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We show that disordered boundaries destroy bulk phase separation in scalar active systems in
dimension d < dc = 3. This is in strong contrast with the equilibrium case where boundaries
have no impact on the bulk of phase-separated systems. The underlying mechanism is revealed by
considering a localized deformation of an otherwise flat wall, from which the case of a disordered
boundary can be inferred. We find long-ranged correlations of the density field as well as a cascade
of eddies which we show prevent bulk phase separation in low enough dimensions. The results are
derived for dilute systems as well as in the presence of interactions, under the sole condition that
the density field is the unique hydrodynamic mode. Our theoretical calculations are validated by
numerical simulations of microscopic active systems.

I. INTRODUCTION

Active matter refers to a class of non-equilibrium sys-
tems in which individual particles are self-propelled due
to an irreversible consumption of energy. Their physics
is relevant to systems ranging from biological to man-
made materials [1–7]. They have attracted much atten-
tion since they exhibit a host of novel collective behaviors
which cannot be found in equilibrium systems. Examples
range from the transition to collective motion, through
low-Reynolds turbulence, to motility-induced phase sep-
aration (MIPS) [4, 7–26]. The latter corresponds to the
ability of active systems to phase separate, even when
there are no attractive interactions between the particles.

It has been long realized, experimentally and theoret-
ically [5, 27–33] that the shapes of boundaries in active
systems lead to interesting effects, from the rotation of
asymmetric gears [34, 35] to the emergence of ratchet cur-
rents [5, 36]. It is tempting to assume that these effects
are localized to the wall, on microscopic scales set by the
particles’ persistence lengths, the potential shapes, and
the correlation lengths set by interactions. Consequently,
much of the theoretical work on bulk collective behaviors,
in particular for dry scalar active matter, has focused on
systems which are either infinite or subject to periodic
boundary conditions [4, 37, 38]. The underlying salient
assumption is that, much like in equilibrium, the pre-
cise nature of the boundaries only affects a sub-extensive
region in macroscopic active systems and thus does not
influence their bulk behaviors.

In this article, we show that this is generically not the
case, even for dry, scalar active matter where boundaries
are expected to have the weakest influence. This is il-
lustrated in Fig. 1 which compares the fate of passive
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and active phase separation in the presence of a disor-
dered wall. As expected [39], the disordered boundary
leaves the phase-separated equilibrium system unaffected
(Fig. 1a-d). In striking contrast, the disordered wall
washes out phase separation in the active case (Fig. 1e-
h), thus strongly altering the phase diagram. In fact, we
demonstrate that phase separation is destroyed by disor-
dered boundaries in dimension d < dc = 3. As we show
below, this is a result of disordered boundaries inducing
scale-free density modulations and eddy cascades deep in
the bulk of active systems. These can already be seen,
upon close inspection, in the dilute limit, as illustrated in
Fig. 2, showing that disordered boundaries do not solely
lead to the localized effects that had been reported ear-
lier [36, 40–42].

To investigate the physics behind the numerical results
reported in Figs. 1 and 2, we start, in Sec. II, by con-
sidering a dilute system in the presence of a localized
deformation on an otherwise flat wall. We show that it
induces non-standard boundary conditions on the density
and current fields. Using appropriate Green’s functions,
we show that the perturbation induces a long-range mod-
ulation in the steady-state density profile, which we char-
acterize in the far field limit. We then show in Sec. III
how these results allow us to describe a disordered wall
and to evaluate the disorder-averaged two-point corre-
lation functions of the density and current fields. These
results, first derived in the dilute limit in Sec. III are then
generalized to interacting systems in Sec. IV. Finally, we
show in Sec. V that, even though the density modula-
tions and currents decay as power laws in the bulk of the
system, they are sufficient to destroy MIPS in dimension
d < dc = 3. In practice, the wall creates a disordered
combination of long-range attractive and repulsive forces
that prevent both bulk phase separation as well as a uni-
form wetting of the wall by a dense phase.
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FIG. 1. Impact of flat (a & e) and disordered walls (b & f) on phase separation in passive (a & b) and active (e & f) systems.
In the presence of attractive interactions, simulations of a passive lattice gas at low temperature shows phase separation in
both settings (panels c and d). In contrast, simulations of an active lattice gas (panel h) show that the disordered boundary
destroys the phase separation observed in the presence of a flat wall (panel g). Color encodes density; see Appendix A for
further numerical details.

FIG. 2. Steady-state density and currents for run-and-tumble particles on a lattice, in the presence of a disordered wall at x = 0
and periodic boundary conditions along the ŷ direction. The disordered wall is modelled as a random potential which vanishes
for x larger than the particle persistence length `p; for other numerical details, see Appendix A. (a) Particle density ρ(x, y)
in the full system, normalized by the average density. Lengths are rescaled by the particle run length `p. Note the presence
of a strong density accumulation close to the wall at x = 0 that is modulated by the disorder. The color code corresponds to
ρ(x, y)/ρ0. (b) Density modulation φ(x, y) ≡ ρ(x, y) − 〈ρ(x)〉 in the bulk of the system, where 〈ρ(x)〉 is the average density
at a distance x from the wall, normalized by the standard deviation of the density modulation δφ. The density modulations
extend deep in the bulk of the system, far beyond the microscopic scales set by the particle run length and the disordered wall.
(Note that the x axis starts at 5 run lengths from the wall.) (c) Current along the ŷ direction in the full system, normalized
by the current standard deviation δJy. At this scale, a localized current flowing along the wall is observed, as expected from
the existing literature [36]. (d) A close-up on the bulk region shown in panel (b) reveals the existence of large eddies whose
scales increase with the distance from the wall.



3

II. LOCALIZED DEFORMATION ON A FLAT
WALL

A. Two dimensions

In this section, we focus on the theoretical models of
non-interacting Active Brownian Particles (ABPs) and
Run-and-Tumble Particles (RTPs). For simplicity, our
calculations are carried out in two dimensions, and we
present the results for higher dimensions in the next sub-
section. Each active particle follows the Langevin dy-
namics

dri
dt

=vu(θi)− µ∇V (ri) +
√

2Dtηi (t) , (1)

dθi
dt

=
√

2Drξi(t) , (2)

where ri is the position of particle i, v its self-propulsion
speed, and u (θi) = (cos θi, sin θi) its orientation. The
particle mobility is denoted as µ while Dt and Dr are
the translational and rotational noise amplitudes. Fi-
nally, ηi and ξi are Gaussian white noises of unit vari-
ance and zero mean. In addition, the particle heading
undergoes complete random reorientations, called tum-
bles, with rate α. ABPs and RTPs correspond to the
limiting cases α = 0 and Dr = 0, respectively. The walls
are modelled through the external potential V (r). Our
theoretical computations are carried out in a semi-infinite
domain x > 0 in the presence of a flat wall, perpendic-
ular to the x̂ direction, assuming a bulk density ρb at
x = +∞. An asymmetric obstacle of characteristic size
a, representing a localized deformation of the wall, is lo-
cated at y = 0, as illustrated in the inset of Fig. 3a. The
obstacle is modelled as a potential U(r) which is included
in V (r).

In this section we show that this deformation induces
a steady-state density modulation whose far-field expres-
sion is given by:

ρ (r) '
x�a,`p

ρb +
µ

πDeff

yp

r2
+O(1/r2) . (3)

Here, r =
√
x2 + y2 is the distance from the deformation,

Deff = Dt + 1
2v`p is the effective diffusion coefficient, and

`p = v/ (α+Dr) is the particle’s persistence length. The
scale of the modulation is set by p, which measures the
net force exerted by the obstacle on the active particles
along the wall through

p = −
∞∫

0

dx′
∞∫
−∞

dy′ ρ (r′) ∂′yU . (4)

p is generically non-zero for asymmetric obstacles, when
v 6= 0. In the following, we refer to p ≡ pŷ as the force
monopole induced by the obstacle. Note that p indirectly
depends on all microscopic parameters of the dynamics—
and in particular the self-propulsion speed v—through

ρ(r′). In particular, when v vanishes, ρ(r) is given by the
Boltzmann weight so that ρ(r′)∂′yU ∝ ∂′ye

−βU , with a
y-independent prefactor. Consequently, p vanishes upon
integrating over y′ and we recover that there is no long-
ranged modulation of the density field in the passive
case [49].

The density modulation is accompanied by a current,
which is diffusive in the far field J ' −Deff∇ρ, and is
given by

J (r) '
x�a,`p

µ

π

2xyx̂+
(
y2 − x2

)
ŷ

(x2 + y2)
2 p+O

(
1/r3

)
. (5)

Equation (5) predicts the flow created by a force
monopole on the active fluid: It is the nonequilibrium
diffusive counterpart of the Stokeslet flow in fluid dy-
namics, computed in the vicinity of a hard wall. Our
results are verified and illustrated numerically in Fig. 3.
We now turn to their derivations, which are extended to
homogeneous systems with pair-wise interactions in Ap-
pendix B.

The probability density P(r, θ) to find an active par-
ticle located at r and oriented at an angle θ evolves ac-
cording to the Master equation:

∂tP(r, θ) =−∇ · [vuP − µ∇V P −Dt∇P] +Dr∂2
θP

− αP +
α

2π

∫
dθ′ P (r, θ′) . (6)

For non-interacting particles, the average density field
simply reads ρ (r) =

∫
dθP (r, θ). Integrating over θ

leads to a conservation equation:

∂tρ(r) = −∇ · J , (7)

where the current J is given by

J = vm− µρ∇V −Dt∇ρ . (8)

It is the sum of a diffusive contribution due to trans-
lational noise, an advective current due to the exter-
nal potential, and an active contribution proportional to
m ≡

∫
dθ u(θ)P(r, θ). Far away from the wall and the

obstacle, the active dynamics is diffusive at large scales
so that we expect J ' −Deff∇ρ in the steady state [15].
We can then introduce

J ≡ J +Deff∇ρ , (9)

which measures the difference between J and its bulk
value to recast the conservation equation in the steady
state, ∇ · J = 0, as

Deff∇2ρ = ∇ ·J (r) . (10)

Equation (10) has the appealing feature of being a Pois-
son equation for the density field with a source term
∇·J (r), which is expected to be non-vanishing only close
to the wall and the deformation. This equation, however,
has to be solved self-consistently since J depends on ρ
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and m. Furthermore, a second difficulty comes from the
non-trivial boundary condition imposed by the wall. In-
deed, taking the limit of a hard wall, the component of
the current transverse to the wall has to vanish, so that

Jx (0, y) = (−Deff∂xρ+ Jx)
∣∣
x=0

= 0 , (11)

where Jx is the x-component of J . This is neither a
Dirichlet nor a Neumann boundary condition on ρ, since
J is non-zero at the wall and depends on the density
field. Nevertheless, since ρ by itself is not prescribed
on the boundary, we can still use the Neumann-Green’s
function of the Laplacian,

GN (r1, r2) = − 1

2π
[ln(|r1 − r2|) + ln(|r⊥1 − r2|)] , (12)

to solve this boundary value problem. Here r⊥ ≡ (−x, y)
is the image of r with respect to the wall. Using Green’s
second identity, one finds [43]

ρ(r) =− 1

Deff

∞∫
0

dx′
∞∫
−∞

dy′GN (x, y;x′, y′)∇′ ·J ′

−
∞∫
−∞

dy′GN (x, y; 0, y′)∂′xρ
′
∣∣∣∣
x′=0

+ ρb , (13)

where ∂′i = ∂
∂r′i

and g′ = g (r′) for any function g(r).

Note that there are two important differences between
the solution (13) and the density modulation that would
be observed around an isolated obstacle in the bulk of
an active fluid [44]. First, the Green’s functions differ
between these two cases. Second, the surface integral in
the second line of Eq. (13) would be absent in a bulk
problem. Here, it ensures that no current flows through
the wall.

Let us now analyze the behaviour of Eq. (13) in the
far field, i.e. when |x − x′| � `p, a. We first split the
divergence of J ′ as ∇′ ·J ′ = ∂′xJ ′x + ∂′yJ ′y and consider

the contribution of ∂′xJ ′x. Since J ′ is, to leading or-
der, non-zero only close to the wall, the Green’s function
GN (x, y;x′, y′) can be expanded in x′ around x′ = 0:

GN (x, y;x′, y′) ' GN (x, y; 0, y′) +
x′

2

2

∂2GN (x, y; 0, y′)

∂x′2
,

where have used ∂′xGN (x, y; 0, y′) = 0 by symmetry. In
the far field, (x′)2(∂′x)2GN � GN so that we neglect the
second order derivative. The integral over x′ in Eq. (13)
can then be carried out explicitly and, using Eq. (11), it
directly balances with the surface integral, leading to

ρ(r) '
x�`p,a

ρb −
1

Deff

∞∫
0

dx′
∞∫
−∞

dy′GN (x, y;x′, y′)∂′yJ ′y .

(14)
To evalute Eq. (14), we multiply Eq. (6) by u and

integrate over θ to show that, in the steady state, v
µm =

y
/ℓ

p

x/ℓp

y
/ℓ

p

(a)

(b)

FIG. 3. Density and current of RTPs near a flat wall in the
presence of an isolated deformation. (a) The color encodes
the density modulation φ(x, y) = ρ(x, y) − 〈ρ(x)〉. The solid
lines are contour lines plotted every δφ = 1.25×10−2 from the
numerical data. They are compared with the corresponding
theoretical predictions of Eq. (3), shown by the dashed lines.
p is measured numerically so that there is no fitting parame-
ter. (b) Streamlines of current measured in simulations (gray
solid lines), compared to the theoretical prediction Eq. (5) (in
dashed lines). For simulation details, see Appendix A.

∇ · σa, where

σaij = −`p
µ

[
vδijρ

2
+ vQij − (µ∂jV +Dt∂j)mi

]
(15)

is known as the active pressure [45–48] and we have in-

troduced Qij(r) ≡
∫
dθ (uiuj − δij

2 )P(r, θ). From the
definition of J , one then has:

∂′yJ ′y = ∂′y[−µρ∂′yV +µ∂′yσ
′
yy+µ∂′xσ

′
xy+

v`p
2
∂′yρ] . (16)

To estimate the leading order contribution to the inte-
gral in Eq. (14), we use Eq. (16) and integrate by parts.
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The three last terms in Eq. (16) lead to two integrations
by parts, hence involving the second order derivative of
GN . In the far field, they can, again, be neglected in
comparison to the leading order term, which reads

ρ(r) '
x�`p,a

ρb −
µ

Deff

∞∫
0

dx′
∞∫
−∞

dy′ ρ′∂′yU
′∂′yGN (x, y;x′, y′) .

(17)
Here, we have used that U is the only contribution to
the potential that is not invariant by translation along y.
Using the expression (12) for GN leads, to leading order
in the far field, to Eq. (3).

Remarkably, while we embarked to solve the rather
cumbersome problem posed by Eqs. (9) and (10) with
the boundary condition (11), the far-field solution (3)
can be obtained by solving a simpler problem:

Deff∇2ρ = µ∇ · [pδ(r)] (18)

with p the force monopole exerted by the deformation
and a standard Neumann boundary condition. Thanks to
this simplification, the problem of non-trivial boundaries
can now be solved in higher dimensions and for more
complex geometries with ease.

B. Higher dimensions

Using Eq. (18), or repeating the above calculation, in
higher dimensions leads to

ρ (r) ∼ ρb +
2µ

DeffSd

r · p
rd

+O
(
1/rd

)
(19)

J (r) ∼ 2µ

Sd

d (r̂ · p) r̂ − p

rd
+O

(
1/rd+1

)
, (20)

where Sd = (2π
d
2 )/Γ

(
d
2

)
and p is the force monopole

exerted by the obstacle on the active particles along the
wall:

p = −
∫
ddr ρ(r)∇‖U(r) . (21)

Here ∇‖ = ∇ − x̂∂x is the derivative operator acting
parallel to the wall. Equations (19) and (20) show that
the density modulation and flows induced by a localized
deformation of a flat wall are solely controlled by the force
monopole p exerted by the deformation on the active
particles along the wall, induced by asymmetry of the
obstacles.

III. DISORDERED BOUNDARIES IN DILUTE
ACTIVE SYSTEMS

We now extend the results from an isolated defor-
mation to the case of a disordered wall. The latter is
modelled as a potential V (x, r‖), where r‖ is a (d − 1)-
dimensional vector parallel to the wall. The potential

is infinite for x < 0 and is localized inside the inter-
val [0, xw]. In that region, V (x, r‖) is drawn from a
random, bounded distribution with a finite correlation
length a. As we now show, the far-field modulation of
the density field and the current generated by this disor-
dered boundary are identical to those generated by force
monopoles randomly placed along a flat wall and parallel
to it. To do so, we first compute analytically the current
and density modulations created by such random force
monopoles and later compare them with microscopic nu-
merical simulations.

A. Long-range density correlations

Consider a continuous, quenched, Gaussian random
variable, f(r‖), describing the force-monopole density
along the wall, whose disorder-average satisfies:

fi
(
r‖
)

= 0 ,

fi
(
r‖
)
fj
(
r‖′
)

= 2p2δ
‖
ijσ

2δ(d−1)
(
r‖ − r‖

′) , (22)

with p setting the scale of the force, σ2 ' a1−d an inverse
area related to the microscopic correlation length of V ,

δ
‖
ij = 1 if i = j 6= x, and δ

‖
ij = 0 otherwise. To determine

the density modulations, we rely on Eq. (18) and solve

Deff∇2ρ = −µ∇ · [f(~r‖)δ(x)] , (23)

with a Neumann boundary condition. In the far field,
this leads to:

ρ
(
x, r‖

)
≈ ρb +

2µ

DeffSd

∫
dd−1r‖

′
(
r‖ − r‖

′) · f (r‖′)[
x2 +

∣∣r‖ − r‖′
∣∣2] d

2

.

(24)

We first note that, on average, ρ (r) ≈ ρb in the far
field: a disordered wall thus does not generate a system-
atic density modulation in the far field. However, a non-
trivial structure is revealed by computing the disorder-
averaged two-point connected correlation function:

ρ(x, r‖)ρ(x′, r‖′)c =
1

Sd

(
2µpσ

Deff

)2
(x+ x′)[

(x+ x′)
2

+
∣∣∆r‖

∣∣2] d
2

,

(25)
where ∆r‖ = r‖ − r‖

′. This equation predicts large-scale
density modulations which decay in amplitude—but in-
crease in range—as one moves away from the wall. To see
this, consider the case in which x = x′. For ∆r‖ = 0, the

two-point function decays as ρ(x, r‖)ρ(x, r‖)c ∼ 1/xd−1,
showing that the disorder-induced density fluctuations
are stronger close to the wall. The transverse correla-
tions of these fluctuations, however, only decay when
|∆r‖| � 2x: their correlation length thus increases with
the distance from the wall.

These results are qualitatively illustrated and quan-
titatively checked in Fig. 4 using microscopic simula-
tions which demonstrate the relevance of the model (22)
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for disordered boundaries. First, we measure numeri-
cally ρ(x, r‖)ρ(x, r‖′)c which we fit against the right-hand

side of Eq. (25) to extract the value of σ. The numeri-
cal data, normalized by the prefactor 4µ2p2σ2/(SdDeff),
are then shown to match the contour lines predicted by
Eq. (25). A more quantitative comparison can be ob-
tained by noticing that the correlation function can be
rescaled as:

ρ(x, y)ρ(x, y + ∆y)c
ρ(x, y)ρ(x, y)c

=
1

1 +
(

∆y
2x

)2 ≡ S
(

∆y

x

)
, (26)

leading to a scaling form. Figure 4(b) shows the quan-
titative agreement between the numerical data and the
prediction of Eq. (26).

B. Current cascade

Another interesting way to interpret these results is
to consider the impact of the disordered boundary on
the particle current. On a microscopic scale close to the
wall, the random forcing induced by the disorder stirs
the active medium. The conservation law for the density
field then turns this microscopic stirring into large-scale
eddies in the bulk of the system. This cascade structure
can be quantified by analysing the statistics of the steady-
state currents. In the bulk of the system, the large-scale
current can be estimated as [15]:

J
(
x, r‖

)
≈ −Deff∇ρ

(
x, r‖

)
. (27)

Using Eqs. (24) and (27), and performing a Fourier trans-
form with respect to r‖, leads to:

Jx
(
x,q‖

)
= −iµq‖ · fq‖ e−|q‖|x (28)

Jk
(
x,q‖

)
= sign(q‖,k)µq‖ · fq‖ e−|q‖|x (29)

where k describes one of the d − 1 dimensions parallel
to the wall and fq‖ ≡

∫
dd−1r‖f(r‖)e

−iq‖·r‖ . Taking a

disorder average and using Eq. (22) then leads to

J
(
x,q‖

)
· J∗

(
x,q‖′

)
= 2d (µσp)

2 ∣∣q‖∣∣2 e−2|q‖|x×
× (2π)

d−1
δ(d−1)

(
q‖ + q‖

′) .
(30)

This result shows that, for a given value of x, the
current-current correlations first increase for small |q‖|
before they are exponentially suppressed by the term
exp(−2|q‖|x). The larger the value of x, the smaller the
values of |q‖| for which the peak of the correlation func-
tion is observed, revealing eddies on larger and larger
scales as x increases. This explains the large-scale struc-
tures exhibited by the current in Fig 2. Our predic-
tions (30) are verified quantitatively in Fig. 5, using a
scaling form similar to that of Eq. (26).

y
/ℓ

p
 

∆

x/ℓp

(b)

 ∆y/x

x/ℓp

ρ(x, 0)ρ(x,∆y)c/Aρ

S(
∆
y
/x

)

(a)

FIG. 4. Disorder-averaged two-point density correlation
function of non-interacting RTPs in two-dimensions in the
presence of a disordered wall at x = 0. (a) The two-
point correlation function as x and ∆y are varied, calculated
from simulations, is shown by the color map. The value of
Aρ ≡ `pS−1

d (2µpσ/Deff)2 is obtained from a fit of the data to
Eq. (25). The latter includes a constant offset due to finite-
size corrections, which is calculated exactly in Appendix C.
The theoretical prediction of Eq. (25) is then used to produce
dashed contour lines that match the levels of the color bar.
Both theory and simulations are normalized by Aρ. (b) A
verification of the scaling form (26) for the density-density
correlation function. The data shown in panel (a) for four
different distances x from the wall are collapsed onto a single
curve, as predicted. See Appendix A for numerical details.

C. Other geometries

The methodology presented above can be extended
to other boundary shapes. For instance, a corrugated
border that repeats periodically along the ŷ direction
is studied in Appendix C. Our analytical results show
the large-scale density-density correlations to be expo-
nentially suppressed at a distance corresponding to the
periodicity of the potential. This explains why localized
currents had been reported in the presence of periodic



7

x|qy|

x/ℓp
x
2
J
(x
,q

y
)
·J

(x
,−

q y
)/
A

J

FIG. 5. Fourier transform along the ŷ direction of the
current-current correlation function measured at a distance
x from the wall and averaged over disorder. The data are
measured for three values of x and normalized by a factor
AJ ≡ 2d(2π)d−1(µσp)2. As predicted by our theory, the
data can be collapsed onto a single curve, corresponding to
Eq. (30), by properly scaling the abscissa and the ordinates.
See Appendix A for numerical details.

asymmetric walls [36], instead of the cascade structure
revealed in the previous section.

Another important case pertains to multiple inter-
fering boundaries. For example, Figure 6 shows the
disorder-averaged correlation functions at x′ = x for non-
interacting RTPs between two disordered walls, with a
periodic boundary condition in the ŷ direction. The an-
alytic expression for the correlation function is calculated
and given in Appendix D. In the bulk of the system, the
interplay between the two walls leads to a decrease of
the transverse correlations and to their suppression in
the vicinity of x = Lx/2. This highlights how bound-
aries can control the bulk behaviours of active systems
as well as the importance of properly including them in
the theoretical description of active matter.

IV. DISORDERED BOUNDARIES IN
INTERACTING ACTIVE SYSTEMS

To study the influence of disordered boundaries on in-
teracting active-matter systems, we rely on a linear field
theory that builds on the force-monopole picture pre-
sented above. Our results are then validated using a
self-consistency argument and by the explicit compari-
son with microscopic numerical simulations.

A. Linear field theory

To proceed, we consider a system of active particles at
an average density ρb in d space dimensions and consider
the density-fluctuation field φ(r) ≡ ρ(~r)− ρb. The parti-
cles are in contact with a d − 1 dimensional wall with a
random potential along it. Since the number of particles

y
/ℓ

p
 

∆

x/ℓp

ρ(x, 0)ρ(x,∆y)c/Aρ

FIG. 6. Disorder-averaged two-point density correlation
function of non-interacting RTPs measured in the presence
of two disordered walls at x = 0 and x = 20`p. Peri-
odic boundary conditions are imposed along the ŷ direc-
tion. The correlation function is normalized by a factor
Aρ ≡ `pS

−1
d (2µpσ/Deff)2. Simulation results are shown as

a color map and compared to the analytic predictions of
Eq. (D2) (dashed contour lines). See Appendix A for nu-
merical details.

is conserved, φ(r) undergoes model-B type dynamics

∂tφ(r, t) = −∇ · J(r, t) , (31)

J(r, t) = −∇g[φ] + f(r) +
√

2Dη(r, t) . (32)

Here, J(r, t) is a current and g[φ] plays the role of a
chemical potential. We first consider a linear theory in
which

g[φ(r, t)] = uφ(r, t)−K∇2φ(r, t) , (33)

where η(r, t) is a unit Gaussian white-noise field satisfy-
ing

〈ηi(r, t)ηj(r′, t′)〉 = δijδ
d(r− r′)δ(t− t′) , (34)

the mobility has been set to be one, and K > 0 for sta-
bility. As argued in the previous section, on a coarse-
grained scale, the quenched random potential of the
boundary amounts to a random force field along the wall.
We account for it through a quenched random force-
density field f(r) that is parallel to the wall and satisfies

fx(x, r‖) = 0 , (35)

fi(x, r‖) = 0 , (36)

fi(x, r‖)fj(x′, r′‖) = 2s2δijδ(x)δ(x′)δ(d−1)(r‖ − r′‖) ,

where i and j label directions parallel to the wall. Note
that, in contrast to Eq. (22), we have included the factor
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 ∆y/x

S(
∆
y
/x

)
x/ℓp

FIG. 7. Scaled density-density correlation function defined in
Eq. (26) for interacting RTPs. The simulation results, shown
in symbols, are obtained by varying ∆y at fixed x. The solid
line corresponds to the theoretical prediction of Eq. (26). See
Appendix A for numerical details.

δ(x) in the definition of f(r). Finally, the strength s of
the random force is allowed to depend on ρb but is, to
leading order, independent of φ.

As detailed in Appendix E, the structure factor
S(q,q′) ≡ 〈φ(q)φ(q′)〉 can be directly evaluated, lead-
ing to:

S(q,q′) =
2s2(2π)d−1|q‖|2δ(d−1)(q‖ + q′‖)

q2q′2(u+Kq2)(u+Kq′2)

+
2D(2π)d−1δd(q + q′)

(u+Kq2)2
(37)

where the brackets denote a steady-state average. Inter-
estingly, the long-wavelength behavior is controlled by
the random forcing term so that the small q behavior is
given by

S(q,q′) ∼ (2π)d−1 2s2|q‖|2
u2(qq′)2

δd(q‖ + q′‖) . (38)

In particular, in the limit q2, q′2 � u/K, the correlation

function 〈φ(r)φ(r′)〉—obtained by performing an inverse
Fourier transform on Eq. (37)—agrees with Eq. (25).
This allows us to identify s/u = 2µpσ/Deff as the
strength of the random forcing in the dilute regime.

B. Self-consistency of the linear field-theory.

We now check the self-consistency of our linear theory
against the addition of non-linear terms in g[φ]. To do
this, we consider

g[φ(r, t)] = uφ(r, t)−K∇2φ(r, t) + gφn(r, t), (39)

with n ≥ 2, and examine the scaling of the coefficient of
g under the rescaling

r→ br, t→ bzt, φ→ bχφ . (40)

The dynamic exponent z = 2 is diffusive [64]. At the
fixed point of the linear theory, Eq. (38) has to be pre-
served under rescaling. The coupling (s2/u2) in Eq. (38)
renormalizes as(

s2

u2

)′
= b−2χ−d+1

(
s2

u2

)
, (41)

which sets

χ =
1− d

2
. (42)

The non-linearity is thus rescaled as g → b(n−1)(1−d)/2g.
For d > 1, the term gφn is irrelevant. Note that, consis-
tent with the result of the previous subsection, the term
K∇2φ is also irrelevant, as would any higher order gradi-
ent terms like (∇φ)2. All in all, the linear theory is thus
self-consistent for d > 1. We now turn to the numerical
verification of Eq. (38) using microscopic simulations of
interacting active particles.

C. Numerical results

We performed numerical simulations of the micro-
scopic active lattice gas described in Appendix A in the
presence of partial exclusion. The scaling form of the
correlation function (26) is verified numerically in Fig. 7.
The boundary-induced long-ranged correlations revealed
in dilute active systems are thus robust to the addition
of interactions, hence validating our linear field theory.

The latter describes active systems as long as the den-
sity field remains the sole hydrodynamic field. As such,
the large-noise disordered phases encountered in the pres-
ence of aligning interactions, whether polar or nematic,
will exhibit a similar behavior. In particular, this means
that the bulk large-scale behavior of scalar active matter
in the presence of disordered boundaries is controlled by
the boundary and not by particle interactions.

Our results suggest that the studies of bulk phase tran-
sitions of scalar active systems are likely to yield differ-
ent results depending on the type of boundaries. Unlike
in equilibrium systems, the generalization of results ob-
tained in the presence of periodic boundaries should thus
be questioned. To this end, in the next section we study
the fate of motility-induced phase separation in the pres-
ence of disordered walls.

V. THE EFFECT OF DISORDERED
BOUNDARIES ON MIPS

In equilibrium, it is known that liquid-gas phase sepa-
ration is completely unaffected by the presence of disor-
der on the boundaries of the system [39]. Their contri-
bution to the free energy is indeed sub-extensive so that
it has no influence on the system’s bulk behavior. In
this section we show that, for scalar active systems, the
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FIG. 8. An illustration of the scaling procedure used to con-
struct the Imry-Ma argument. As the system size is increased
by a factor of b, the width of the interface between the phases
is multiplied by bζ . The interface is well defined in the large
system-size limit when ζ < 1.

situation is dramatically different: the long-ranged den-
sity modulations induced by the disordered boundaries
lead to the suppression of bulk phase separation in any
dimensions d < dc with dc = 3.

To show this, we rely on our linear field theory,
Eqs. (31)-(33) and use a Helmholtz-Hodge decomposition
of the random forcing:

f(r) = −∇U(r) + j(r) . (43)

We identify U(r) as an effective potential while j(r) cap-
tures the divergence-free part of the force field. The dy-
namics of Eq. (31) then implies that the statistics of the
density field are insensitive to j(r). Scalar active systems
with disordered boundaries thus share the bulk behaviour
of a passive equilibrium problem with an effective poten-
tial U(r) that we now characterize.

By definition, the effective potential satisfies∇2U(r) =
−∇ · f(r). Using Eq. (35), it is then straightforward to
show that the effective potential obeys

U(r) = 0 , (44)

U(r)U(r′) =
s2

Sd

(x+ x′)[
(x+ x′)2 + |∆r‖|2

]d/2 . (45)

With this in mind, we construct an Imry-Ma argu-
ment [51–53] to determine when a phase-separated pro-
file is stable against boundary disorder. It is well known
that active particles tend to wet hard boundaries so that
the liquid phase is usually localized in their vicinity (see
Fig. 9(a)). We thus study the fate of a macroscopic,
fully wetting layer of the liquid phase when increasing
the system size. Alternatively, we discuss the case of a
macroscopic liquid droplet in the bulk of the system in
Appendix F, which leads to identical conclusions.

To examine the stability of the wetting configurations,
we study the roughness of the interface separating the
dense and dilute phases [54]. Its location is described
by a height function h(r‖), with r‖ being the coordinate
along the wall. Upon rescaling the system size r → br,

the interface width scales as w → bζw. For a phase-
separated configuration to be macroscopically stable, the
roughness exponent must satisfy ζ < 1. Otherwise, the
existence of a well-defined interface is not self-consistent.

To compute ζ, we consider an interface fluctuating
around a mean height h0. The elastic contribution of
the interface to the free energy is given by

Eγ =

∫
Ld−1

dd−1r‖

[γ
2

(
∇h(r‖)

)2]
, (46)

while the change due to the effective potential reads:

EU =

∫
Ld−1

dd−1r‖

∫ δh(r‖)

0

dh′
[
ρ0U(r‖, h0 + h′)

]
,

(47)
where γ is the stiffness of the interface and δh(r‖) ≡
h(r‖) − h0. To proceed, we compare the scalings of Eγ
and EU upon multiplying the system size by a factor of
b. By definition, the latter implies h0 → bh0 and δh →
bζδh. Inspection of Eq. (46) shows that Eγ is rescaled
as Eγ → b2ζ+d−3Eγ . The scale of EU can be estimated

from |EU | ≡
√
E2
U , which leads to EU → b(d−1+2ζ)/2EU .

In a phase-separated system, where the interface is
well-defined, its fluctuations are set by the balance be-
tween Eγ and EU . This requires matching their scaling
exponents, which leads to

ζ =
5− d

2
. (48)

Importantly, phase separation with a smooth interface
requires ζ < 1, which is only possible for d > 3. For
dimensions d < dc with dc = 3, the width of the inter-
face would diverge faster than the size h0 of the domain:
phase separation is no longer possible. MIPS is thus un-
stable against boundary disorder for dimensions d < dc
with dc = 3.

Our predictions above are demonstrated numerically
in Fig. 9 using interacting RTPs on lattice in d = 2. In
Figs. 9a and 9b, we compare the steady-state densities
of RTPs with and without disorder along the wall. (See
Appendix A for details.) In the absence of disorder, a
stable phase separation is observed in the form a macro-
scopic, fully-wetting layer. In contrast, in the presence
of disorder along the wall, a broken interface is observed,
consistent with our Imry-Ma argument. Closer inspec-
tion of the bulk, shown in Fig. 9c, reveals large-scale cor-
relations reminiscent of the non-interacting case. Indeed,
as predicted, the density field in the bulk exhibits long-
ranged correlations consistent with Eqs. (25) and (38).
This is shown in Fig. 7.

Finally, to illustrate dynamically how wall disorder
suppresses phase separation in the bulk of the system,
we report in SM Movie 1 the following numerical experi-
ment. A system is simulated in the presence of flat walls
in the absence of wall disorder, leading to a macroscopic
phase separation. To complement the above discussion,
we choose parameters such that the macroscopic liquid
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FIG. 9. Time-averaged density of interacting RTPs. (a) Density field in the presence of a hard flat wall at x = 0, in the absence
of disorder. (b) The density field in the presence of disorder along the wall. The uniform wetting layer shown in panel (a)
is broken into random patches of varying size that prevent macroscopic phase separation. (c) The same as (b) with a smaller
density range that reveals the long-ranged density modulations in the bulk of the system.

droplet is deep in the bulk of the system. Then, the flat
walls are replaced by disordered ones and the system is
let to relax. The bulk droplet evaporates and is ran-
domly redistributed across the system, consistent with
the Imry-Ma argument of Appendix F.

VI. CONCLUSIONS

In this work, we have shown that disordered bound-
aries exert a surprising influence on the bulk of active
systems, leading to long-ranged correlations, current cas-
cades, and the destruction of bulk phase separation. Our
results are valid for scalar active matter and are robust
to interactions between the particles as long as density
remains the sole hydrodynamic field. This strongly dif-
fers from equilibrium systems in which the influence of
boundaries can generically be discarded (for an inter-
esting exception, see [55]). Our results were derived
for RTPs and ABPs, but they can be straightforwardly
extended to other classes of active particles like active
Ornstein-Uhlenbeck particles [56, 57].

Experimentally, the sensitivity of active matter to
boundaries has attracted a lot of attention in the past [27,
58]. In response, many boundary designs have been sug-
gested to suppress their impact on the system [28]. Our
work shows that boundary effects are not restricted to
finite-size systems and would persist in the thermody-
namic limit. By offering a quantitative way to account
for the influence of boundaries, we instead raise the ques-
tion as to how boundaries can be used to control the bulk
properties of active systems. Answering this challenging
question will require adapting the methodology devel-
oped in this article to more general boundary shapes.
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Appendix A: Numerical simulations

All our numerics on active systems correspond to RTPs
in two dimensions. Our theoretical predictions were suc-
cessfully tested against both off-lattice and on-lattice
simulations. In this article, we solely report the latter
for which larger sizes and times can be reached.

We consider N RTPs with and without interactions on
a two-dimensional lattice of size Lx × Ly. The system is
periodic along the ŷ direction and confined by hard walls
at x < 0 and x ≥ Lx.
Disordered wall: The quenched disordered potential is

modelled by placing wedge-shaped asymmetric obstacles
along the wall, at every δy = `w, whose orientations are
chosen randomly (See Fig 1 for a qualitative illustration).
The obstacles have a finite extent xw in the x̂ direction.

To be more precise, we define Vi ≡ Vx,y the potential
felt by the particles at site i ≡ (x, y). The kth wedge-
shaped obstacles is thus defined by a potential in [0, xw]×
[(k − 1)`w, k`w]:

V ε,kx,y =
Aεy−(k−1)`w

xw
(xw − x)Θ(xw − x) , (A1)

which is a locally linear function of x with an amplitude
Aεy−(k−1)`w

that is a linear function of y. Here, Θ(x) is
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a Heaviside step function and ε = ±1 is chosen at ran-
dom for each value of k with equal probability, to decide
the obstacles orientations. The y-dependent amplitudes
A±y−(k−1)`w

of the kth obstacle is then given by:

A+
y =

∆V

`w
yΘ(y)Θ(`w − y) (A2)

A−y =
∆V

`w
(`w − y)Θ(y)Θ(`w − y) . (A3)

All in all, with these building blocks, the wall disordered
potential Vx,y is given by

Vx,y =

Ly/`w∑
k=1

V εk,kx,y , (A4)

where Ly is chosen to be an integer multiple of `w and εk
is the orientation of the k-th wedge. If the second wall,
at x = Lx, is also disordered, as in Fig. 6, its potential is
obtained by substituting x with Lx − 1 − x in Eq. (A4)
and by sampling independently the orientations along the
wall at x = Lx. This implies that the orientations of the
wedges at x = 0 and x = Lx − 1 are independent of each
other.

RTP lattice simulations: To simulate RTPs on a square
lattice, each particle is assigned an orientation u(θ) =
(cos θ, sin θ) where θ ∈ [0, 2π) and reorients to a new ran-
dom orientation with a rate α. In the absence of inter-
actions and a disordered potential, the active propulsion
of each particle is implemented through a biased hop-
ping of the particles. In practice, a particle hops from
a position i to any of its 2d nearest neighboring sites j
with a rate given by Wi,j = max[vu(θ) · ê, 0]. Here v is
a propulsion speed and ê = j − i. If j lies inside a hard
wall, Wi,j = 0. The presence of a non-zero quenched
potential disorder, Vi, modifies the hopping rates as
Wi,j = max[vu(θ) · ê − (Vj − Vi), 0]. Finally, in simula-
tions where interactions between particles are included,
we take the hoping rates as W int

i,j = Wi,j(1 − nj/nM )
where nj is the number of particles at site j and nM
is the maximal site occupancy. Such interactions are
known to lead to motility-induced phase separation pro-
vided that v/α and the density are large enough [10] and
that nM > 1 [59].

In what follows, we provide parameters and further
details on each figure. We define the average density as
ρ0 ≡ N/(LxLy).

Figure 1: Instantaneous snapshots of site occupancies
of passive and active particles. The passive particles
are simulated with the standard Metropolis Monte-Carlo
rule, with the Hamiltonian given as

H = −
∑
{i,j}

Jninj +
∑
i

Vini (A5)

where the first summation is performed for i and j when
they are the nearest neighbors of each other and each site
can be occupied by at most one particle. On panel (c),

we impose hard wall for x < 0 and Lx ≤ x and on panel
(d), we add disorder potential beside hard walls. (g) and
(h) present snapshots of active particles. On panel (g),
we put hard walls similarly to (c), and the tumble rates
are increased by a factor of 1.5 along the walls to prevent
wall accumulation. On (h), we add disordered walls along
the hard walls. The parameters used are: Lx = 2× 102,
Ly = 5 × 102, nM = 1 for (c) and (d), nM = 2 for (g)
and (h), ρb/nM = 0.45, J = 1.8kBT , v = 9.5, α = 1,
∆V = 6kBT for (c) and (d), ∆V = 22 for (g) and (h),
xw = 10, `w = 3, t0/∆t = 2 × 106 for (g) and (h), and
8× 106 Monte-Carlo sweeps have been performed before
obtaining the snapshots for (c) and (d).

Figure 2: The steady-state density and the current for
a single realization of the disordered wall at x = 0. On
panel (a), the steady-state density ρ(x, y) is defined as
the time average of the number of particles ni at i =
(x, y). On panel (b), we present the density modulation
φ(x, y) ≡ ρ(x, y)−〈ρ(x)〉measured with respect to 〈ρ(x)〉,
defined as the time average of ρ(x) ≡ L−1

y

∑Ly

y=0 nx,y.

On panels (c) and (d), the current along the y-axis
Jy(x, y) is measured as follows. We define hy,i, the num-
ber of particles that hop from i = (x, y) to (x, y + 1)
during a time interval t0, and then evaluate the current
as Jy(x, y) = (hy,i + hyi−1)/(2t0).

The data are normalized using δφ and δJy, which are
the standard deviations of the density and of Jy com-
puted for each site and averaged over the whole lattice.

The parameters used are: Lx = 29, Ly = 29, ρ0 = 0.2,
v = 10, α = 1, ∆V = 20, xw = 10, `w = 4, and t0/∆t =

2× 107 with ∆t = (α+
√

2v + 2∆V )−1 the unit time of
the lattice simulation.

Figure 3: The steady-state density and current stream-
lines for an isolated localized deformation at x = 0. Here,
the deformation is modelled by the potential

Vx,y =
∆V

`w
(y − x)Θ(y − x)Θ(`w + x− y)Θ(xw − x) .

The streamlines shown in Fig. 3(b) are obtained using the
streamline plot module of OriginLab. The parameters
used are: Lx = 2.2×102, Ly = 6.6×102, ρ0 = 1.0, v = 6,
α = 1, ∆V = 10, xw = 6, `w = 5, and t0/∆t = 6× 107.

Figure 4: A plot of the steady-state two-point density
correlation function φ(x, y)φ(x, y + ∆y)c in the presence
of a disordered wall at x = 0. The simulation data used
to evaluate the correlations are coarse-grained, so that
the value of the correlation function at i is obtained by
taking an average over the 5×5 lattice sites centered at i.
The data are then fitted to Eq. (C7) to extract the value
of Aρ ≡ `pS

−1
d (2µpσ/Deff)2. We then normalized the

data by Aρ and added the finite-size correction π`p/Ly
before comparing to the theoretical prediction, consistent
with the finite-size results of Appendix C.

The parameters used are: Lx = 3×102, Ly = 1.5×103,
ρb = 0.2, v = 10, α = 1, ∆V = 20, xw = 10, `w = 4,
t0/∆t = 4 × 106. The disorder average is taken over
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1.3× 103 independent realizations.

Figure 5: Scaling of the current-current correlation
function. To produce this figure, we measure the current
two-point correlation function J(x, y) · J(x, y + ∆y)c
with the current measured using the procedure described
above, but extended to include the current in the x̂ di-
rection. Then, a Fourier transform is carried out along
the ŷ direction.

The parameters used are: Lx = 28, Ly = 210, ρb = 0.2,
v = 10, α = 1, ∆V = 20, xw = 10, `w = 4. t0/∆t = 2×
106. Disorder averages are taken over 8×102 independent
realizations.

Figure 6: The density two-point correlation function
in the presence of two disordered walls at x = 0 and
x = Lx − 1. Similarly to the figure with a single disor-
dered wall, we coarse-grain the data over 5 × 5 lattice
sites. To compare the simulation data and the analytic
expression (D2), we use the strength of the random forc-
ing and the finite-size offset as fitting parameters. The
theoretical contour lines correspond to the boundaries of
the levels of the color bar.

The parameters used are: Lx = 2× 102, Ly = 8× 102,
ρb = 0.2, v = 10, α = 1, ∆V = 20, xw = 10, `w = 4.
t0/∆t = 4×106. Disorder averages are taken over 3×103

independent realizations.

Figure 7: The current two-point correlation function
obtained for interacting RTPs in the presence of a disor-
dered wall at x = 0. The steady-state density is measured
using the procedure described above. The finite-size off-
set of the correlation function is used as a fitting parame-
ter. The parameters used are: Lx = 3×102, Ly = 9×102,
nM = 2, ρb = 0.8, v = 9.5, α = 1, ∆V = 18, xw = 10,
`w = 3, and t0/∆t = 3 × 105. Note that the tumbling
rate is locally enhanced to α = 3 when Vi 6= 0 to reduce
accumulation of the particles along the wall, hence en-
hancing the signal far away from the wall. The disorder
average is taken over 5× 102 independent realizations.

Figure 9: The steady-state density for interacting RTPs
with and without boundary disorder for a single realiza-
tion of disorder. The parameters used are: Lx = 2×102,
Ly = 6 × 102, nM = 2, ρb = 0.9, v = 9.5, α = 1,
t0/∆t = 105. For the panel (a), we set ∆V = 0 and for
the panel (b) and (c), we set ∆V = 18, xw = 10, `w = 3.

SM Movie 1: The system is simulated in the presence
of flat walls until MIPS is observed in the form of a sin-
gle macroscopic liquid droplet coexisting with a gaseous
background. To prevent wall accumulation, the tumble
rates are increased by a factor of 1.5 along the walls. At
t = 0, disorder along the wall is turned on and the system
is let to relax. The parameters used are: Lx = 2 × 102,
Ly = 5×102, nM = 2, ρb = 0.9, v = 9.5, α = 1, ∆V = 22,
xw = 10, `w = 3, t0/∆t = 2× 106.

Appendix B: Multipole expansion for
pairwise-interacting active particles

In this appendix, we generalize the derivation of the
far-field density modulations carried out for noninteract-
ing ABPs and RTPs in section II to allow for pairwise
interactions. The derivation is restricted to systems that
are homogeneous and, for simplicity, it is carried in two
dimensions. The generalization to higher dimensions is
straightforward.

We consider active particles evolving according to the
dynamics

dri
dt

=vu(θi)− µ∇
[
V (ri) +

∑
j 6=i

u(|ri − rj |)
]

+
√

2Dtηi (t) , (B1)

dθi
dt

=
√

2Drξi(t) . (B2)

In addition, the particles’ orientations undergo tumbles
with rate α. Note that, in comparison to Eqs. (1)-(2) of
the main text, we now allow for interactions between the
particles through a pair potential u (|ri − rj |).

To proceed, we use Itô calculus [60] to derive an
equation for the empirical distribution ψ (r, θ, t) =∑
i δ

(2)(ri − r)δ(θ − θi). From this it is straightfor-
ward [21, 61, 62] to write a continuity equation for the av-
erage density field ρ(r, t) = 〈ρ̂(r, t)〉 = 〈∑i δ

(2) (r− ri)〉,
∂tρ = −∇ · J . (B3)

Here, J is the average particle current and is given by

J = −µρ∇V + µ`p∇ · [(∇V )m] + µ∇ · σ , (B4)

where the divergence operator is contracted with
∇V in the second term and mα = 〈m̂α(r, t)〉 =
〈∑i uα (θi) δ

(2) (r− ri)〉. σ appearing in Eq. (B4) can
be interpreted as the stress tensor of the active fluid and
is given by

σij = −Deff

µ
ρδij + σP

ij + σIK
ij , (B5)

with

σP (r) = `p

∫
d2r′∇u (|r− r′|) 〈m̂ (r) ρ̂ (r′)〉

+
Dt`p
µ
∇m (r)− v`p

µ
Q (r) , (B6)

the contribution to the stress tensor due to the lo-
cal ordering of the particles’ orientations. Here, Q =
〈∑i

[
uα (θi)uβ (θi)− 1

2δαβ
]
δ(2) (r− ri)〉 is the nematic

tensor, and

σIK (r) =
1

2

∫
d2r′

r′r′

|r′| u
′ (r′)× (B7)

×
1∫

0

dλ 〈ρ̂ (r + (1 + λ) r′) ρ̂ (r + (1− λ) r′)〉 ,
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is the Irwin-Kirkwood stress tensor. In what follows, we
focus on the steady state where ∂tρ = 0.

Similar to Sec. II, we introduce J σ = J−µ∇·σ, which
allows us to recast Eq. (B3) in the steady state, ∇·J = 0,
as

µ∂i∂jσij = −∂iJ σi . (B8)

Here, summation over repeated indices is implied. Fi-
nally, the boundary condition ensuring a vanishing cur-
rent across the wall can be written as

Jx(0, y) = (µ∂jσxj + J σx )
∣∣
x=0

= 0 . (B9)

In contrast to the derivation of the main text, which
deals with a scalar density field, σ is here a tensor field,
which requires more care. To bring Eq. (B8) to the form
of a Poisson equation, we perform a Helmholtz-Hodge
decomposition, isolating the divergence-less part of the
stress tensor

∇ · σ = −∇Φ +∇×Ψ . (B10)

Here Φ is a scalar potential and Ψ ≡ Ψẑ is a vector po-
tential. Taking the divergence of Eq. (B10) along with
Eq. (B8), one finds that the field Φ obeys Poisson’s equa-
tion

µ∇2Φ = ∇ ·J σ , (B11)

with the boundary condition

µ∂xΦ

∣∣∣∣
x=0

= (J σx + µ∂yΨ)

∣∣∣∣
x=0

, (B12)

similar to the equation satisfied by the density field ρ(r)
in the derivation of Sec. II. From this point on, we follow
the previous derivation closely. The solution of Eq. (B11)
reads

µΦ (r) =−
∞∫

0

dx′
∞∫
−∞

dy′GN (x, y;x′, y′) (B13)

×
[
∇′ ·J σ ′ + µ(∇′ ×∇′) ·Ψ′

]
−
∞∫
−∞

dy′GN (x, y; 0, y′)µ∂′xΦ′
∣∣∣∣
x=0

+ µΦb .

In the expression for µΦ(r), we added (∇′ × ∇′) ·Ψ′ =(
∂′x∂

′
y − ∂′y∂′x

)
Ψ′ = 0 and µΦb, a constant whose physics

we identify later. In the far field |x − x′| � `p, a, we
separate the x′ and y′ components in the first integral of
Eq. (B13) using

∇·J σ+µ(∇×∇)·Ψ=∂x [J σx + µ∂yΨ]+∂y
[
J σy − µ∂xΨ

]
,

and consider the first contribution. It is non-zero, to
leading order, only in the vicinity of the wall and of the
obstacle, and we thus Taylor-expand the Green’s func-
tion in the first line of Eq. (B13) in x′ near x′ = 0. As

(x′)2(∂′x)2GN � GN in the far field, the expansion can
be truncated at zeroth order to find

µΦ(r) '
x�`p,a

µΦb (B14)

−
∞∫

0

dx′
∞∫
−∞

dy′GN (x, y;x′, y′)∂′y
[
J σy ′ − µ∂′xΨ′

]
.

Using the definition of J σ along with the expression for
the current in Eq. (B4), we find that the term appearing
in the integrand of Eq. (B14) is

∂′y
[
J σy ′ −µ∂′xΨ′] = (B15)

µ∂′y
[
−ρ∂′yU + `p∇′ ·

{
(∇′U)m′y

}
− ∂′xΨ′

]
,

where U is the part of the potential that is not invari-
ant under translations along the ŷ direction. We then
integrate Eq. (B14) by parts. The leading order contri-
bution in the far field comes solely from the term involv-
ing ρ∂′yU , as it contains less derivatives. With this, the
scalar potential Φ(r) becomes

Φ (r) '
x�a,`p

Φb +
1

π

yp

r2
+O(1/r2) , (B16)

where p = pŷ is given by the same expression as the force
monopole obtained in Eq. (4) of the main text.

To obtain the density profile, we assume that, in the
far field, the stress tensor is dominated by local contri-
butions. It is then possible to express σ using a gradient
expansion

σ (r) = σ (ρ (r)) +O (∇ρ) . (B17)

Note that the dependence of the solution on Ψ does not
enter explicitly into the expression (B16) for Φ; it can be
shown that while Φ ∼ O (1/r), the contribution from Ψ
is of higher order, namely Ψ ∼ O

(
1/r2

)
(for a detailed

discussion, see Ref. [62]). This makes it possible to obtain
the pressure directly from Eq. (B16), using P = − 1

2Trσ

P (r) = Φb +
1

π

yp

r2
+O

(
1/r2

)
, (B18)

which allows us to identify Φb = Pb with the bulk pres-
sure of the system [21].

Finally, for the steady-state density profile, we note
that, to leading order in the far field, the fluid is
barotropic P (r) ≈ P (ρ (r)). Then, neglecting higher
orders in the gradient expansion, we expand the pressure
near its bulk value

P (r) '
x�a,`p

Pb+(ρ (r)− ρb)P ′ (ρb)+O
(

(ρ− ρb)2
,∇ρ

)
,

(B19)
with ρb the bulk density, [−ρbP ′ (ρb)] the inverse com-
pressibility, and P ′ = ∂P/∂ρ. Inverting this relation, we
find

ρ (r) '
x�a,`p

ρb +
1

πP ′ (ρb)

yp

r2
+O

(
1/r2

)
, (B20)

similar to the expression given in Eq. (3) for non-
interacting particles.
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Appendix C: Periodic walls and finite-size
corrections

In this appendix, we first show that periodic and ape-
riodic walls have very different effects on the surround-
ing active fluid: While aperiodic walls induce long-range
modulations in the bulk of the system, periodic walls only
affect a finite-size boundary layer in their vicinity.

To see this in detail, we consider the effect of periodic
walls on the steady-state density profile. To do so, we
confine the active particles to a semi-infinite cylindrical
shell x > 0, with y periodic along the ŷ direction, with
a period Ly. By computing the Green’s function in this
geometry, it becomes evident that the periodicity leads
to density modulations confined to a region next to the
wall, of typical scale Ly. For simplicity, we present the
derivation in two-dimensions. Note that the main differ-
ence with the derivation of the main text is the different
Green’s function that needs to be used on the cylindrical
shell. As we show, the derivation also allows us to obtain
the finite-size corrections to the density-density correla-
tion function used in the main text. This is important
when comparing our theory to numerical results obtained
in finite systems.

We first consider the case of an isolated deformation lo-
calized at some position y′. To obtain the correct Green’s
function, we note that Eq. (10) possesses conformal in-
variance [63] which allows to employ a conformal map-
ping. Consider first the Neumann-Green’s function given
by Eq (12), which corresponds to a Poisson equation
with a point source located at the origin in the half-plane
(u, v), u > 0 and −∞ < v <∞:

GN (u, v) = − 1

2π
ln(u2 + v2) . (C1)

Next, place the periodic boundary conditions of our cylin-

drical domain to be at (y − y′) = ±Ly

2 , such that they
are equally distant from the source. The mapping be-
tween the two domains is a textbook problem on confor-
mal mappings. Once complexified [? ], it is obtained by
a Schwartz-Christoffel transformation [65] as illustrated
in Fig. 10, which reads:

u(x, y; y′) = sinh

(
πx

Ly

)
cos

(
π (y − y′)

Ly

)
,

v(x, y; y′) = cosh

(
πx

Ly

)
sin

(
π (y − y′)

Ly

)
. (C2)

Let us briefly comment on why this mapping ensures the
correct boundary conditions in the (x, y) cylindrical do-
main. The points (u = 0,−1 < v < 1) are mapped onto
the boundary (x = 0, y). The Neumann boundary con-
ditions in the (u, v) plane then ensures Neumann bound-
ary conditions along the (x = 0, y) segment. Then, the
lines (u = 0, v > 1) and (u = 0, v < −1) are mapped

onto (x, y = y′ +
Ly

2 ) and (x, y = y′ − Ly

2 ), respec-
tively. Since conformal mapping preserve angles, the
Neumann boundary conditions along (u = 0, |v| > 1)

u

v

1

−1 x

y

y′

y′ +
Ly

2

y′ − Ly

2

FIG. 10. To compute the Green’s function in Eq. (C4), we
start from that of a point source close to an infinite wall, given
in Eq. (12). The domain is then transformed using a combi-
nation of conformal mapping techniques and properties of the
Green’s function into the domain shown in the right, where
periodic boundary conditions are used along the ŷ direction.

ensure that the derivatives of the mapped Green’s func-

tion along ŷ vanish at (x, y′± Ly

2 ). Finally, the symmetry
of the Green’s function in the (u, v) plane with respect to
v → −v at u = 0 ensures the periodicity of the mapped
Green’s function.

On the cylindrical shell, the Green’s function of a point
source localized at (0, y′) is thus

G (x, y; 0, y′) =− 1

2π
ln
[
u2(x, y; y′) + v2(x, y; y′)

]
(C3)

=− 1

2π
ln

[
sinh2

(
πx

Ly

)
cos2

(
π (y − y′)

Ly

)
+ cosh2

(
πx

Ly

)
sin2

(
π (y − y′)

Ly

)]
.

(C4)

Finally, using the derivation of the main text, one then
finds that a localized deformation on the wall around
(x, y) = (0, 0) leads to a density modulation that is given
in the far field by

ρ(r) '
x�a,`p

ρb +
µp

DeffLy

sin
(

2πy
Ly

)
cosh

(
2πx
Ly

)
− cos

(
2πy
Ly

) , (C5)

with

p = −
∞∫

0

dx′

Ly∫
0

dy′ ρ (r′) ∂′yU . (C6)

We study this result in two limits. First, we note that,
far from the wall, for x � Ly, the density profile de-
cays exponentially as exp (−2πx/Ly). The long-range
decay observed next to an infinite, aperiodic wall is thus
screened due to the periodic boundary conditions and de-
cays exponentially on a scale set by the wall’s periodicity.

Second, the exact expression for the Green’s function
obtained here allows us to understand how to compare
the simulation results, obtained with a periodic disor-
dered boundary condition along the ŷ direction, with
the two-point correlation function computed in the main
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text (25) for a semi-infinite system. To do so, we calcu-
late the connected two-point correlation function of the
density field and analyze it in the x � Ly limit. In the
steady state, the far-field behavior of the two-dimensional
density profile generated by a disordered wall reads

ρ(x, y)'ρb +
µ

DeffLy

Ly
2∫

−Ly
2

dy′
sin
(

2π(y−y′)
Ly

)
f(y′)

cosh
(

2πx
Ly

)
− cos

(
2π(y−y′)

Ly

) .
Here, f(y) is the force-monopole density, satisfying

f(y) = 0 and f(y)f(y′) = 2p2σ2δ(y − y′), as in Eq. (22).
With this, the disorder-averaged connected pair corre-
lation function can be computed. For a periodicity Ly
much larger than the separation between the points or
their distances from the wall x, x′,∆y � Ly, one finds

ρ(x, y)ρ(x′, y′)c '
2

π

(
µpσ

Deff

)2 [
(x+ x′)

(x+ x′)2 + (y − y′)2

− π

Ly
+O

(
1/L2

y

)]
. (C7)

Note that to leading order in large Ly, this result coin-
cides with the correlation induced by an infinite wall (25),
showing a long-range decay of correlations.

Finally, the fact that the results obtained in the semi-
infinite domain and using periodic boundary conditions
agree up to a constant that decays as 1/Ly is a standard
property of connected correlation functions. Integrating
the left-hand-side of Eq. (C7) along ŷ or ŷ′ has to vanish
by definition of the connected correlation function. The
Lorentzian being strictly positive, a constant has to be
subtracted from the semi-infinite domain solution. In the
geometry considered here, we could use our exact result
for the periodic Green’s function to predict this constant
exactly. In the other geometries considered in the article,
and in the presence of interactions, we use this offset as
a fitting parameter.

Appendix D: Two parallel walls

In this appendix, we consider the density modulation
induced by two parallel disordered walls. The disorder
on each wall acts as random forcing independent of the
disorder on the other wall. Its effect is modeled as a
disordered force-monopole density, which satisfies

fαi (r‖) = 0 ,

fαi (r‖)f
β
j (r′‖) = 2p2δ

‖
ijσ

2δαβδ(d−1)(r‖ − r′‖) , (D1)

with the indices α, β denoting either the left or the right
wall. In d = 2, the exact form of the connected, two-point
correlation function can be obtained by using a confor-
mal mapping on the one-wall solution. Here we work in
arbitrary dimension and follow the simpler approach of

evaluating the correlation function to leading order in the
separation between the walls, Lx.

In this limit, we can simply sum independently the
contributions of the two walls, each computed with the
Green’s function of the semi-infinite domain, which leads
to a density profile

ρ(x, r‖) ' ρb +
µ

DeffSd

∫
dd−1r‖[

(r‖ − r′‖) · fL(r′‖)

[x2 + |r‖ − r′‖|2]
d
2

+
(r‖ − r′‖) · fR(r′‖)

[(Lx − x)2 + |r‖ − r‖|2]
d
2

]
.

With this, it is straightforward to see that the connected,
two-point correlation function is given by

ρ(x, r‖)ρ(x′, r′‖)c
≈ 1

Sd

(
µpσ

Deff

)2[
(x+ x′)

[(x+ x′)2 + |r‖ − r′‖|2]
d
2

+
{2Lx − (x+ x′)}

[2Lx − (x+ x′)]2 + |r‖ − r′‖|2]
d
2

]
.

(D2)

Figure 6 compares this result with numerical measure-
ments of the correlation function in two dimensions. Note
that, since the numerics use periodic boundary conditions
in the ŷ direction, the expression is expected to fit the
data only for |y − y′| . Ly. To account for the finite
size of the simulation box, following the results of Ap-
pendix C, we include a constant offset when we fit our
numerical data to Eq. (D2).

Appendix E: Structure factor of the linear field
theory

Here we detail the calculation of the structure factor
of our linear field theory. We start by writing the equa-
tion for the density modulation φ(r, t) using Eqs. (31)
and (32). Performing a Fourier transform gives

∂tφ(q, t) = −q2g[φ]− iq ·
[
f(q) +

√
2Dη(q, t)

]
, (E1)

where g[φ] = uφ + Kq2φ is the Fourier transform of the
chemical potential. The statistics of f(q) and η(q, t) are
obtained using Eqs. (34) and (35) to give

fi(qx,q‖) =0 ,

fi(qx,q‖)fj(q′x,q
′
‖) = 2s2δ

‖
ij(2π)d−1δ(d−1)(q‖ + q‖) ,

〈ηi(q, t)〉 =0 ,

〈ηi(q, t)ηj(q′, t′)〉 = δij(2π)dδd(q + q′)δ(t− t′) ,

Here, we decompose the wave vector as q = (qx,q‖)
where qx is its x-component and q‖ corresponds to the
components parallel to the wall.

The structure factor can then be computed directly by
solving the linear inhomogeneous differential equation for
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FIG. 11. The scaling argument presented in Fig. 9 for the
wetting layer can be adapted to the case of a liquid droplet.
Upon scaling the system size by a factor of b, we compare the
scaling of the bulk and surface energies, whose competition
determines if the droplet is macroscopically stable.

φ(q, t) and evaluating 〈φ(q)φ(q′)〉, leading to Eq. (37).
The large-scale asymptotic expression of the structure
factor is obtained by taking the limit of small q. Perform-
ing an inverse Fourier transform on Eq. (38) then shows
that the structure factor is consistent with the two-point
correlation function predicted by the multipole expansion
of Eq. (25).

Appendix F: The Imry-Ma argument for a droplet
configuration

Here we present an alternative version of the Imry-Ma
argument presented in Sec. V. In contrast to the case
discussed in the main text, we do not assume that the
phase-separated state wets the wall. Instead, we consider
a liquid bubble in the bulk of the system, surrounded by

a gaseous phase, following the seminal work of Ref. [51].
As we show, both approaches lead to similar conclusions.

We consider the droplet of linear size ` shown in
Fig. 11. The surface contribution to the free-energy scales
as Eγ = γ`d−1. To check the stability of this configura-
tion, this should be compared to the bulk energy contri-
bution of the effective potential induced by the boundary
disorder EU =

∫
`d

ddr ρ0U(r), where the integral goes

over the volume of the droplet, which scales as `d. We
now compare the scaling behaviors of Eγ and |EU | under
an increase of the system size by a factor of b, r → br.
The surface energy scales as Eγ → bd−1Eγ , while the
scaling of the |EU | can be estimated from

E2
U → ρ2

0

∫
(b`)d

ddr

∫
(b`)d

ddr′ U(r)U(r′)

= bd+1

∫
`d

ddr

∫
`d

ddr′
(s2ρ2

0/Sd)(x+ x′)[
(x+ x′)2 + |∆r‖|2

]d/2 ,

where the change of variables r → br was carried out in
the second line. The droplet bulk energy is thus rescaled

as |EU | → b
d+1
2 |EU |.

Comparing the scaling of Eγ and EU shows that the
surface energy dominates the bulk contribution when the
dimension satisfies

d+ 1

2
< d− 1 i.e. 3 < d . (F1)

The analysis, as expected, agrees with the Imry-Ma argu-
ment of the main text, showing that the phase-separated
state is unstable in dimensions smaller than dc = 3.
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[38] H. Chaté and B. Mahault, Dry, aligning, dilute, active
matter: A synthetic and self-contained overview, arXiv
preprint arXiv:1906.05542 (2019).

[39] J. L. Lebowitz, Statistical mechanics: A selective review
of two central issues, Reviews of Modern Physics 71, S346
(1999).

[40] J. Elgeti and G. Gompper, Wall accumulation of self-
propelled spheres, EPL (Europhysics Letters) 101, 48003
(2013).

[41] J. Elgeti and G. Gompper, Self-propelled rods near sur-
faces, EPL (Europhysics Letters) 85, 38002 (2009).

[42] J. Tailleur and M. Cates, Sedimentation, trapping, and
rectification of dilute bacteria, EPL 86, 600002 (2009).

[43] J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley,
New York, NY, 1999).

[44] Y. Baek, A. Solon, X. Xu, N. Nikola, and Y. Kafri,
Generic long-range interactions between passive bodies
in an active fluid, Physical review letters 120, 058002
(2018).

[45] S. Takatori, W. Yan, and J. Brady, Swim Pressure: Stress
Generation in Active Matter, Physical Review Letters
113, 028103 (2014).

[46] X. Yang, M. Manning, and M. Marchetti, Aggregation
and segregation of confined active particles, Soft Matter
10, 6477 (2014).

[47] A. Solon, Y. Fily, A. Baskaran, M. Cates, Y. Kafri,
M. Kardar, and J. Tailleur, Pressure is not a state func-
tion for generic active fluids, Nature Physics 11, 673
(2015).

[48] Y. Fily, Y. Kafri, A. P. Solon, J. Tailleur, and A. Turner,
Mechanical pressure and momentum conservation in dry
active matter, Journal of Physics A: Mathematical and
Theoretical 51, 044003 (2017).

[49] This can be confirmed, for instance, using the two-point
two-time correlation function of the density field. In the
large b limit, it admits a non-trivial scaling form only if
z = 2.

[50] J. L. Lebowitz, Statistical mechanics: A selective review
of two central issues, Reviews of Modern Physics 71, S346
(1999).

[51] Y. Imry and S.-k. Ma, Random-Field Instability of the
Ordered State of Continuous Symmetry, Physical Review
Letters 35, 1399 (1975).

[52] A. Aharony, Y. Imry, and S.-k. Ma, Lowering of Dimen-

https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1209/0295-5075/101/20010
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1140/epjst/e2015-02457-0
https://doi.org/10.1103/PhysRevLett.117.148002
https://doi.org/10.1103/PhysRevLett.117.148002
https://doi.org/10.1088/1367-2630/aa9b4d
https://doi.org/10.1088/1367-2630/aa9b4d
https://doi.org/10.1103/PhysRevE.97.020602
https://doi.org/10.1103/PhysRevE.97.020602
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevLett.120.268003
https://doi.org/10.1103/PhysRevLett.120.268003
https://doi.org/10.1063/1.5023403
https://doi.org/10.1063/1.5023403
https://doi.org/10.1103/PhysRevX.9.031043
http://cdsweb.cern.ch/record/490457
https://doi.org/10.1103/PhysRevLett.113.028103
https://doi.org/10.1103/PhysRevLett.113.028103
https://doi.org/10.1039/C4SM00927D
https://doi.org/10.1039/C4SM00927D
https://doi.org/10.1103/PhysRevLett.35.1399
https://doi.org/10.1103/PhysRevLett.35.1399


18

sionality in Phase Transitions with Random Fields, Phys-
ical Review Letters 37, 1364 (1976).

[53] A. N. Berker, Ordering under random fields:
Renormalization-group arguments, Physical Review
B 29, 5243 (1984).

[54] M. Kardar, Domain walls subject to quenched impurities,
Journal of Applied Physics 61, 3601 (1987).

[55] D. E. Feldman and V. Vinokur, Destruction of bulk or-
dering by surface randomness, Physical review letters 89,
227204 (2002).

[56] G. Szamel, Self-propelled particle in an external poten-
tial: Existence of an effective temperature, Physical Re-
view E 90, 012111 (2014).

[57] D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nar-
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