‖

dt
(36)

The solution to this equation is,

Te = Te0

(
σ0
σ‖

)2

. (37)

Substituting this into Eq. (34) gives,

d2σ‖

dt2
=

2c20σ
2
0

σ3
‖

(38)

d2σ⊥
dt2

= −ΩceΩciσ⊥
4

+
2c20
σ⊥

σ2
0

σ2
‖
, (39)

where c0 =
√
kBTe0/mi. As the magnetic field strength

increases, the left-hand side of Eq. (39) tends toward
zero. In this limit,

σ⊥(t) =
c0σ0

σ‖(t) eB

√
8mime. (40)

Making the time-dependence explicit, Eq. (3), and tak-
ing the late time limit, we find

σ⊥(t) =
c20

eBσ0

√
8memi t, (41)

≡ vexpt (42)

In the inset to Fig. 7b, the power-law fit with p = 1 gives

vexp =
0.04± 0.01 T ·m/s

B − (0.003± 0.002 T)
, (43)

where the uncertainties indicate the estimated statisti-
cal errorbars in the fit parameters. The prediction of
Eq. (42) is

vexp ∼
0.2 T ·m/s

B
, (44)

about a factor of 5 faster than the model prediction. Also
of concern is that the small-B solution of Eq. (39) is
unphysical because it predicts that σ⊥ oscillates in time.

VI. DISCUSSION

In this paper we present measurements of UNP expan-
sion in a strong magnetic field. We show that the cross-
field expansion, σ⊥, is self-similar and Gaussian. This
agrees with results reported in Ref. [37]. The present
work extends that of Ref. [37] by probing much stronger
fields, specifically 17× stronger.

We show that plasma expansion along the magnetic
field lines is Gaussian and self-similar. The present re-
sults are limited to measurements near the center of the
plasma in the parallel direction.

Our experimental results are compared to two theoret-
ical models. Both models predict behavior that does not
match the experimental results. We show that ambipo-
lar diffusion does not produce a self-similar expansion.
Although this model was invoked in Ref. [37], it is inap-
propriate for UNPs. The diffusion model assumes that
electron and ion motion is strongly damped by collisions
with neutral atoms, a condition that is not met for UNPs.

We extend an explicitly self-similar expansion model
to include a uniform magnetic field. We explicitly re-
tained the time-dependent momentum equation, some-
thing that is missing in the diffusion equation (see Table
II). The ion equations of motion are therefore second-
order in time, making wavelike solutions possible. In the
large B limit, this model predicts that the asymptotic
expansion velocity scales as B−1, although with a larger
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prefactor than the experiment suggests. At smaller val-
ues of B this model predicts that σ⊥(t) is an oscillating
function of time.

These UNP results demonstrate that simple self-
similar models can only predict limited aspects of the
plasma expansion physics. The disagreement between
the models and the experimental results call the ap-
proximations and essential physics of the models into
question. Future theoretical and computational work is
clearly needed in this area. The present work suggests
that the lowest-order simple models fail to capture the
essential physics of magnetized plasma expansion. The
next simplest approach requires a numerical magneto-
hydrodynamic or kinetic theory solution. Future exper-
imental work could measure spatially-resolved ion tem-
perature and density. The present work uses a large di-
ameter probe laser beam, averaging the plasma density in

the x direction. It may be that spatially resolved temper-
ature and density measurements could provide more in-
sight into the plasma expansion dynamics, hydrodynamic
velocity field, and collision energetics. Future work could
also probe a wider range of density and initial electron
temperature to more fully map the parameter space.

VII. ACKNOWLEDGMENTS

We would like to thank Dr. Ross Spencer for use-
ful conversation. R.T.S. and S.D.B. acknowledge sup-
port from the U.S. Air Force Office of Scientific Re-
search Grant No. FA9550-17-1-0302 and the National
Science Foundation Grant No. PHY-2009999. M.S.M.
and L.G.S. were supported by the U.S. Air Force Office
of Scientific Research Grant No. FA9550-17-1-0394.

[1] E. V. Crockett, R. C. Newell, F. Robicheaux, and D. A.
Tate, Phys. Rev. A 98, 043431 (2018).

[2] S. D. Bergeson, S. D. Baalrud, C. L. Ellison, E. Grant,
F. R. Graziani, T. C. Killian, M. S. Murillo, J. L. Roberts,
and L. G. Stanton, Physics of Plasmas 26, 100501 (2019).

[3] T. K. Langin, G. M. Gorman, and T. C. Killian, Science
363, 61 (2019).

[4] M. A. Viray, S. A. Miller, and G. Raithel, Phys. Rev. A
102, 033303 (2020).

[5] T. Kroker, M. Großmann, K. Sengstock, M. Drescher,
P. Wessels-Staarmann, and J. Simonet, Nature Commu-
nications 12 (2021), 10.1038/s41467-020-20815-8.

[6] P. McQuillen, T. Strickler, T. Langin, and T. C. Killian,
Physics of Plasmas 22, 033513 (2015).

[7] G. Bannasch, J. Castro, P. McQuillen, T. Pohl, and
T. C. Killian, Phys. Rev. Lett. 109, 185008 (2012).

[8] T. S. Strickler, T. K. Langin, P. McQuillen, J. Daligault,
and T. C. Killian, Phys. Rev. X 6, 021021 (2016).

[9] T. Sprenkle, A. Dodson, Q. McKnight, R. Spencer,
S. Bergeson, A. Diaw, and M. S. Murillo, Phys. Rev.
E 99, 053206 (2019).

[10] W.-T. Chen, C. Witte, and J. L. Roberts, Phys. Rev. E
96, 013203 (2017).

[11] P. Jiang and J. L. Roberts, Physics of Plasmas 26, 043513
(2019).

[12] M. Aghigh, K. Grant, R. Haenel, K. L. Marroqúın,
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