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Eukaryotic cells sense chemical gradients to decide where and when to move. Clusters of cells
can sense gradients more accurately than individual cells by integrating measurements of the con-
centration made across the cluster. Is this gradient sensing accuracy impeded when cells have
limited knowledge of their position within the cluster, i.e. limited positional information? We apply
maximum likelihood estimation to study gradient sensing accuracy of a cluster of cells with finite
positional information. If cells must estimate their location within the cluster, this lowers the ac-
curacy of collective gradient sensing. We compare our results with a tug-of-war model where cells
respond to the gradient by polarizing away from their neighbors without relying on their positional
information. As the cell positional uncertainty increases, there is a trade-off where the tug-of-war
model responds more accurately to the chemical gradient. However, for sufficiently large cell clusters
or sufficiently shallow chemical gradients, the tug-of-war model will always be suboptimal to one
that integrates information from all cells, even if positional uncertainty is high.

I. INTRODUCTION

Eukaryotic cells may directionally migrate by sensing
external cues of many types – mechanical, electrical, to-
pographical, or chemical [1], and in these processes their
accuracy is often limited by basic physical principles [2].
The best-known of these processes is chemotaxis, where
cells sense and follow gradients in concentrations of chem-
ical cues – an example of gradient sensing. Gradient
sensing and directed migration are essential to many fun-
damental biological processes, such as immune response
[3], embryonic development [4, 5], and cancer metastasis
[6, 7]. In these processes, cells may migrate individu-
ally or collectively – in sheets, streams, or small clusters
[8–10]. Cell cluster migration may be particularly im-
portant in cancer, where small clusters of tumor cells are
associated with more harmful metastasis [11]. There are
several advantages for cells to migrates as groups [12],
one of these being gradient sensing. In several biological
systems [5, 13, 14], groups of cells can chemotax where
single cells fail to do so – cells work collectively to im-
prove their ability to sense a gradient [15].

How this enhanced sensing arises is not fully under-
stood, and may not have a universal mechanism [15], but
two types of cell clusters seem to primarily sense using
measurements of the concentration at the cluster edge.
In clusters of neural crest cells responding to gradients
of Sdf1, edge cells are polarized out from the cluster cen-
ter by contact inhibition of locomotion [5], suggesting
a model of chemotaxis as a tug-of-war by the perime-
ter cells [16]. A similar edge-driven mechanism is ob-
served in gradient-sensing lymphocyte clusters [13, 17].
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These observations suggest that in these cell types only
edge cells are involved in cluster chemotaxis. Why use
only the edge cells to sense the gradient instead of all of
them? Our initial intuition is that using only the edge
cells wastes information [18]. In earlier work, we found a
fundamental limit on gradient sensing accuracy [19], ob-
serving that collective chemotaxis was likely limited by
cell-to-cell variability. In that model, measurements from
all cells and their relative positions are used to compute
the best estimate of the gradient direction.

Why would clusters use sensing mechanisms driven by
edge cells, like the tug-of-war mechanism, instead of the
optimal use of all cells? One hypothesis is that the bene-
fit of the extra information is small. Another hypothesis
is that there are relevant sources of noise that are not in-
cluded in Ref. [19]. A major assumption implicit in our
earlier work [19] is that cells “know” their position within
a cluster – the best estimator of the chemical gradient in-
volves a sum weighted by a cell’s position relative to the
cluster center. Cells can measure their position within
an embryo or aggregate by measuring diffusible [20] or
mechanical [21] signals but this positional information is
limited [20, 22–24]. Cells in Drosophila embryos can
measure their position to the order of a cell length [20],
using temporal and possibly spatial averaging of graded
signals [20, 25, 26]. In this paper, we explore the op-
timal strategies for collective sensing of gradients when
cells have limited information on their position in the
cluster, showing that positional uncertainty reduces gra-
dient sensing accuracy. We also compare our model to
an extension of the tug-of-war model of [16], where only
edge cells respond to chemoattractant and no positional
information is required. We find that these tug-of-war
strategies are optimal for small clusters or strong gradi-
ents. However, for a sufficiently large cluster the benefits
of using all cells’ data will eventually outweigh the error
from finite positional information.
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II. MODELS AND RESULTS

A. Maximum likelihood estimates of gradient with
limited positional information

We consider N circular cells of radius Rcell arranged
in 2D clusters under a linear chemoattractant gradient
g = g (cos(φ), sin(φ)), see Fig. 1a. g and φ are the
gradient magnitude or steepness and direction respec-
tively. The chemoattractant concentration at cell i is
c(ri) = c0(1 + g · (ri − rcm)), where ri is the cell’s posi-
tion, and rcm is the position of the cluster center of mass,
computed as rcm = 1

N

∑
ri. c0 is the chemoattractant

concentration at the cluster center of mass. Cells perform
a collective measurement of the gradient by integrating
individual cells’ measurements of local chemoattractant
concentration, which we call the “measured signal” Mi.
Cells sense the concentration by binding the chemoat-
tractant molecules to receptors at their surface, which
is subject to fluctuations due to the molecules’ diffusion
in reaching receptors, and intrinsic ligand-receptor kinet-
ics [26–29]. The reading concentration error of a cell at
position ri with nr receptors that bind ligand molecules
with dissociation constant KD, can be expressed as

δc2(ri) = c(ri)
nrKD

(c(ri) + KD)2 [19, 26]. This arises solely
from the stochasticity of ligand-receptor binding, propa-
gated forward to an estimate of the concentration (Ap-
pendix A). In addition, even genetically identical cells
do not respond in the same way to the chemoattractant
due to cell-cell variability (CCV) resulting from fluctua-
tions in their internal molecular machinery [19]. Then,
the signal measured by cell i is

Mi =
c(ri) + δc(ri)ηi

c
+ σ∆ξi, (1)

where ηi and ξi are independent Gaussian noises with
mean value 0 and variance 1, c is the mean concentra-
tion over the cluster, and σ∆ is the CCV standard devia-

tion. Note that c = 1
N

∑N
i c(ri) = c0. For typical values

of σ∆ ≥ 0.05 (i.e. 5% cell-to-cell variability), ligand-
receptor noise is less critical than CCV noise [19].

We want to know, given the noise in the cell cluster’s
measurements, what is the best possible measurement it
can make of the gradient g. One approach to find this
gradient sensing error is to apply the maximum likeli-
hood estimation (MLE) method [30–35]. This calcula-
tion, which we will generalize below, determines an op-
timal approach for a group of cells to estimate g given
the measured signal of Eq. (1) [19]. However, this ap-
proach implicitly assumes that the positions of the cells
are known, as each measurement Mi correspond to a
given position ri within the gradient.

Here we extend the MLE approach of [19] by assum-
ing that cells have limited positional information. As a
result, cells need to estimate their positions within the
cluster in addition to the local concentration. We then
define a “measured position” for cell i, which we call r∗i
– this is the location that the cluster believes the cell i to

have. Because cells can gain positional information from
a variety of complicated mechanical and chemical pro-
cesses, we simplify and start with a generic assumption
– that the error in measured position is normally dis-
tributed, and that cells get their positional information
from a process different from the sensing concentration
such that r∗i and Mi are independent. Thus, the mea-
sured position for the cell i is,

r∗i = ri +Aiξri , (2)

where Ai is a matrix such that Σi = AiATi is the covari-
ance matrix of the positional errors, and ξri is a two
dimensional vector of uncorrelated normal distributed
numbers. XT denotes the transpose of X. The covari-
ance matrix Σi sets the error in the position measure-
ment process, analogous to the term σ2

∆ in sensing the
concentration. We assume for now that Σi could be dif-
ferent from cell to cell.

We apply the maximum likelihood estimation (MLE)
method to determine, given the measured cell positions
r∗i and signal values Mi, what the cluster’s best esti-
mate of the gradient g is, and how precise this measure-
ment can be given the inevitable stochastic fluctuations
in these measurements. We start by writing the proba-
bility distribution for a cell i to measure a signal Mi and
a position r∗i given the gradient g and its true position
ri, p(Mi, r

∗
i |g, ri). As Mi and r∗i are independent, this

probability function can be broken into the product of
probabilities p(Mi, r

∗
i |g, ri) = p(Mi|g, ri)p(r∗i |ri). Given

that Eq. (1) takes the sum of two uncorrelated Gaus-
sian random variables, which is also Gaussian, then, the
probability distribution for Mi is

p(Mi|g, ri) =
1√

2πhi
exp

[
− (Mi − µi)2

2hi

]
, (3)

where µi = 1+g ·δri, and hi = (δci/c0)2 +σ2
∆. Next, the

probability distribution that a cell i measures a position
r∗i given the true position ri is,

p(r∗i |ri) =
1√

(2π)2|Σi|
exp

[
− (r∗i − ri)Σ

−1
i (r∗i − ri)

T

2

]
.

(4)
The likelihood of parameters g, {ri} given that
the clusters measures values {Mi} and {r∗i } is
L(g, {ri}|{Mi, r

∗
i }) ≡ p({Mi, r

∗
i }|g, {ri}). Assuming

the measurements cell performs are independent, this
likelihood then factorizes into a product over cells i,

L(g, ri|{Mi, r
∗
i }) =

∏N
i p(Mi|g, ri)p(r∗i |ri). Estimators

of the gradient magnitude g and orientation φ can be ob-
tained by maximizing this likelihood. However, we are
more interested in the best possible accuracy for an un-
biased estimator ĝ, which is given by the Cramér-Rao
bound [30],

σ2
g ≡ 〈(g − ĝ)2〉 =

(
I−1

)
g,g
, (5)
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where I−1 is the inverse of the Fisher information matrix,

given by Iα,β = −
〈
∂2 lnL
∂α∂β

〉
, with α and β are parameters

of the likelihood function, i.e. g and {ri}.
It is possible to analytically compute the Fisher infor-

mation I and thus the best possible accuracy for mea-
suring the chemical gradient in the limit of positional
information in terms of a sum over cell positions and the
positional information at each location. These results
are presented in full detail in Appendix B. However, the
results are much more intuitively understandable with a
few key assumptions.

B. Simplest case: shallow gradients and constant
positional error

Cells will likely have different positional uncertainties,
depending on the underlying process through which cells
get their positional information, such as an external or
a self-generated signal. To gain understanding, we will
first look at the simplest case by assuming all the cells
have the same positional covariance matrix, Σi = Σ,
which we also assume is isotropic Σls = ∆r2δls, where
l, s are matrix element indexes. (We study clusters with
varying positional uncertainty in Section II C). Within
this section, the limited positional information is only
characterized by a single number, ∆r – the error in
measuring a cell’s position. In addition to considering
a constant isotropic error, we simplify our results by
assuming that the gradient is relatively shallow – i.e.
that each cell has the same reading concentration errors,

δc2i ≈ δc
2

= c0(c0+KD)2

nrKD
. Finally, we consider that our

cluster of cells is roughly circular: the isotropy of the

problem then makes
∑N
i δr

2
xi ≈

∑N
i δr

2
yi ≈

1
2

∑N
i |δri|2,

and that
∑N
i δrxiδryi ≈ 0. (In practice, for the calcu-

lations we present here, we show results for hexagonally
packed clusters of layers of cells, as in [16, 19]). With all
this, we can simplify the results of Appendix B to find the
best possible error in measuring the gradient magnitude
g as:

σ2
g ≈

1

χ

(
h̄+ (g∆r)

2
)
, (6)

where h̄ = δc
2
/c20 + σ2

∆ and χ = 1
2

∑N
i |δri|2. χ here

is a geometric factor that depends on the shape and
size of the cluster – essentially like a moment of iner-
tia about the cluster’s centroid. We expect χ to scale
as χ ∼ R4

cluster [19] for roughly circular clusters. We
find this by approximating the sum over cells as an in-
tegral over the surface of a circular cluster of radius

Rcluster,
∑N
i R

2
cell ≈

∫
Rcluster

d2r, so χ = 1
2

∑N
i |δri|2 ∼

R−2
cell

∫
Rcluster

d2rr2 ∼ R4
cluster.

The uncertainty in the gradient magnitude given in
Eq. (6) also controls the uncertainty of estimating the
gradient direction: the gradient direction error is equal

w/o pos errors
w/ pos errors
shallow gradient

(a) (b)

(c) (d)

Positional error

Sensing 
concentration error

w/ pos errors
w/o pos errors

shallow gradient

w/ pos errors
w/o pos errors

shallow gradient

FIG. 1. (a) Cluster under a linear gradient and a representa-
tion of the two sources of uncertainties: sensing concentration
and positional errors. (b) Gradient sensing error increases
with positional uncertainty. (c)–(d) Positional uncertain-
ties becomes more dominant in steeper gradients. (c)
Gradient sensing error normalized by its value in the absence
of positional errors, σ2

g(∆r = 0), as a function of the gradient
steepness (blue solid line). The black dashed-line indicates
the limit where the gradient sensing error is dominated by
positional errors and it follows ∝ g2∆r2. (d) Gradient sens-
ing relative error σg/g as a function of the gradient steep-
ness. Parameters: number of cells N = 37 (corresponding
to an hexagonal cluster of Q = 3 layers), Rcell = 10µm, (b)
g = 0.005µm−1, (c)–(d) ∆r = 10µm.

to the gradient magnitude relative error,

σφ =
σg
g
. (7)

See Appendix B for detailed derivation of Eqs. (6)–(7).
How does the presence of positional uncertainties affect

gradient sensing? In Fig. 1(b) we show the gradient sens-
ing error, σ2

g , as a function of the positional uncertainty
∆r, using both the full computation of Eq. (5) (see Ap-
pendix B) and the shallow gradient approximation from
Eq. (6). Unsurprisingly, positional uncertainties increase
gradient sensing error – the more uninformed cells are
about their positions, the worse an estimate the cluster
makes. This added error from positional uncertainty in-
creases as ∆r2 in the shallow gradient limit (Eq. (6)). We
see in Fig. 1 that the additional uncertainty from finite
positional information is significant when ∆r is of order
of the cell size.

Eq. (6) also tells us there are two terms controlling
the estimate error. The first, h̄, is the contribution from
the cells reading and reporting their local concentration.
The second term, is the positional uncertainty contri-
bution to the gradient sensing error, controlled by g∆r.
The relative weight of these two terms allows to iden-
tify two regimes in which the gradient sensing is limited
in one case by the reading concentration fluctuations,
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(g∆r)2 � h̄, and on the other case by the positional un-
certainties, (g∆r)2 � h̄. When positional uncertainties
are smaller than reading concentration errors, we recover
the results from [19], σ2

g ≈ 1
χ h̄. In the other extreme,

(g∆r)2 � h̄, gradient sensing is primarily limited by po-
sitional information, σ2

g ≈ 1
χg

2∆r2. Interestingly, all of

the information about the cluster’s shape and size is in
the multiplicative factor χ. While larger clusters are sig-
nificantly more accurate at sensing the gradient, as the

factor χ = 1
2

∑N
i |δri|2 is strongly dependent on cluster

size and cell number, larger clusters are not more strongly
affected by the presence of positional error.

The gradient steepness g, controls the relative impor-
tance of positional information: the steeper the gradient
is, the larger the contribution from the positional uncer-
tainty. In Fig. 1(c) we show the gradient sensing error σ2

g

normalized by the bound in absence of positional uncer-
tainty σ2

g(∆r = 0) increases with the gradient steepness
g. In steeper gradients, small errors in measuring a cell’s
position lead to larger differences between the concen-
tration at the true position, c(ri), and at the estimated
position, c(r∗i ). On the other hand, this also implies, that
in the limit of g → 0, where error bounds are most im-
portant (where single cells fail to follow a gradient while
clusters do), that positional information does not play a
significant role.

In analogy to single-cell gradient sensing, it would be
natural to assume that the relative error, σg/g, which
controls the angular uncertainty σφ, always gets better
with the increasing g – i.e. that cells can better mea-
sure the angle to the gradient direction if the gradient is
steeper. This is true for clusters without positional error
[19]: σg/g is plotted as the red line in Fig. 1(d). However,
in the presence of positional uncertainties, the relative er-
ror is limited at large g, converging to a constant value
∆r/
√
χ in the case of a shallow gradient (Fig. 1(d)). This

surprise occurs because the increasing error due to posi-
tional uncertainty σ2

g ∼ g2 in Eq. (6) exactly balances

the g2 in the denominator of σ2
g/g

2.

C. Non-uniform positional information

In the above section we assumed that all cells have the
same positional errors. However, positional uncertainty
is not necessarily uniform within the cluster. If cells get
their positional information from a secreted factor or me-
chanical signal, the distance from the source may influ-
ence the accuracy ∆r (see, e.g. [36]). In addition, obtain-
ing positional information may have an associated cost
and therefore, it may be optimal for the cell cluster to
only have some cells measure their location. We study a
prototypical example of both cell specialization and po-
sitional errors varying from cell to cell by introducing a
second type of cells which have more positional informa-
tion. These “informed” cells have a positional error ∆rinf

that is smaller than “normal” cells, ∆rinf ≤ ∆r. Then,

(a) (b)

(c) (d)

Cell with small 
positional uncertainty

Cell with large 
positional uncertainty

Center Random Edge

Lower error

Higher error

FIG. 2. Gradient sensing errors for a cluster with a fraction
f of informed cells. (a) Informed cells are distributed over
the cluster in three distinct manners: closer to the cluster’s
center, randomly, or closer to the cluster’s edge. Underneath
each example of cluster distribution we show two of the multi-
ple equivalent ways of distributing the informed cells. (b)–(c)
Gradient sensing variance, σ2

g , normalized by the case of non
informed cells, σ2

g0 = σ2
g(f = 0) as a function of the fraction

of informed cells (b) and the ratio of the two types of cell
positional uncertainties (c). (d) Relative difference between
informed cluster and the equivalent constant-positional-error

cluster, δσg =
σg(∆r)−σg(∆rinf ,∆r)

σg(∆rinf ,∆r)
, as a function of the gradi-

ent steepness. δσg > 0 (δσg < 0) indicates a lower (higher)
gradient sensing error for the cluster with the informed cells
compared to the uniform positional error cluster. The dashed
black line indicates δσg = 0. For (b)–(c)–(d) color codes are
the same. Solid lines with symbols represent the three dif-
ferent distribution patterns: Center (red squares), Random
(light blue crosses), and Edge (dark blue circles). The dashed
black line represents the equivalent one type of cells cluster
with positional uncertainty equal to ∆r = f∆rinf +(1−f)∆r.
Parameters: cluster size N = 91 (Q = 5 layers in the hexag-
onal cluster), ∆r = 2Rcell, (b) ∆rinf = 0.5∆r, (c) f = 0.25,
(d) f = 0.25, ∆rinf = 0.2∆r, and ∆r = 20µm. Curves show
an average of 100 realizations.

we distribute a fraction f of informed cells at different
positions over the cluster to see the effect of positional
uncertainty localization. We follow three different types
of distributions: informed cells are distributed (i) at the
edge, (ii) at the center, or (iii) randomly over the cluster,
see Fig. 2(a). We use the general solution for the gradi-
ent sensing error given by Eqs. (B4)–(B6). We note that
there are often many cells that are equidistant from the
cluster center or edge, so unless a layer of the hexagonal
packing is completely filled, there will be multiple pos-
sible configurations at a particular fraction of informed
cells f (Fig. 2a, bottom row). To address this, we sam-
ple 100 realizations for each distribution. Fig. 2 shows an
average over these realizations. Gradient sensing has the
lowest error when informed cells are closer to the edges
and the largest when they are placed closer to the cen-
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ter of mass. This is illustrated in Fig. 2(b), that shows
the gradient sensing error normalized by the case f = 0,
(σ2
g0

= σ2
g(f = 0)), as a function of the fraction of in-

formed cells. For all three types of distributions, increas-
ing the fraction of informed cells reduces the error of g.
Gradient sensing error takes the same value for the three
distributions, in the extreme cases of no informed cells
(f = 0) and all cells informed (f = 1), but following dif-
ferent paths in between. Informed cells distributed close
to the edge lead to the lowest sensing errors of the three
distributions. Similarly, reducing the positional uncer-
tainty of the informed cells results in higher accuracy in
gradient sensing, which is again greater when informed
cells are distributed closer to the edge (Fig. 2(c)).

To compare between clusters with informed cells and
cluster with a single cell type population, we intro-
duce the “equivalent” constant-positional-error cluster,
in which all the cells have the average positional error
∆r = (1−f)∆r+f∆rinf (dashed black line in Fig. 2(b)–
(d)). Results show that placing informed cells closer
to the edge enhances gradient sensing when compared
to the equivalent cluster, while doing it closer to the
cluster’s center or randomly results in a worse or sim-
ilar performance, respectively. To further explore the
role of informed cells and their distribution inside the
cluster, in Fig. 2(d) we shows the relative difference be-
tween the gradient sensing errors for the cluster with in-
formed cells and its constant-positional-error equivalent,

δσg =
σg(∆r)−σg(∆rinf ,∆r)

σg(∆rinf ,∆r)
, as a function of the gradi-

ent steepness. Results show that increasing the gradi-
ent steepness enhances the trends described before, in
which the benefit of reduced positional error is larger for
cells at the cluster edge. This observation agrees with
our previous results that showed that positional errors
have a higher effect over gradient sensing in steeper gra-
dients. Interestingly, in steeper gradients, even randomly
distributed informed cells perform better than the equiv-
alent cluster (light blue line in Fig. 2(d)). The reason is
that by randomly distributing the informed cells, a few
will lie close to the edge of the cluster, and those are the
ones that dominate and end up having a major weight in
sensing the gradient.

Together, these results show that positional informa-
tion becomes more relevant at the edge of the cluster and
is even more significant in steeper gradients. Positional
information of edge cells plays a major contribution to
gradient sensing in that even having a few randomly
located informed cells on the edge can significantly
decrease gradient sensing errors. If determining cell
positions is costly, our results suggest that instead of
maximizing positional information uniformly throughout
the cluster, cells can improve the gradient sensing ac-
curacy by prioritizing positional information of edge cells.

We argued that informed cells are generally most ben-
eficially placed at the cluster edge. How does gradient
sensing accuracy change if we place these cells anisotrop-
ically? We study the change in the errors for gradient

Small cluster of informed cells

Cluster center of mass

(a) (b)

Lower error

Higher error

Lower error

Higher error

FIG. 3. (a) Schematic cell cluster with a group of four in-
formed cells located at a distance r from the cluster’s center
and direction θ with respect to the chemoattractant gradi-
ent. The small clusters on the right represent different small
cluster configurations. (b) Relative gradient sensing steepness

(left panel) and direction, δσφ =
σφ(∆r)−σφ(∆rinf ,∆r)

σφ(∆rinf ,∆r)
, (right

panel) errors when the informed group of cells is displaced in
different directions: θ = 0 (red line and squares), θ = π/4
(light blue line and crosses) and θ = π/2 (dark blue line and
circles). Same as in Fig. 2, δσg,φ > 0 (δσg,φ < 0) represent a
lower (higher) error relative to the constant-positional-error
equivalent cluster. The dashed black line indicates δσg,φ = 0
and also represent the equivalent cluster without informed
cells and positional uncertainty ∆r. Parameters: cluster size
N = 91 and ∆rinf = 0.5∆r. Curves show an average of 100
realizations.

magnitude g and direction φ when a small group of four
“informed cells” are displaced from the center to the edge
of the cluster in different directions, see Fig. 3(a). We
note that for this case, σφ 6= σg/g, due to anisotropy; we
use the full analytical solution of Appendix B to compute
the bounds σg and σφ. As in the previous case, there are
multiple equivalent ways to place a cluster of informed
cells at a position (r, θ), see Fig. 3(a). To account for
such variability, we averaged over 100 realization for each
condition pair (r, θ). We find that the errors for the es-
timators of the gradient magnitude and direction evolve
differently depending on the orientation of this cluster of
cells, Fig. 3(b). Moving the small informed cluster along
the axis parallel to the gradient direction, θ = 0, leads
to an improvement in sensing the gradient steepness g.
By contrast, moving along the axis perpendicular to the
gradient, θ = π/2, sensing the orientation of the gradi-
ent is improved. Finally, there is a compromise situation
when moving along θ = π/4, where both gradient steep-
ness and direction sensing are improved, but to a lesser
extent. These results support again that positional in-
formation is more significant at the edge of the cluster,
but also that the orientation with respect to the gradient
matters. In chemotaxis, for instance, cells need to sense
the direction rather than the steepness of the gradient.
Therefore, a cluster might strive to locate cells at the
edge of the axis perpendicular to the gradient direction
to enhance its ability to chemotax. However, this could
only work in the case that the cluster has previous knowl-
edge of the gradient direction. Our findings are similar
in concept to the ideas reported in [32] for single cells, in
which elongated cells sense the gradient steepness and di-
rection with different accuracies depending on the orien-
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tation of the cell. Note that in comparing Fig. 3(b) panels
that δσg(0) 6= δσφ(π/2) and δσg(π/4) 6= δσφ(π/4). This
is due to hexagonal clusters not having perfect circular
symmetry, being more elongated, in our case, in the di-
rection parallel to the gradient.

D. Collective chemotaxis without positional
information: tug–of–war model

In our above approach, a group of cells senses a chem-
ical gradient collectively by making local measurements
of the chemoattractant concentration and and their po-
sitions. Then, by applying the maximum likelihood es-
timator method, we find the best possible measurement
of the gradient the group of cells can make. However, we
showed that this measurement is constrained by the lim-
ited positional information available to the cells. Here,
we introduce a different mechanism by which cells sense
and follow the gradient without needing cells to mea-
sure their locations, based on the model in [16], which
we refer to as tug–of–war model. An interesting feature
of this model, which makes it different from the previ-
ous one, is that it does not depend on the positions of
the cells within the cluster, but only on the direction to
the nearest cells. In the tug–of–war model, cells interact
by contact inhibition locomotion (CIL) [37, 38], in which
contacting cells polarize away from each other. This
interaction dynamic leads to a cluster where only cells
at the edge are polarized [5, 13, 16], see Fig. 4(a). Cells
on the inside of the cluster, completely surrounded by
neighboring cells, do not polarize, whereas cells on the
edges, which only see neighboring cells on the interior
side, polarize away from the cluster. Another important
property of the model is that cell CIL is modulated by the
local chemoattractant concentration. In this way, those
cells at the front (up the gradient) of the cluster polar-
ize and pull stronger than the ones on the back (down
the gradient), resulting in a net movement toward up the
gradient in a tug–of–war like dynamic. This mechanism
is illustrated in Fig. 4a.

Our goal in studying the tug-of-war model will be to
extend the results of [16] so that they can be directly
compared with our maximum likelihood results above,
which requires us to include fluctuations in concentra-
tion due to receptor-ligand binding as well as cell-to-cell
variability. Following [16], we start from the assumption
that cells behave as stochastic, self-propelled particles.
The motility of cell i results from the balance between
the intracellular forces, Fij , due to cell-cell adhesion and
volume exclusion, and the cell’s polarity pi,

∂tri = pi +
∑
i6=j

Fij . (8)

Here, we define the polarity vector of cell i, pi, as the
velocity the cell would have if no other cells or other
forces were pushing on it – this reflects both the direction
and the strength of its self-propulsion. Computing the

cluster centroid velocity vc = 1
N

∑N
i=1 ∂tri by summing

over all cells in Eq. (8) and noting that Fij = −Fji, we
find

vc =
1

N

N∑
i

pi. (9)

Cell polarity obeys the differential equation,

∂tpi = − 1

τp
pi + σpεi(t) + βiqi, (10)

where τp is the characteristic time it takes for the po-
larity to relax to its steady state value, and σp is the
magnitude of a fluctuating noise that can drive the po-
larity away from its steady-state value. εi(t) is a vector
Gaussian Langevin noise for cell i that fulfills 〈εi(t)〉 = 0
and 〈εiµ(t)εjν(t′)〉 = δµνδijδ(t− t′), with i, j cell indexes,
while µ, ν are indexes for the Cartesian coordinates x, y.

The last term in Eq. (10) comes from the CIL interac-
tions, where βi is the cell’s susceptibility to CIL, and the
vector qi is the resulting direction of contact interaction
of cell i and its neighbors, qi =

∑
i∼j(ri − rj)/|ri − rj |,

where i ∼ j represent the sum over the cell’s neighbors,
defined as those cells within a distance 2.1Rcell. Note
that qi ≈ 0 for interior cells and qi 6= 0 for edge cells.
The tug-of-war model of [16] assumed that susceptibil-
ity of the cell i is proportional to chemoattractant con-
centration, βi = β̄ c(ri, t), leading to cells with higher
concentrations c becoming more strongly polarized away
from their neighbors, as sketched in Fig. 4a. Here, we
must handle the variability in the measured concentra-
tion due to both ligand-receptor binding and cell-to-cell
variability. We assume that cells polarize in response
to what they believe the chemoattractant concentration
to be, Mic, instead of the true concentration value at
the cell positions, c(ri, t). This will add an additional
source of noise to Eq. (10), which we will now write ex-
plicitly. If the susceptibility of cell i is βi(t) = β̄c0Mi(t),
we can write Mi(t) = c(ri, t)/c0 + Ξi(t). Here, Ξi(t) =
δci/c0ζ

c
i (t) + σ∆ζ

∆
i (t) is the noise in Mi. Note that, un-

like Eq. (1), we must specify the time-dependence of the
errors due to ligand-receptor binding and cell-to-cell vari-
ation. We explicitly introduce ζci (t) to measure the fluc-
tuations due to concentration sensing and ζ∆

i (t) for the
fluctuations in cell-to-cell variability. We can character-
ize the time scale over which the errors due to receptor-
ligand concentration and cell-to-cell variability are per-
sistent by the correlation functions 〈ζc(t)ζc(0)〉 = Cc(t)
and 〈ζ∆(t)ζ∆(0)〉 = C∆(t). Then we have 〈Ξi(t)〉 = 0
and 〈Ξi(t)Ξj(0)〉 =

(
δc2i /c

2
0Cc(t) + σ2

∆C∆(t)
)
δij . Next,

we insert the expression for the polarity susceptibility
βi(t) = β̄c(ri) + β̄c0Ξi(t), into Eq. (10) to arrive at

∂tpi = − 1

τp
(pi − γc(ri, t)qi) + σpεi(t) + βc0qiΞi(t),

(11)
where we have defined γ = τpβ̄.

We can solve Eq. (11) by directly integrating it. If we
assume that τp is small enough for the polarity to relax
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Cell polarity by CIL in the 
absence of a gradient 

Cells sense different 
concentrations

+

Polarity proportional to 
cell concentration

MLE preferred

Tug-of-war preferred

trade-off point

Tug-of-war mechanism

Net motionNo motion

FIG. 4. Tug–of–war model (a) Scheme representation of the tug–of–war model. (b) Gradient sensing variance as a function
of the positional uncertainty for the tug–of–war model (red solid line) and the MLE model (blue solid line). The black dashed
line marks the crossover and the trade-off positional uncertainty between the two models. (c)–(d) Trade–off value as a function
of: (c) the cluster number of cells, and (d) the gradient steepness. (e) Phase diagram of the trade–off values for different
cluster’s sizes and gradient steepness. The dashed red line indicates a boundary given by ∆rt = 2Rcell. Positional errors, ∆r,
and trade–off values, ∆rt, are re-scaled in of cell’s radius. Parameters: (b) same as Fig. 1(b), (c) g = 0.005µm−1, and (d)
N = 37 (Q = 3).

to its steady-state solution before the cluster reorganizes,
so the contact vectors qi are fixed, then pi is given by

pi(t) =µi + σp

∫ t

0

dt′e−(t−t′)/τpεi(t
′)

+ β̄c0qi

∫ t

0

dt′e−(t−t′)/τpΞi(t
′) (12)

where µi = γc(ri)qi and we chose initial conditions
pi(0) = µi. From Eq. (12), it is possible to compute
the mean and variance of pi(t). We assume that corre-
lations decay exponentially, so Cs(t) = e−t/τs , with τs
the correlation time and the index s = {c,∆}. Our final
results will not be crucially dependent on τc, τ∆, so this
is primarily a convenience to make the analytical calcu-
lations simple. Then, recalling that εi(t) is a Gaussian
uncorrelated noise with mean zero, we compute the mean
and the covariance of pi(t) (see Appendix C),

〈pi(t)〉 =µi,

〈(pµi(t)− 〈pµi〉)(pνi(0)− 〈pνi〉)〉 =
σ2
pτp

2
δµν

(
1− e−2t/τp

)
+β̄2qµiqνi

(
δc2iT(t, τc) + c20σ

2
∆T(t, τ∆)

)
,

where

T(t, τs) =
τ2
p

1 + υs

(
1 +

1

1− υs
×
(
(1 + υs)e

−2t/τp − 2e−(1+υs)t/τp
))
,

and υs =
τp
τs

. Note that typical values for the polariza-

tion relaxation time τp are ∼ 20 minutes [16]. This is
much longer than the typical correlation times for the
chemoattractant–cell receptors binding dynamics which
is on the order of the τc ∼ 1s [19]. However, recall that
cell concentration sensing is limited by CCV which has
a much slower correlation time than can reach up to 48
h in human cells [19, 39]. To calculate the variance of
pi at a reasonable steady-state, then, we should think of
the CCV noise as constant in time, and wait for times t
much longer than the other relaxation times. Explic-
itly, this means τ∆ � t � τp � τc. In this limit,

T(t, τ∆) ≈ τ2
p

1+τp/τ∆
≈ τ2

p and T(t, τc) ≈
τ2
p

1+τp/τc
. As

a result, the polarity covariance is 〈(pµi − 〈pµi〉)(pνi −
〈pνi〉)〉 = V iµν , where V iµν =

(
γ2c20hTiqµiqνi +

σ2
pτp
2 δµν

)
and hTi =

δc2i /c
2
0

1+τp/τc
+

σ2
∆

1+τp/τ∆
≈ σ2

∆. Essentially, the vari-

ance of the polarity has two terms: the time-averaged
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noise from measuring concentration, which is propor-
tional to hTi – which we have named to make clear it is
effectively a time average of hi. The second arises from
the added noise σp in Eq. (10), which is a source of noise
not included in the maximum likelihood model.

Then, with the distribution of polarities in hand, from
Eq. (9) we proceed to compute the expected value and
variance of the cluster velocity. In the case of the ex-

pected value, pointing out that
∑N
i qi = 0, we arrive at

the following simple expression,

〈vc〉 = γc0Mg, (13)

where Mµν = 1
N

∑N
i δrµiqνi . For the variance we have,

∆v2
cµν =

γ2c20
N2

N∑
i

hTi qµiqνi +
τpσ

2
p

2N
δµν . (14)

The first term in this equation reflects the variance in
the velocity arising from the fluctuations in concentration
sensing h, and the second term reflects the fluctuations
in polarity σp that affect every cell – an added noise from
randomness in the motility of the cell. As the concentra-
tion is only important for edge cells where q 6= 0, the
first term scales as Nedge/N

2, where Nedge is the num-
ber of edge cells – so we expect the first term to scale as
∼ N−3/2 for roughly circular clusters with Nedge ∼

√
N .

The second term in Eq. (14) arises from averaging N in-
dependent random fluctuations, and therefore scales as
N−1.

Now, we ask the question, what is the gradient sensing
error for this tug–of–war model? Here we are looking for
an equation analogous to Eq. (6). We use Eq. (13) and
Eq. (14) to propagate errors and compute the gradient
sensing error for the tug–of–war model (Appendix C),

σ2
g ≈

2(∑N
i=1 qi · δri

)2

(
N∑
i=1

|qi|2hTi +
σ2
pτp

γ2c20
N

)
, (15)

under the assumption of isotropic clusters, as in Eq. (6).
How can we make a consistent comparison between

the tug-of-war model and the maximum likelihood esti-
mation? There are two key differences. First, the tug-
of-war model includes an additional source of noise – the
polarity noise σp representing fluctuations in cell polar-
ity arising from factors outside of concentration sensing.
Second, the tug-of-war model, as a dynamical model, ex-
plicitly includes an average over a characteristic time τp,
while the maximum likelihood estimate is based on a sin-
gle snapshot of the measured concentration. The first
issue is simple to deal with: since the MLE method re-
turns a lower bound for the gradient sensing error, it is
most comparable to deal with the best possible situa-
tion for the tug–of–war model, i.e., no polarity fluctua-
tions, σp = 0. The issue of time-averaging is less clear.

Eq. (15) depends on hTi =
δc2i /c

2
0

1+τp/τc
+

σ2
∆

1+τp/τ∆
. To com-

pare with the instantaneous snapshot, we would have to

choose τp � τc, τ∆, in which case hTi ≈ hi. However, this
is inconsistent with our estimates above where τp ∼ 20
minutes and τc ∼ 1 second. In practice, however, this dis-
tinction is not very important, because both hTi and hi
are dominated by the CCV noise, so hTi ≈ hi ≈ h̄ ≈ σ2

∆.
We will then directly assume that hTi = hi = h̄, so that
the tug-of-war and MLE results are directly comparable
[40]. With these results, we can compute the uncertainty
in the estimation of g arising from the tug-of-war model
as:

σ2
g ≈

1

χtow
h̄, (16)

where χtow =
(
∑N
i δri·qi)

2

2
∑N
i |qi|2

. Note how similar Eq. (16) is

to Eq. (6) when ∆r = 0. The only difference is in the geo-
metrical factors χ and χtow. As in Eq. (6), the factor χtow

contains all the information about the cluster’s shape,

size, and number of particles, while h̄ = δc
2
/c20+σ2

∆ ≈ σ2
∆

measures the variability of sensing and responding to
chemoattractant concentration. The prefactor χtow in-
volves sums over the CIL directional vectors qi, which
are only non zero on the edges cells, supporting again
that only those cells contribute to sensing the gradient
in the tug–of–war model.

We now want to compare the tug–of–war model and
the MLE method to see which of them, and under what
conditions, senses the gradient more accurately. Fig. 4(b)
shows the gradient sensing error as a function of posi-
tional uncertainties for both models. In this case, since
the tug–of–war model does not depend on positional un-
certainties its gradient sensing error is constant. In ab-
sence of positional errors, the MLE method makes a
better estimation of the gradient than the tug–of–war
model, since this last one only uses information from the
edge cells in contrast with the MLE model that uses all
the cells. However, as cells become less informed about
their positions, a trade-off occurs where, beyond a certain
positional uncertainty value, ∆rt, the tug-of-war model
turns out to be a better estimator of the gradient. This
crossover exists since the tug-of-war model does not need
to estimate cell positions and is therefore independent
of positional uncertainties. Under the shallow gradient
approximation, from Eq. (6) and Eq. (16), we can find
analytically the crossover between both models,

∆rt ≈

√
h̄
(

χ
χtow
− 1
)

g
. (17)

Using maximum likelihood estimation, increasing the
cluster’s size can compensate for limitations in cells po-
sitional information, see Fig. 4(c). This result can be
easily predicted from Eq. (17), by considering the scal-
ing of the geometrical factors χ and χtow with the clus-
ter radius, Rcluster. We showed in Section II B that
χ ∼ R4

cluster for a roughly circular cluster. For the tug-

of-war model, χtow =
(
∑N
i δri·qi)

2

2
∑N
i |qi|2

. For a roughly circu-

lar cluster, qi will be along the direction δri for cells
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at the edge, and zero for cells in the interior. Edge
cells will have roughly the same magnitude of qi, |q|.
Thus, δri · qi ≈ |q|Rcluster for edge cells, and χtow ≈
(Nedge|q|Rcluster)

2/2Nedge|q|2 ∼ NedgeR
2
cluster. As, for a

roughly circular cluster, we expect the number of cells on
the edge Nedge to be proportional to 2πRcluster, we see
χtow ∼ R3

cluster. We see then that for the MLE model,

the gradient sensing accuracy σ2
g ∼ R−4

cluster, while for the

tug-of-war model, σ2
g ∼ R−3

cluster – because the tug-of-war
model uses only the edge cells, its accuracy grows more
slowly with the cluster size. Then, χ/χtow ∝ Rcluster and
we get from Eq. (17) that the ∆rt shifts to larger values

with the cluster size, (∆rt ∝ R1/2
cluster).

On the other hand, the gradient steepness plays an op-
posite role in shifting the trade-off values. In a steeper
gradient, the MLE method becomes more sensitive to
uncertainties in cell positions. In this scenario, the tug-
of-war model benefits from this limitation in the MLE
method and senses the gradient more accurately, even in
the presence of small positional errors. As a consequence,
the trade-off values shift towards smaller positional un-
certainties with the gradient steepness, see Fig. 4(d).

Our core results showing when clusters should prefer
using tug-of-war or MLE are summarized in the phase
diagram for the trade–off values shown in Fig. 4(e). In
absence of positional error, the MLE method will always
be preferred; the color map shows the amount of posi-
tional error required to make tug-of-war and MLE equiv-
alent. We draw a dashed line at what we view as a typ-
ical positional uncertainty, ∆rt = 2Rcell. As we woud
expect from the scaling that σ2

g ∼ R−4
cluster for MLE and

σ2
g ∼ R−3

cluster for tug-of-war, at a sufficiently large cluster
size (large N), MLE will always be preferred – but the
cluster size at which MLE is preferred depends strongly
on the gradient strength.

Lastly, it is interesting to note the case of N = 7.
This cluster size corresponds to the 1–layer hexagonal
cluster, where almost all cells are edge cells, and there
is only one interior cell. The interior cell is located at
the cluster’s center, so that δr = 0, and therefore has no
contribution to the gradient sensing in the MLE method

(recall that χ =
∑N
i |δri|2/2 in the shallow gradient,

see also for the general solution Eqs. (B4)–(B6)).
Consequently, both models use the same cells to sense
the gradient, except that the MLE approach is affected
by positional uncertainty, whereas the tug-of-war is not.
For this reason, even small uncertainties in cell positions
are sufficient for the tug–of–war model to outperform
the MLE and become the best gradient estimator.
In the case of the shallow gradient approximation, we
have that χ = χtow and from Eq. (17) we obtain ∆rt ≈ 0.

III. DISCUSSION

We have studied the role of limited positional informa-
tion in collective gradient sensing. Within the context
of gradient sensing, how cells get their positional infor-
mation – or if they estimate the gradient without this
information – is still an open question. Positional in-
formation within a group of cells has been studied in
the context of developmental biology, where an external
morphogen signal determine cell’s fate [20, 22, 24, 41];
cells may also sense their position within a colony by
sensing mechanical stresses [21]. Moving from a sensed
chemical or mechanical signal to positional knowledge
within a cluster is a complex multistage process [24].
Consequently, attaining precise positional information is
a time costly process, and there are essential tradeoffs
between the rate at which a pattern can be established
and its precision [42]. Establishing a reproducible gra-
dient is likely even more challenging for migratory cells
in clusters [5, 13], as cell position and number of cells
in the cluster all evolve over time. However, there is a
potential candidate for a morphogen-like source of posi-
tional information within neural crest cell cluster chemo-
taxis: the complement fragment C3a, which acts as a
“co-attractant” [43]. Earlier simulations show that the
co-attractant C3a can be established in a graded fashion
[44]. Here, we have suppressed the details of how po-
sitional information is established, neglecting potential
issues with establishing a reliable gradient, and focused
on the unavoidable impact of limited positional informa-
tion in collective gradient sensing. Consequently, these
results should in a sense be considered the best case for
exploiting positional information: if the tradeoff argu-
ment of Fig. 4 predicts that maximum likelihood sens-
ing using limited positional information is optimal, we
should be skeptical about this. Contrarily, if the trade-
off suggests MLE is inferior to the tug-of-war, we should
be highly confident that this is true. For this reason, it
seems unlikely that collective gradient sensing by small
clusters, such as border cell migration [4, 45, 46], relies
significantly on positional information.

Our results show that whether cells should use posi-
tional information in estimating a chemical gradient ori-
entation depends not only on the amount of positional
information but also on parameters like the cluster size
and the gradient steepness. Large clusters overcome po-
sitional uncertainties by having numerous cells, i.e. more
independent measurements, combining their estimates of
their positions and the local concentration of chemoat-
tractant. This large benefit from gaining information
from all cells and weighting them according to position
can outweigh the costs of having limited positional infor-
mation. This is especially apparent in comparison with
the tug-of-war model, which only uses information from
the small fraction of the cells at the cluster’s edge.

Gradient steepness is also a key parameter. Finite po-
sitional information limits the accuracy of collective gra-
dient sensing by a group of cells – but this limitation
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becomes more significant for steeper gradients, since dif-
ference in positions lead to larger changes in the chemoat-
tractant concentration. Remarkably, for shallow gradi-
ents, (g → 0), the limit where collective gradient sensing
is most important, as single cells can become ineffective
sensors, positional information turns out not to be rele-
vant.

While our simplest analytical results are derived for a
cluster with a constant positional information ∆r, we can
generalize our results beyond this point, finding that the
effect of limited positional information differs depending
on a cell’s position within the cluster. Positional uncer-
tainties in cells farther away from the cluster center of
mass have a greater effect on the accuracy of gradient
detection – again, suggesting that edge cells must play
a large role in sensing. Our observations suggest that a
group of cells may benefit from having specialized cells
capable of sensing their position more accurately than
the rest. The idea that cells may specialize depending on
position in the cluster or chemoattractant concentration
has also been suggested in other contexts [17, 34, 47, 48].

In addition to the maximum likelihood estimation of
[19], which requires positional information, and the tug-
of-war models [13, 16, 17], which do not, there are many
other models of collective gradient sensing [15]. One
broad category of a collective sensing mechanism that
is not affected by positional information is collective lo-
cal excitation–global inhibition (LEGI), where a local
reporter reads out local chemoattractant concentration
and a global inhibitor measures the global concentra-
tion [44, 49–52]. In LEGI, cell–cell communication im-
poses a maximum length scale at which gradient sensing
information is reliably shared, leading to a saturation of
gradient sensing accuracy with cell number [50], compat-
ible with experiments on mammary organoids [14] but
not lymphocyte clusters. While we have not treated the
LEGI model in detail here, we argue that, similarly with
the tug-of-war model, it does not require the cluster to
know cell positions – but it does not gain the benefits
of measuring signals over the entire cluster. We would
similarly expect LEGI sensing to be suboptimal to the
maximum likelihood estimator in the limit of increasingly
large clusters, shallower gradients, or lowering positional
uncertainty.

Can the consequences of limited positional information
be characterized experimentally? In experiments track-
ing cluster migration in response to a chemoattractant
gradient [5, 13], the distribution of the angle between the
cluster’s motion and the gradient is simple to measure,
allowing σ2

φ to be measured. Earlier work on lymphocyte
clusters studied cluster velocity and velocity variability
as a function of cluster size to support a tug-of-war model
in which chemotaxis was driven by forces along the edge,
and noise in motility was driven by all cells, not just edge
cells [13]; similar measurements have been made in the
border cell cluster in vivo [53]. If a group of cells were
reaching the optimal sensing limit given by Eq. (6), we
would predict that accuracy σ2

φ would scale extremely

strongly with cluster size, σ2
φ ∼ R−4

cluster – a stronger

dependence than that found by [13]. More character-
istically, we would expect that as gradient strength g is
increased, that angular accuracy σφ would saturate (Fig.
1d), in contrast with the predictions of previous models
[19, 44], where increasing gradient strength essentially al-
ways increases cluster accuracy. However, this prediction
should be interpreted cautiously: even in single cells, in-
creasing gradient strength does not always continue to
increase accuracy [54, 55]. This may reflect that at steep
gradients, intracellular sources of noise in cell informa-
tion processing and motility may be more important than
at relatively shallow gradients, where the receptor-ligand
noise is most important [55]. Within the shallow-gradient
approximation, Eq. (6), σφ saturates to a value ∆r/

√
χ at

large gradient strength. The strongest evidence that po-
sitional information is playing a role as in Eq. (6) would
be if, at large gradient strengths, this saturation value
of σφ changed as sources of positional information were
disrupted, altering ∆r. This could arise from, e.g., in-
terfering with the secretion or sensing of C3a in neural
crest cells [43]. Ideal experiments would then extend ear-
lier work [5] to a large range of cluster sizes with a more
precise control over the chemical gradients clusters are
exposed to. However, our earlier caveats on the model of
Eq. (6) should be kept in mind: this result is a minimal
model for positional error that is constant across the clus-
ter, and more detailed comparisons would require more
details in a putative source of positional information.

Our results show that a sensing mechanism that does
not rely on positional information, such as tug-of-war,
is optimal for sufficiently small clusters or sufficiently
large gradients. In Figure 4, we have shown a phase di-
agram assuming that positional information is accurate
to roughly a cell diameter, finding that tug-of-war is al-
ways optimal for clusters of seven cells, and will become
optimal at large gradients for larger clusters. The experi-
ments that originally suggested tug-of-war models where
only edged cells participate in sensing and responding to
the gradient [5, 13] involved tens to hundreds of cells. If
the tug-of-war behavior represents an evolutionary opti-
mum, it may reflect either a low ability to gain positional
information or a typical need to follow relatively steep
gradients.
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Appendix A: Computing the reading concentration
error for a single cell

Cells estimate concentrations from the occupancy of
receptors that binds the molecules of interest. Fluctua-
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tions in the number of occupied receptors determine the
accuracy of the cell to sense the concentration. To esti-
mate the cell’s sensing concentration error we first need
to find how receptor occupancy fluctuates. We consider
a cell with nr independent receptors distributed along
its surface and simple ligand-receptor kinetics, where
molecules bind the receptors with a rate konc(ri) and
unbind with rate koff . The probability that a receptor

is bound to a ligand molecule is p = konc(ri)
konc(ri)+koff

=
c(ri)

KD+c(ri)
, where KD = koff

kon
is the reaction dissociation

constant. Then, the mean number of occupied recep-

tors is n̄ = nr
c(ri)

KD+c(ri)
. Since receptors can have only

two states (bound or unbound), they follow a binomial

process with variance δn2 = nrp(1 − p) = nrc(ri)KD
(KD+c(ri))2 .

Finally, the error in the concentration estimate is re-
lated to the fluctuations in the number of bound re-
ceptors through propagation-of-error, δc2 =

(
dc
dn̄

)2
δn2 =

c(ri)(KD+c(ri))
2

nrKD
.

Appendix B: Derivation of the Fisher Information
matrix and computing of the lower bound for the

gradient sensing error through the maximum
likelihood estimation method

We apply MLE to obtain the gradient sensing error
of a group of cells that sense their local chemoattrac-
tant concentration and have limited positional informa-
tion. Each cell i performs two independent measure-
ments, a measurement of the local concentration Mi

and a measurement of its position r∗i given by Eqs. (1)
and (2) respectively. From Section II A, we know we can
write the likelihood function as, L(g, {ri}|{Mi, r

∗
i }) =∏N

i p(Mi|g, ri)p(r∗i |ri). In general, it is easier to work
with the log of the likelihood instead, since the product
between the probabilities becomes a sum. Then, consid-
ering a gradient g = gxx̂ + gy ŷ and a covariance matrix
for the positional error,

Σi =

[
σ2
xi ρiσxiσyi

ρiσxiσyi σ2
yi

]
, (B1)

we find the log of the likelihood to be

logL(g, {ri}|{Mi, r
∗
i }) =− 3

2

N∑
i

log(2π)− 1

2

N∑
i

log hi −
N∑
i

(Mi − µi)2

2hi
− 1

2

N∑
i

log
(
σ2
xiσ

2
yi(1− ρ

2
i )
)

−
N∑
i

1

2(1− ρ2
i )

[
(r∗xi − rxi)

2

σ2
xi

− 2ρi
(r∗xi − rxi)(r

∗
yi − ryi)

σxiσyi
+

(r∗yi − ryi)
2

σ2
yi

]
. (B2)

where µi = 1 + g · δri and hi = (δci/c0)2 + σ2
∆ are the

mean and variance of the local concentration measure-
ment performed by cell i.

From Eq. (B2), we could find the global maximum to
obtain the maximum likelihood estimator. Here, we are
not interested in the estimator itself but in its fluctua-
tions. We want to compute the estimator error, which
we know must converge to the Cramér-Rao bound, given
by the inverse of the Fisher information matrix, (I)

−1
.

This bound limits the accuracy of any unbiased measure-

ment of the gradient g [30]. This bound puts a limit on
minimal errors of any unbiased estimator of a parameter
(e.g. an estimator α̂) away from the true value of that
parameter (α). The Cramér-Rao bound for parameters
α and β is,

〈(α− α̂)(β − β̂)〉 =
(
I−1

)
α,β

, (B3)

Recalling the Fisher information definition, Iα,β =

−
〈
∂2 lnL
∂α∂β

〉
, we next take partial derivatives of Eq. (B2),

and compute the expectation values, getting

I =



∑N
i fiδr

2
xi

∑N
i fiδrxiδryi gxf1δrx1

gyf1δrx1
. . . gxfNδrxN gyfNδrxN∑N

i fiδrxiδryi
∑N
i fiδr

2
yi gxf1δry1

gyf1δry1
. . . gxfNδryN gyfNδryN

gxf1δrx1 gxf1δry1 g2
xf1 + m1

σ2
x1

gxgyf1 − m1ρ1

σx1
σy1

. . . 0 0

gyf1δrx1 gyf1δry1 gxgyf1 − m1ρ1

σx1
σy1

g2
yf1 + m1

σ2
y1

. . . 0 0

...
...

...
...

. . .
...

...
gxfNδrxN gxfNδryN 0 0 . . . g2

xfN + mN
σ2
xN

gxgyfN − mNρN
σxN σyN

gyfNδrxN gyfNδryN 0 0 . . . gxgyfN − mNρN
σxN σyN

g2
yfN + mN

σ2
yN


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where fi =
(a+µi)

2((a+3µi)
2+2anrµi)+2a2n2

rσ
2
∆

2(µi(µi+a)2+anrσ2
∆)

2 , mi =

1
(1−ρ2

i )
, a = KD/c0, and δri = ri − rcm. The order

of the Fisher information matrix elements correspond
to: {gx, gy, rx1

, ry1
, . . . , rxN , ryN }, such that, as for exam-

ple, I1,1 = −
〈
∂2 lnL
∂g2
x

〉
, I1,2 = −

〈
∂2 lnL
∂gx∂gy

〉
, I1,2(N+1) =

−
〈

∂2 lnL
∂gx∂ryN

〉
. The derivation of the Fisher information

matrix from the likelihood function is not hard, but takes
some calculation effort. To gain some intuition about the
shape it takes, we point out some aspects. Note that g
and ri are only related by the likelihood function through
the term g · δri, which appears inside the expressions of
hi and µi. From there we can see why the fi parameters
are in every element of the Fisher information matrix.
Taking second derivatives with respect to g and ri over
the different terms in Eq. (B2), by the derivative rule of
chain, results in ending up taking derivatives over g · δri.
Then, all these terms factor together yielding to fi. For
the same reason we can understand I having the first two
rows/columns in full. Lastly, note that the elements re-
lated to the double derivatives with respect to positions
have a contribution coming from the gradient terms, plus
the contribution from the positional uncertainty terms of
the likelihood function.

We are interested in computing the gradient sensing
errors, σ2

gx ≡ 〈(gx − ĝx)
2〉 =

(
I−1

)
gx,gx

and σ2
gy ≡

〈(gy − ĝy)
2〉 =

(
I−1

)
gy,gy

. Following a guided Gaus-

sian elimination procedure we can obtain the inverse of
the Fisher information matrix for the elements associ-
ated with the gradient (see Appendix E). The maximum
likelihood estimator errors for the gradient are,

σ2
gx =

1

S

N∑
i

γiδr
2
yi , (B4)

σ2
gy =

1

S

N∑
i

γiδr
2
xi , (B5)

σgx,gy =− 1

S

N∑
i

γiδrxiδryi , (B6)

where S =
∑N
i γiδr

2
xi

∑N
i γiδr

2
yi −

(∑N
i γiδrxiδryi

)2

,

and γi = fi
1+figTΣig

.

Finally, it is easier to interpret the gradient sensing
errors in terms of the steepness, g, and direction φ, of
the gradient. We can obtain them by re-parametrizing
the Fisher information matrix as,

Iθ′ = JT Iθ(θ(θ
′))J,

where J is the Jacobian matrix, Jij = ∂θi
∂θ′j

, and θ =

{gx, gy} and θ′ = {g, φ} are the variables we want to
transform. The errors for the gradient steepness and di-

rection then are,

σ2
g = cos2(φ)σ2

gx + sin2(φ)σ2
gy + 2 cos(φ) sin(φ)σgx,gy

(B7)

σ2
φ =

sin2(φ)σ2
gx + cos2(φ)σ2

gy − 2 cos(φ) sin(φ)σgx,gy

g2
.

(B8)

We presented these equations for an isotropic cluster in
the main text, where σgx,gy ≈ 0 and σgx ≈ σgy . In

this case, we find that σ2
φ = σ2

g/g
2 – but this is only

true for isotropic clusters. Note that Eq. (B8) fails for
large enough σg, since φ is constrained between 0–2π,
and consequently, σφ is bounded.

Shallow gradient approximation

In the limit of shallow gradient approximation it is pos-
sible to obtain simpler expression for the gradient sens-
ing errors. In this limit, gRcluster � 1, meaning that the
cell’s ligand-receptor fluctuations can be approximated as

δci ≈ δc =
√

1
nr

c0(c0+KD)2

KD
. Variations of the chemoat-

tractant concentration along the cell’s cluster are small,
thus we can assume that all cells have the same reading

concentration errors. Then, hi ≈ h̄ = δc
2

+ σ2
∆. More-

over, since nr � KD/c0, fi can be approximated as the
inverse of the reading concentration error, fi ≈ f̄ = 1/h̄.
Note that the limit of large cell-cell variability, σ∆ �
δci/c0, would lead to the same approximation. Assuming
constant isotropic positional errors, such that ρi = 0 and
σxi = σyi = ∆r, we find that γi = 1

1/fi+gTΣig
≈ 1

h̄+g2∆r2

is independent of i and thus Eqs. (B4)–(B6) take a sim-
plified form,

σ2
gx =

∑N
i δr

2
yi

S̄
(
h̄+ g2∆r2

)
,

σ2
gy =

∑N
i δr

2
xi

S̄
(
h̄+ g2∆r2

)
,

and in polar coordinates,

σ2
g = Γg

(
h̄+ g2∆r2

)
,

σ2
φ =

Γφ
g2

(
h̄+ g2∆r2

)
,

where Γg =
∑N
i (sin(φ)δrxi−cos(φ)δryi )

2

S̄ , Γφ =∑N
i (cos(φ)δrxi+sin(φ)δryi )

2

S̄ , and S̄ =
∑N
i δr

2
xi

∑N
i δr

2
yi −

(
∑N
i δrxiδryi)

2 are geometrical factors that depend on
the cluster’s shape and the gradient’s orientation. Note
that in the case the cluster have circular symmetry,

(
∑N
i δr

2
xi ≈

∑N
i δr

2
yi ≈

1
2

∑N
i |δri|2,

∑N
i δrxiδryi ≈ 0),

then Γg ≈ 1
χ , and Eq. (6) is recovered.
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Appendix C: Auxiliary computations for the
tug–of–war model

Details on computation of the mean and covariance
of pi(t)

We want to compute the mean value and variance of
pi. We start from Eq. (12) . The mean value is straight
forward,

〈pi〉 =
〈
µi + σp

∫ t

0

dt′e−(t−t′)/τpεi(t
′) + β̄c0qi

∫ t

0

dt′e−(t−t′)/τpΞi(t
′)
〉
,

=〈µi〉+ σp

∫ t

0

dt′e−(t−t′)/τp〈εi(t′)〉+ β̄c0qi

∫ t

0

dt′e−(t−t′)/τp〈Ξi(t′)〉,

=µi.

Recalling that 〈Ξi(t)Ξj(0)〉 =(
δc2i /c

2
0Cc(t) + σ2

∆C∆(t)
)
δij , and that we have assumed

that correlations decay exponentially, so Cs(t) = e−t/τs ,

with τs the correlation time and the index s = {c,∆},
we now compute the covariance of pi(t),

〈(pµi(t)− 〈pµi〉)(pνi(t)− 〈pνi〉)〉 = σ2

∫ t

0

dt′
∫ t

0

dt′′〈εµi(t′)ενi(t′′)〉e−(t−t′)/τpe−(t−t′′)/τp

+ β̄2c20qµiqνi

∫ t

0

dt′
∫ t

0

dt′′〈Ξi(t′)Ξi(t′′)〉e−(t−t′)/τpe−(t−t′′)/τp

=
σ2τp

2
+ β̄2qµiqνiδc

2
iT(t, τc) + β̄2c20qµiqνiσ

2
∆T(t, τ∆)

where,

T(t, τs) =
τ2
p

1 + υs

(
1 +

1

1− υs
×
(
(1 + υs)e

−2t/τp − 2e−(1+υs)t/τp
))
,

and υs =
τp
τs

. T(t, τs)/τ
2
p represent the time averaging

function for a fluctuating process with correlation time
τs up to a time t. Given that τ∆ � t � τp � τc, then

T(t, τc) ≈
τ2
p

1+τp/τc
≈ τpτc and T(t, τ∆) ≈ τ2

p , so then

T(t, τ∆)� T(t, τc).

Error propagation for the tug-of-war model

To estimate the gradient sensing error for the tug–of–
war model we use a simple error propagation method.

From Eq. (13), we can write an expression for the gra-
dient related to the cluster velocity, g = 1

γc0
M−1〈vc〉,

where,

M−1 =
N

Sv

[ ∑N
i δryiqyi −

∑N
i δryiqxi

−
∑N
i δrxiqyi

∑N
i δrxiqxi

]
, (C1)

and Sv =
∑N
i δrxiqxi

∑N
i δryiqyi −∑N

i δrxiqyi
∑N
i δryiqxi .

Recalling the symmetry of the roughly circular
hexagonal clusters, the following relations are fulfilled,∑N
i δr

2
xi ≈

∑N
i δr

2
yi ≈

1
2

∑N
i |δri|2 ,

∑N
i δrxiδryi ≈

0,
∑N
i q

2
xi ≈

∑N
i q

2
yi ≈

1
2

∑N
i |qi|2,

∑N
i qxiqyi ≈

0,
∑N
i qxiδrxi ≈

∑N
i qyiδryi ≈

1
2

∑N
i qi · δri, and∑N

i qxiδryi ≈
∑N
i qyiδrxi ≈ 0. In addition, note that in

such a case, we can write Sv ≈
∑N
i δrxiqxi

∑N
i δryiqyi ≈
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1
4

(∑N
i qi · δri

)2

and,

M−1 ≈ 2N∑N
i qi · δri

I, (C2)

where I is the 2×2 identity matrix. Then, the expression
for the gradient takes the following simple form,

g =
2N

γc0
∑N
i qi · δri

〈vc〉. (C3)

Eq. (C3) shows that g and 〈vc〉 are proportional to each
other. Then, we can write the variance of g as,

var(g) =

(
2N

γc0
∑N
i qi · δri

)2

var(vc). (C4)

Introducing the velocity variance expressions given by
Eq. (14) in the main text into Eq. (C4), we finally obtain
the gradient sensing variances for the tug–of–war model,

σ2
gx ≈ σ

2
gy ≈

2(∑N
i qi · δri

)2

(
N∑
i

|qi|2hTi +
σ2
pτp

γ2c20
N

)
,

(C5)

cov(gx, gy) ≈0. (C6)

We note that, though our derivation of this equation
does involve a sum over cell positions, the cluster can
compute the direction of the gradient through the tug-
of-war without explicitly knowing any cell locations.

Appendix D: Maximum likelihood estimator with
time averaging

In the main text we apply the MLE method to com-
pute the gradient sensing error from the individual cell

measurements of the chemoattractant concentration, Mi,
and cell positions, r∗i . These measurements capture a
“snapshot” or instant of the cluster state. Later in the
text, we compare the MLE outcomes with the tug–of–
war model, which relies on the statistics of the cell po-
larities pi obtained for asymptotic times larger than τp.
Therefore, we are comparing instantaneous with time av-
eraged measurements. We could do this since the sensing
concentration measurements are dominated by the CCV
which has a correlation times larger than the polarity
relaxation time. Here we extend the MLE method by
using time average measurements in the same way as the
tug–of–war model.

We compute the time average for the individual cell
chemoattractant concentration measurements,

MT
i (t) =

∫
Mi(t

′)KT (t− t′)dt′,

= c(ri)/c0 +

∫
Ξi(t

′)KT (t− t′)dt′,

where KT (t) = H(t) 1
T e
−t/T is a time averaging kernel

and H(t) the Heaviside function. We assume that cell
positions remain fixed during the averaging time T , so
that c(ri, t) = c(ri). Now we compute the mean and
variance for MT

i .

〈MT
i 〉 = c(ri)/c0,

〈(
MT
i − 〈MT

i 〉
)2〉

=
1

T 2

∫ t

0

dt′
∫ t

0

dt′′〈Ξi(t′)Ξi(t′′)〉e−(t−t′)/T e−(t−t′′)/T ,

=
1

T 2

∫ t

0

dt′
∫ t

0

dt′′
(
δc2i
c20
Cc(|t′ − t′′|) + σ2

∆C∆(|t′ − t′′|)
)
e−(t−t′)/T e−(t−t′′)/T ,

=
1

1 + T/τc

δc2i
c20

+
1

1 + T/τ∆
σ2

∆.

If we substitute the averaging time T = τp, these are
precisely the values hTi which we derived in our tug-of-
war model. This shows we can carry over all of our re-
sults from the maximum likelihood estimation to match
the results of the tug-of-war model. However, this is not

particularly important, because T � τc and T � τ∆,
the sensing concentration fluctuations can be approxi-

mated by 〈
(
MT
i − 〈MT

i 〉
)2〉 ≈ σ2

∆. When we take into
account time averaging, the contributions to the sensing
concentration fluctuations are dominated by CCV while
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ligand-receptor fluctuations are averaged out.

Appendix E: Proof for the analytical solution of the
MLE errors

In this appendix we show the derivation of the expres-
sions for the MLE errors in the shallow gradient limit.
The problem we are solving is very similar to an error–
in–variable models of regression, in which the regressor
variable is subject to errors [56]. However, we were not
able to find an explicit mapping between these results
and our question of interest – computing the Fisher in-
formation matrix and its inverse specifically for the gx
and gy variables. Finding the Fisher information matrix
I is relatively straightforward from evaluating derivatives
of the log-likelihood, and it is presented in Appendix B.
However, to determine the Cramer-Rao bound, we need
to compute the inverse of the Fisher information ma-
trix – in principle needing to analytically invert a matrix

whose size scales with the number of cells. This is non-
trivial in general. However, for this problem we were
able to use Gaussian elimination to find the elements of
the inverse of the Fisher information matrix necessary for
us, i.e. (I)

−1
gxgx

, (I)
−1
gygy

, and (I)
−1
gxgy

. Given the almost

tridiagonal shape of the Fisher matrix, we first show the
procedure for how to eliminate the elements of the rows
associated with a individual cell s and then repeat the
same steps for the rest of the cells.

Recall that the Gaussian elimination method is a lin-
ear algebra method to find the solution of a problem
A×X = B. This problem can be represented in terms of
an augmented matrix [A|B]. Row operations (i.e. linear
combinations of the rows) are performed, leading even-
tually to finding the solution for X when the augmented
matrix takes the form [I|C], where I is the identity ma-
trix, and C =

(
A−1

)
B = X. In our case, the problem we

want to solve is to find the inverse of the Fisher informa-
tion matrix, I ×

(
I−1

)
= I. To start with the Gaussian

elimination process, we first write the augmented matrix
[I|I],



Sxx Sxy . . . gxfsδrxs gyfsδrxs . . .
Sxy Syy . . . gxfsδrys gyfsδrys . . .

...
... . . .

...
... . . .

gxfsδrxs gxfsδrys . . . g2
xfs + ms

σ2
xs

gxgyfs + msρs
σxsσys

. . .

gyfsδrxs gyfsδrys . . . gxgyfs + msρs
σxsσys

g2
yfs + ms

σ2
ys

. . .

...
... . . .

...
... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . .
0 1 . . .
...

... . . .
0 0 . . .
0 0 . . .
...

... . . .



where Sxx =
∑N
i fiδr

2
xi , Syy =

∑N
i fiδr

2
yi , and Sxy =∑N

i fiδrxiδryi . Since we are only looking for the gradient
estimation errors, we solely consider the two first columns
of the right matrix.

Following, we apply the operations to perform an up-
per diagonalization of columns associated to the cell s.
From now on we use the notation Ri and Im,n to identify
the i–row and the (m,n)–element of the matrix respec-
tively. Note that the rows associated with the cell s are
R2s+1 and R2s+2.

1. Set element I2s+2,2s+2 = 1: R2s+2 ← R2s+2

I2s+2,2s+2
.

2. Set element I2s+1,2s+2 = 0: R2s+1 ← R2s+1 −
I2s+1,2s+2R

2s+2.

3. Set element I2,2s+2 = 0: R2 ← R2 − I2,2s+2R
2s+2.

4. Set element I1,2s+2 = 0: R1 ← R1 − I1,2s+2R
2s+2.

5. Set element I2s+1,2s+1 = 1: R2s+1 ← R2s+1

I2s+1,2s+1
.

6. Set element I2,2s+1 = 0: R2 ← R2 − I2,2s+1R
2s+1.

7. Set element I1,2s+1 = 0: R1 ← R1 − I1,2s+1R
2s+1.

After these steps we arrive to the following matrix,



Sxx − αsδr2
xs Sxy − αsδrxsδrys . . . 0 0 . . .

Sxy − αsδrxsδrys Syy − αsδr2
ys . . . 0 0 . . .

...
... . . .

...
... . . .

� � . . . 1 0 . . .
� � . . . � 1 . . .
...

... . . .
...

... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . .
0 1 . . .
...

... . . .
0 0 . . .
0 0 . . .
...

... . . .



αs = f2
s

gΣsgT

1+fsgΣsgT
and the squares (�) represent ele-

ments with large expressions that are not relevant for
the computation.

Then, we need to repeat steps 1–7 for all s. For
each iteration we add a term −αsδrzksδrzls to the
matrix elements {k, l} with k, l = {1, 2} and zk,l =
{x, y}. Finally, after repeating the procedure for
all s, we get that the elements {k, l} results in∑N
i fiδrzxiδrzli −

∑
s αsδrzxsδrzls =

∑N
i γiδrzxiδrzli,



16

where γi = fi
1+figΣigT

, and the matrix reads,


∑N
i γiδr

2
xi

∑N
i γiδrxiδryi . . .∑N

i γiδrxiδryi
∑N
i γiδr

2
yi . . .

...
... . . .

∣∣∣∣∣∣∣
1 0 . . .
0 1 . . .
...

... . . .



Finally, since the first two rows are composed by a
2 × 2 block followed by all zeros to the right, instead of
performing row operations, we can just invert this 2× 2
matrix block to arrive to the final solution for the inverse
of the Fisher matrix and the MLE errors.

1 0 . . .
0 1 . . .
...

... . . .

∣∣∣∣∣∣∣
∑N
i γiδr

2
yi

S −
∑N
i γiδrxiδryi
S . . .

−
∑N
i γiδrxiδryi
S

∑N
i γiδr

2
xi

S . . .
...

... . . .



We can be positive that this is the final solution, since fol-
lowing with the Gaussian elimination process, no further
operations over the first two rows would be necessary,
and therefore, they will not be modified.

We have ensured that this result is correct both by
checking with computer algebra packages for small num-
bers of cells, as well as explicitly numerically inverting
the Fisher information matrix.

Appendix F: Default parameters

In Table I we show the default values for parameters in
this study with a brief justification of our choices. Values
differing from these are indicated in the text and the
figure captions.

parameters value justification
Q 3 N = 8 − 100. From

[13] area of clusters is ∼
2500µm2 and considering
that Rcell ∼ 3− 10µm.

Rcell 10µm Lymphocytes ∼ 3 − 5µm,
epithelial cells ∼ 4− 10µm.

nr 105 From [57, 58].

a = Kd
c0

1 Optimal setting for re-
ducing ligand-receptor
noise [19].

∆r 2Rcell (1 cell) Error estimation in
Drosophila m. embryos
[20]

g0 0.005µm−1 According to [19] and [13].
σ∆ 0.1 According to [59]
σp 0 No polarization error. Best

estimation the tug-of-war
model can make.

TABLE I. Parameter selection. Unless otherwise indicated
in the text, these are the parameters used throughout the
results.
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