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Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows.
Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the
detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for
irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageR-
ank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer’s configuration
dynamics. Our experiments highlight how system parameters—e.g., the teleportation rate for PageRank and the
transition rates of external and internal state changes for a monomer—can act as homology regularizers of con-
vection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach
establishes a new connection between the study of convection cycles and homology, the branch of mathematics
that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.

PACS numbers: 89.75.Hc, 02.50.Ga, 87.15.hj,84.35.+i

I. INTRODUCTION

One of the main goals of topological data analysis (TDA)
is to characterize the structure of an object—usually a point
cloud—through its topological features. In particular, per-
sistent homology [1, 2] is a family of techniques that de-
tect and summarize multiscale topological features and has
been applied to a wide variety of applications including time-
series data [3, 4], image processing [5], machine learning [6],
and artificial intelligence [7, 8]. Complementing the study of
point-cloud data, another line of research involves utilizing the
TDA toolset to study complex systems, for which applications
include the analysis of spreading processes over social net-
works [9], network neuroscience [10–12], mechanical-force
networks [13], jamming in granular material [14], molecular
structure [15], and DNA folding [16]. In this paper, we em-
ploy techniques from TDA to study Markov chains (MCs),
which provide a foundation to numerous areas of science
and engineering including queuing theory [17], population
dynamics [18], as well as statistical (and machine learning)
models that rely on Markov chain Monte Carlo [19], hidden
Markov models [20], and Markov decision process [21].

We utilize the mathematical framework of persistent ho-
mology to automate the detection (and summarize the mul-
tiscale properties) of convection cycles that arise for the sta-
tionary flows of irreversible MCs. Notably, while convection
cycles have been extensively studied in fluid dynamics, they
are less understood in the context of flows over networks. For
example, it was recently observed that the coupling together
of reversible MCs can give rise to an irreversible MC with
convection cycles that are an emergent property [9]. Emer-
gent convection cycles have also been recently found to de-
scribe the phenomenon of “chiral edge flows” [22], providing
new insights into the quantum Hall effect, configurational dy-
namics of monomers, and biological (e.g., circadian) rhythms.
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Given the inherent prevalence of convection cycles in MCs
and other network flows, it is important that we place their
study on a stronger mathematical, computational, and theo-
retical footing.

We study convection using a branch of mathematics called
homology and the related field computational homology [23].
Both are concerned with studying the absence/presence of k-
dimensional “holes” (and their connectivity) within a topolog-
ical space such as a simplicial complex. Importantly, cycles
on a graph are 1-dimensional (1D) holes, and so persistent
homology is a natural fit to analyze convection cycles. We
construct filtrations of graphs by including edges according to
the stationary flows across them (which is done in descending
order so that the last edges to be included are those with the
smallest stationary flows), and we summarize the persistent
homology of the filtered graphs’ associated clique complexes.
See Fig. 1 for a graph and its associated clique complex. Com-
putationally, we implement these techniques by building on a
popular TDA framework called Gudhi [24], which we adapt
to implement edge-value clique (EVC) filtrations of scalar-
functions that are defined over the the edges of a graph.

We apply this technique to two applications. First, we study
convection cycles arising under the PageRank algorithm [25],
examining the role of the teleportation parameter. Second,
we study chiral edge flows that emerge for a 4-state model
that describes the configurational changes of a bi-monomer
[22], examining the roles of the external and internal transi-
tion rates. These parameters significantly affect convection
cycles arising for these respective applications, and we show
that they act as “homology regularizers” of convection. We
introduce “homological bifurcation diagrams” to summarize
these effects. Our methods provide mathematically principled
(and automated) tools to gain a deeper understanding of the
structural patterns of convection on networks, and they are ex-
pected to be useful to myriad applications across the physical,
social, biological and computational sciences.

The remainder of this paper is organized as follows: We
present background information in Sec. II, our methodology
in Sec. III, applications in Sec. IV, and a discussion in Sec. V.



2

II. BACKGROUND INFORMATION

Here, we present introductory material about simplicial
complexes and homology (Sec. II A), persistent homology of
graphs (Sec. II B), and discrete-time MCs (Sec. II C).

A. Simplicial complexes (SCs) and their homology

We first define an undirected graph G = {V, E}, where
V = {1, . . . , N0} is a set of N0 vertices and E ⊂ V × V is
a set of edges. Note that each vertex is specified by a single
index i ∈ V , and each edge is specified by an unordered pair
(i, j) ∈ V × V . More generally, we define a (k + 1)-tuple
of vertices σ = (i0, i1, . . . , ik) as a k-dimensional simplex,
or k-simplex [26]. Vertices and edges are equivalent to 0-
simplices and 1-simplices, respectively. An abstract SC is a
set of simplices of possibly different dimensions, and it is a
generalization of an undirected graph. It is also a type of hy-
pergraph with a constraint on which simplices can exist. That
is, for any k-simplex (i0, i1, . . . , ik) in an SC, its faces are the
(k − 1) simplices in which one of the of indices is omitted
(e.g., i1 is omitted to yield (i0, i2, . . . , ik)). The cofaces of
a (k − 1)-simplex are the k-simplices for which it is a face.
Note that the faces of an edge (i, j) are the vertices i and j,
and likewise, (i, j) is a coface of each of these vertices.

With these definitions, we state the two restrictions that are
required for a SC: (i) for any face, its faces must be included
in the SC; and (ii) the intersection of any two faces is either
a face of both, or it is an empty set. The dimension of an
SC is the maximum dimension of its simplices, and an undi-
rected graph is a 1-dimensional SC—it contains 0-simplices
and 1-simplices, and for any edge (i, j), the vertices i and j
must exist. We will focus on a particular type of SC that can
be generated from a graph and is called a clique complex. A
clique complex K(G) of a graph G is the SC in which there
is a 1-to-1 correspondence between the (k + 1)-cliques in the
graph and the k-simplices in the SC. (Recall that an n-clique
is a complete subgraph on n + 1 vertices of a graph.) Given
this 1-to-1 correspondence, the map from G to K(G) is in-
vertible, and G can be recovered as the 1-skeleton of K(G).
(A k-skeleton of a SC is the SC that is obtained after removing
all simplices having dimensions that are greater than k.)

We next discuss simplicial homology, which will lead to
a formal definition of “homological” cycles. To this end, we
consider vector spaces defined over the k-simplices in a SC. A
k-chain,

∑Nk

n=1 αnσn, is a linear combination of k-simplices
{σn} with weights {αk}. (Note that N0 and N1 are the num-
bers of vertices and edges, respectively.) If a SC contains
Nk different k-simplices, then the vector space of k-chains is
Nk-dimensional, and it is isomorphic to RNk if one assumes
αk ∈ R. We now consider a simplicial map f : Xk → Xk−1

between Xk, which is a SC of dimension k, and Xk−1, which
is a SC of dimension k−1 that contains the faces of simplices
in Xk. Considering the vector space Ck of k-chains defined
over k-simplices in Xk and vector space Ck−1 of (k − 1)-
chains defined over their cofaces in Xk−1, we define the lin-
ear boundary map ∂k : Ck −→ Ck−1, where the action of ∂k

(A) (B)

FIG. 1. A graph and an associated simplicial complex (SC).
(A) Graph G with N = 7 vertices and M = 10 undirected, un-
weighted edges. (B) The corresponding clique complex S, where
each k-clique gives rise to a (k − 1)-simplex. Each triangle (i.e.,
3-clique) gives rise to a 2-simplex (see shaded triangles). The SC is
a topological space and has associated vector spaces. Consider the
space R7 of real-valued functions defined over the vertices. Since
there is just 1 connected component, the SC’s 0-dimensional (0D)
homology is a 1D subspace of R7. Similarly, there are two “homo-
logical” 1-cycles that are not a boundary of a 2-simplex, and so the
1D homology is a 2D subspace of R10 (i.e., the space of real-valued
functions defined over the ten edges).

on any k-simplex is given by

∂k(i0, ..., ik) =

k∑
j=0

(−1)j(i0, ..., ij−1, ij+1, ..., ik). (1)

The boundary map allows one to relate vectors in Ck to those
inCk−1. For example, the boundary of a 2-simplex (i.e., trian-
gle) (i, j, k) is the signed combination if the associated edges,
∂2(i, j, k) = (j, k)− (i, k) + (i, j). Notably, the boundary of
any closed path is zero, which yields an algebraic definition of
a k-cycle: any k-chain that lies within the subspace Zk, where
Zk = ker(∂k) ⊆ Ck is the vector space of k-cycles.

Notably, k-cycles can arise for different reasons, and we
distinguish two types. The boundary map satisfies the prop-
erty ∂k ◦ ∂k+1 = 0, which essentially states that the boundary
of a boundary is zero. [For the triangle, ∂1 ◦ ∂2(i, j, k) =
∂1(j, k)− ∂1(i, k) + ∂1(i, j) = (k− j)− (k− i) + (j− i) =
0.] Thus we define Bk = image(∂k+1) as the subspace of
(k + 1)-boundaries, and it follows that Bk ⊆ Zk. In other
words, some cycles arise simply because they are boundaries
of (k + 1)-simplices For example, observe in Fig. 1(B) that
there are two “triangular” cycles that exist around the two
2-simplices, but that there are two other cycles that also ex-
ist. The k-th simplicial homology is defined as the quotient
space Hk = Zk/Bk, and it represents the subspace of k-
dimensional cycles (i.e., k-cycles) that do not arise simply as
the boundary of a (k + 1)-simplex.

The k-th simplicical homology can be represented by the
span of homology generators, which are a linearly indepen-
dent set of k-chains that span Hn and represent the associated
k-cycles. The number of linearly independent homology gen-
erators is called a Betti number

βk = dimHk = dim(Zk)− dim(Bk). (2)

Informally, β0 is the number of connected components; β1 is
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FIG. 2. Persistent homology of a graph according to an edge-value clique (EVC) filtration. (A) An undirected graph G(V, E) with a scalar
function f : E → R defined over the edges E . We apply an EVC filtration to the graph by considering a monotonically decreasing filtration
parameter ε = (0, 5], and by considering a filtered sequence of graphs G(V, Eε), where Eε = {(i, j)|f(i, j) > ε} is the subset of edges
for which f(i, j) are larger than a threshold ε. (B) Visualization of the graphs’ associated clique complexes Kε ≡ K(G(V, Eε)) for several
ε. (C) A persistence barcode summarizes how the 0-dimensional (red) and 1-dimensional (blue) homological k-cycles of Kε change with
decreasing ε. The arrows highlight two events: at ε = εb, a homological 1-cycle involving four edges is born; at ε = εd, the 1-cycle dies, since
it is “filled in” by a 1-simplex and two 2-simplices.

the number of 1-dimensional cycles or “loops” (that is, not
including the triangular boundaries of 2-simplices); and β2 is
the number of 2-dimensional holes or “voids” (e.g., the inte-
rior of a triangulated sphere). For the SC shown in Fig. 1(B),
β0 = 1 since there’s one connected component, and β1 = 2
since there are two cycles that are not simply the boundaries
of 2-simplices.

By formulating k-cycles algebraically, one can consider the
linear dependence and independence of k-cycles. As such,
one can not only identify cycles, but also investigate the re-
lations/connectivity between cycles, which we find to be in-
strumental for understanding pattern formation for cycle. We
also highlight that a given homological k-cycle can potentially
have more than one homological generator. Such generators
are said to be homologically equivalent, and they can be ob-
tained by considering linear combinations of k-cycles (includ-
ing both homological k-cycles and boundaries). We will later
show that this complicates the investigation of convection cy-
cles through the lens of homological k-cycles.

B. Persistent homology of scalar functions defined over edges

One of the greatest tools of topological data analysis is the
study of persistent homology [1, 2]. Here, we examine how
the homology of a topological object changes as it under-
goes a filtration to yield a monotonically increasing sequence
X0 ⊆ X1 ⊆ X1 ⊆ ... (e.g., of simplicial complexes {Xt}).
We consider filtrations in which one has a scalar function
f : E −→ R over the edges, and each edge (i, j) ∈ E is re-
tained/removed according to f(i, j). The values f(i, j) could
be edge weights for a weighted graph, but in general they can
encode any scalar property. We visualize such a graph and the
values f(i, j) in Fig. 2(A).

We call the process an edge-value clique (EVC) filtra-

tion, and we construct it as follows. Given a graph G(V, E)
and a filtration function f , we define the subsets Eε =
{(i, j)|f(i, j) > ε} in which one retains edges only for which
f(i, j) is sufficiently large. Note that the subsets {Eε} are
non-decreasing as ε decreases (i.e., Eε ⊆ Eε′ for any ε′ < ε).
We must specify a range over which to decrease ε ∈ (εB , εA],
and in practice we assume εA > max(i,j)∈E f(i, j) and εB <
min(i,j)∈E f(i, j). It then follows that Eε = ∅ is an empty set
of edges when ε ≥ εA, and Eε = E (i.e., all edges are retained)
when ε ≤ εB . See [27] for our codebase that implements EVC
filtrations by adapting the TDA framework called Gudhi [24],
and which reproduces the results of this paper.

In Fig. 2(B), we visualize a sequence of filtered clique com-
plexes {Kε} that are associated with the filtered graphs {Gε}
that are defined with the edge sets {Eε}. In Fig. 2(C), we sum-
marize the persistent homology of {Kε} in a persistence bar-
code, which reveals how homology changes with ε. Observe
that when ε is sufficiently large, Kε contains vertices but no
edges. On the other hand, when ε decreases to be sufficiently
small, then Kε recovers the original clique complex [recall
Fig. 1(B)]. The values of ε that were used to create Fig. 2(B)
are indicated by the vertical dotted lines in Fig. 2(C).

Each horizontal bar in the persistence barcode shown in
Fig. 2(C) indicates the lifetime of a homological 1-cycle—
that is, the values of ε for which it exists. The red and blue
bars reflect 0-homology and 1-homology respectively. The
dimensions of the homology spaces (i.e., Betti numbers) can
be found by counting the number of homological 1-cycles at
any particular ε. For example, one can observe that β1 = 0
when ε = 3.5, β1 = 1 when ε = 2.5, and β1 = 2 when
ε = 1.5. Clearly, the homological 1-cycles are undergoing bi-
furcations as ε varies. A persistence barcode is convenient to
identify for each generator: the value εb of ε when it is “born”
(i.e., the homological k-cycle does not exist when ε > εb);
the value εd of ε when it “dies” (i.e., the homological k-cycle
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FIG. 3. Stationary distribution, edge flows, and convection cycles for an irreversible MC. We study a discrete-time random walk over a
directed, weighted graph that resembles the undirected graph in Fig. 2, except that the edges are now either directed or bidirectional. (Recall
that undirected graphs give rise to reversible MCs that lack convection cycles.) (A) The color of each vertex indicates the stationary distribution
πi of random walkers at each vertex i. (B) Edge colors indicate the stationary flows Fij = πiPij across edges, i.e., the stationary fraction
of random walkers that traverse each directed edge. (C) Flow imbalances ∆ij = (Fij − Fji) manifest as a pattern of convection cycles. By
construction, ∆ij = −∆ji, and we use arrows to indicate the directions of imbalance, e.g., i→ j if ∆ij > 0.

does not exist when ε < εd); its lifetime (εd, εb]; and lifespan
|εd − εb|. A cycle’s lifespan quantifies its persistence under
the filtration, and it is often interpreted as a proxy for the cy-
cle’s significance (although short-lifetime cycles can also be
important in certain contexts).

C. Convection cycles for irreversible Markov chains (MCs)

We will apply persistence homology to study convection
cycles in irreversible MCs [28], which we now briefly sum-
marize. A discrete-time MC is a “memoryless” random pro-
cess in which for time steps t = 0, 1, 2, . . . , the system state
St ∈ V satisfies the Markov property P[St+1 = i|S0 =
i0, ..., St = it] = P[St+1 = i|St = it], which implies that
the probability of a state occurring at the next time step only
depends on the current state and not earlier states. In our
case, we consider MCs that correspond to a random walk on
a (possibly) weighted and directed graph having an adjacency
matrix A in which Aij ∈ R is nonzero if (i, j) is an edge,
(i, j) ∈ E , and Aij = 0 otherwise. We similarly define a
transition matrix, P = D−1A, where D is a diagonal ma-
trix with entries that encode the (possibly) weighted vertex
degrees Dii =

∑
j Aij . For directed graphs, each (i, j) is

considered to be an ordered pair, and each Dii encodes the
out-degree of vertex i. Each matrix element Pij gives the
probability for a random walk to transition from vertex i to j.
Letting xi(t) denote the probability that the system is in state
i (or equivalently, the probability that a random walker is at
vertex i) at time t, one can utilize the Markov property to ob-
tain the linear discrete-time system xj(t+ 1) =

∑
i xi(t)Pij .

By defining x(t) = [x1(t), . . . , xN0
]T , one equivalently has

x(t+ 1)T = x(t)TP. (3)

Since x(t) is a vector of probabilities, we assume that it is
normalized in 1-norm,

∑
i xi(t) = 1.

Herein, we focus on network flows after a system reaches
a stationary state, in which case x(t) converges to a limiting
vector π = limt→∞ x(t) that satisfies the eigenvalue equa-
tion πT = πTP. By construction, π is a vector of proba-

bilities and contains nonnegative entries. Furthermore, as a
row-stochastic matrix, P has an eigenvalue equal to one (i.e.,
the largest eigenvalue) and its right dominant eigenvector is
the vector containing 1’s as entries. Our assumption of con-
vergence requires that matrix P is an irreducible and aperiodic
[29] or that the initial condition x(0) lies in a converging sub-
space. In the stationary state, the stationary flow across each
edge (i, j) per time step is given by

Fij = πiPij . (4)

We study convection cycles using an approach that was de-
veloped in [30]. Specifically, for each edge we define the sta-
tionary flow imbalance

∆ij = Fij − Fji. (5)

By construction, ∆ji = −∆ij , and we say that the imbalance
direction is from i to j when ∆ij > 0. Importantly, the defin-
ing feature of a reversible MC is that ∆ij = 0 for all i and
j. That is, the directional flows match πiPij = πjPji for any
edge (i, j). This is the case for any undirected graph, since
in this case A = AT , and it follows that πi = Dii/

∑
j Djj .

In contrast, an irreversible MC yields asymmetric stationary
flows and ∆ij is nonzero for some edges. To formally de-
fine convection cycles, we consider a new graph G∆(V, E∆)
such that each positive value ∆ij gives rise to a directed
edge (i, j,∆ij) ∈ E∆ having weight ∆ij . We then define
a convection cycle to be any non-intersecting closed path in
G∆(V, E∆).

In Fig. 3, we illustrate for an example MC how flow imbal-
ances manifest as a pattern of convection cycles. In Figs. 3(A),
3(B), and Fig. 3(C), we use edge colors to indicate the sta-
tionary distribution π, stationary edge flows Fij , and flow im-
balances ∆ij , respectively. Observe that some of the arrows
in Figs. 3(A)–(B) are bidirectional, since some of the graph’s
edges are bidirectional. In contrast, the arrows in Fig. 3(C) are
exclusively directed since they now indicate the directions of
flow imbalances. There exists an edge i→ j only if ∆ij > 0,
which also implies j → i is not an edge since ∆ji = −∆ij .
Observe in Fig. 3(C) that this yields five convection cycles. In
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FIG. 4. Persistent homology of convection cycles. (A) Visualization of an EVC filtration applied to flow imbalances arising for the irreversible
MC shown in Fig. 3, and we use the magnitude |∆ij | of flow imbalance as the filtration function f : E → R. We indicate flow imbalances’
directions with arrows, noting that the clique complexes that are constructed by the filtration are undirected, since the filtration does not
incorporate information about edge directions. (B) Persistence barcodes for homological 1-cycles. Observe that the 1-cycle that first appears
dies before the other 1-cycles are born.

Sec. III B, we will further discuss these convection cycles and
their relation to homological 1-cycles.

Before continuing, we highlight that convection cycles re-
vealed through flow imbalances [30] do not take into account
the probability of transitioning to or away from a convection
cycle, and so they are not necessarily “cyclic traps.” That
is, the presence of a convection cycle does not imply that
it is unlikely for a random walker to leave (or move in an
opposite direction as) the cycle. For example, observe in
Fig. 3 that the counter-clockwise flow around convection cy-
cle A → B → C → D is approximately 0.025, yet there is
a flow of approximately 0.02 that leaves the cycle at node D,
and a flow of approximately 0.15 moves in the opposite di-
rection from node C to B. Future research will likely uncover
complementary notions of convection with different advan-
tages/disadvantages, and our proposed techniques using per-
sistent homology can likely be similarly extended.

III. HOMOLOGICAL ANALYSES OF CONVECTION

We now employ persistent homology to automate the detec-
tion, characterization, and summarization of the homological
patterns of convection cycles. In Sec. III A, we study the MC
that was presented in Fig. 3. In Sec. III B, we discuss the rela-
tion between convection cycles and homological 1-cycles.

A. Persistent homology of convection cycles

Recall from Sec. II B that EVC filtrations were defined for
an undirected graph with a scalar function defined on the
edges. Therefore, given an MC corresponding to a (poten-
tially) directed and weighted graph, we first consider the as-
sociated undirected graph. Then we study homology under an
EVC filtration in which the filtration function f : E −→ R is

given by the magnitudes of the flow imbalances

f(i, j) = |∆ij |. (6)

In this way, the persistent homology that is revealed corre-
sponds to the convection cycles that arise under flow imbal-
ances.

In Fig. 4, we visualize persistence barcodes for an EVC
filtration associated with the convection cycles shown in
Fig. 3(C). Note that this figure is analogous to Fig. 2(C),
where we had previously chosen the filtration function f(i, j)
to be the edge weights. Since we now use a different func-
tion f , the cycles now have different births, deaths, lifetimes
and lifespans. Interestingly, the 1-cycle involving vertices
{A,B,C,D} is now born and dies before the other two 1-
cycles are born. While there is an obvious connection be-
tween the EVC homology of a graph induced by edge weights
and that which is induced by convective flows, this relation
remains unclear and should be explored in future work.

We note that one could also construct EVC filtrations by in-
creasing ε and retaining edges (i, j) for which |∆ij | is smaller
than ε. In Appendix A, we provide an example illustrating
why EVC filtrations with decreasing ε are superior to those
with increasing ε for the goal of studying convection cycles.
In particular, EVC filtrations that decrease ε focus on 1-cycles
that are associated with large-flow convection cycles (i.e.,
large values of |∆ij |), which we consider to be the ones that
are more significant. In contrast, EVC filtrations that increase
ε focus on 1-cycles that are associated with small-flow con-
vection cycles (i.e., small values of |∆ij |), which we consider
to be less significant.

B. Comparing convection cycles and homological 1-cycles

We propose to study pattern formation for convection cy-
cles using persistent homology techniques for homological
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homological 1-cycle (ii) homologically equivalent generators for 1-cycle (iii)

(A)

homological 1-cycle (i)

(B)

convection cycle II convection cycle III convection cycle IV convection cycle Vconvection cycle I

inconsistent

FIG. 5. Relation between convection cycles and homological 1-cycles. (A) The flow imbalances shown in Fig. 3(C) give rise to five
convection cycles, which we label I–V. (B) Persistent homology using EVC filtrations applied to a network of flow imbalances reveals three
homological 1-cycles, which we label (i)–(iii). Each homological 1-cycle represents a “1-dimensional hole” and can be represented by one
or more homological generator (recall Sec. II A). Observe that there is a one-to-one correspondence between convection cycles I and II
and homological 1-cycles (i) and (ii). In contrast, there are three homologically equivalent generators for 1-cycle (iii) as shown. Two of
the generators correespond to convection cycles III and IV. The third generator does not correspond to a convection cycle, because the edge
directions are not consistently in the same orientation (i.e., always clockwise or counter-clockwise).

1-cycles; however, one should keep in mind that these are
two different notions for cycles. Homological 1-cycles are
1-dimensional holes for a topological space, and k-cycles
generalize to higher dimensional by representing higher-
dimensional holes (Sec. II A). In contrast, we define convec-
tion cycles to be closed non-backtracking paths in a directed
graph that encodes flow imbalances (Sec. II C). In this section,
we will clarify the relationship between homological k-cycles
and convection cycles, thereby revealing the capabilities and
disadvantages of existing persistent homology techniques for
studying convection cycles. Continuing with the previous ex-
ample [see Figs. 3-4], we find that flow imbalances give rise to
five convection cycles, which we enumerate I–V and visual-
ize in Fig. 5(A). In contrast, we identify three homological 1-
cycles using persistent homology with EVC filtrations, which
we enumerate (i)–(iii) and visualize in Fig. 5(B).

Observe that there is a one-to-one correspondence between
convection cycles I and II and homological 1-cycles (i) and
(ii). Also observe that homological 1-cycle (iii) has three ho-
mologically equivalent generators, and any of them can be
used to represent the 1-cycle (which again, is defined as a
1-dimensional hole). Each subsequent generator can be ob-
tained via a topological retraction in which a 2-simplex is col-
lapsed down onto one of its edges. Interestingly, the first two
homological generators for 1-cycle (iii) correspond to convec-
tion cycles III and IV. In contrast, the third generator corre-
sponds to a loop that is not a convection cycle, since the flow-
imbalances’ directions do not point in a consistent direction
along the cycle (i.e., clockwise or counter-clockwise). Finally,
observe that convection cycle V is a boundary of a 2-simplex,
and it therefore does not contribute to the 1-dimensional sim-
plicial homology.

Thus, it is important to not misinterpret one notion of cy-

cle for the other. At the same time, our findings in Fig. 5
also highlight that there is a need for new persistent homology
techniques that cater specifically to convection cycles and di-
rected graphs. For example, if one were to omit the 2-simplex
that involves vertices A, B and D from the clique complexes
that arise under an EVC filtration, then convection cycle V
would coincide with a homological 1-cycle. However, the
aim of this paper is not to develop new methods for persis-
tent homology. Instead, we proposed to begin this pursuit by
studying convection cycles using existing methods for persis-
tent homology. Even though there is not an exact one-to-one
match between convection cycles and homological 1-cycles,
because they are closely related, we find that persistent homol-
ogy can effectively detect and summarize convection cycles’
patterns.

IV. APPLICATIONS

In this section, we apply our approach to two applications.
In Sec. IV A, we study MCs arising for the Google PageRank
algorithm, exploring how convection cycles are effected by
the teleportation parameter α. In Sec. IV B, we study a type
of emergent convection cycle called a chiral edge flow.

A. Teleportation is a homology regularizer for PageRank

We now study the persistent homology of convection cycles
arising for the PageRank algorithm [25, 31], which is a popu-
lar technique to rank the importance of vertices in graphs. It
has been applied to numerous applications (see survey [32]),
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(A)

(B)

FIG. 6. Persistent homology of convection cycles arising under PageRank. We study the MC associated with PageRank for the directed
graph from Fig. 3(A) under several choices of α. (A) Flow imbalances ∆ij(α) give rise to convection cycles. For clarity, we do not visualize
flow imbalances for transitions due to teleportation. (B) Their homology changes with α, which is summarized by persistence barcodes.

but most notably, for many years it was utilized by Google to
rank website and facilitate web search. The PageRank of a
vertex i is given by the stationary density πi(α) of MC having
a transition matrix of the form

P(α) ≡ αP + (1− α)N−111T , (7)

(A)

(B)

FIG. 7. Bifurcation diagram summarizes homological changes
onset by α. (A) Birth and death times εb,d of 1-cycles arising under
PageRank versus α. (B) For comparison, we depict the vertices’
PageRanks πi(α). Vertical dashed lines near α∗ = 0.54 highlight
that there are three cycles when α > α∗, but only two when α < α∗.

where P is the transition matrix described in Sec. II C and
α ∈ (0, 1) is the teleportation parameter. As α→ 1, the sec-
ond term vanishes and P(α) → P. Usually, α is chosen to
be near 1 (often 0.85) so that the second term can be consid-
ered as a small perturbation that improves the mathematical
characteristics of P—or more formally, it is a “‘regulariza-
tion” of matrix P. In particular, when α ∈ (0, 1) the matrix
P(α) is guaranteed to be irreducible, aperiodic and positive,
and the Perron-Frobenius theorem [29] ensures that its domi-
nant left eigenvector π is unique and has positive entries (i.e.,
πi(α) > 0 for all i). In other words, the PageRanks are well-
defined for all vertices.

We now show that the introduction of teleportation also reg-
ularizes the homology of convection cycles. In this experi-
ment, we construct EVC filtrations with the filtration function
f(i, j) = |∆ij(α)|, which now depends on α. In Fig. 6(A),
we illustrate for several choices of α the flow imbalances that
arise under PageRank, which we apply to the graph from
Fig. 3(A). In Fig. 6(B), we visualize their associated persis-
tence barcodes, which we create using EVC filtrations. Note
that the choice α = 1 recovers the transition matrix, stationary
distribution, flow imbalances, and persistence barcodes that
were were previously studied in Figs. 3 and 4.

Observe that the homological patterns of convection cy-
cles significantly change with α. For example, when α
is sufficiently small, the homological 1-cycle {A,B,C,D}
vanishes—it is “washed out” by the introduction of teleporta-
tion. In other word, α is a homology regularizer. This is fur-
ther illustrated in Fig. 7(A), where we plot the birth and death
times of homological 1-cycles versus α. For comparison, we
also plot the PageRanks πi(α) in Fig. 7(B). The vertical line
highlights that one of the 1-cycles vanishes when α decreases
(approximately) below α∗ = 0.54

In Appendix A, we present additional experiments that ex-
plore convection cycles arising under PageRank with α = 0.8.
We show that homological 1-cycles arising for EVC filtrations
with decreasing filtration parameter ε reveal patterns for large-
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FIG. 8. MC model for configuration dynamics of a monomer. The
system is contains two monomers of sizes s1 and s2, respectively,
giving the external state (s1, s2). Moreover, there are four internal
states: a, b, c, and d. Transitions involving changes to external and
internal states occur at rates γex and γin, respectively.

flow convection cycles. In contrast, when EVC filtrations are
constructed with increasing ε, we find that the resulting homo-
logical 1-cycles relate to small-flow convection cycles, and in
particular, those involving low probability teleportation tran-
sitions.

B. Persistent homology of chiral edge flows

Our second application investigates homological patterns
of convection cycles that arise for an MC that models the
stochastic configuration dynamics of two monomers. We
adopt the same notation as in [22], which motivated our ex-
periment. The monomer configuration (i.e., “external state”)
is given by the number of monomers of each type, (s1, s2),
whereas the “internal state” is one of four possibilities: a, b,
c, or d. Transitions that involve a change of internal state oc-
cur at rate γin, whereas transitions between involving external
states (i.e., the addition or removal of a monomer) occur at rate
γex. The resulting MC can be visualized as a 2-dimensional
lattice, which we visualize in Fig. 8.

In Fig. 9(A), we visualize flow imbalances for transitions
between the external states. We fix γin = 0.01 and consider
several γex. Observe that as γex increases, a large counter-
clockwise convection cycle emerges on the boundary (i.e.,
“edge”) of the lattice. This type of convection cycle is called
a chiral edge flow, and such convection cycles have important

(A)

(B)

FIG. 9. Persistent homology chiral edge flow. (A) Flow imbalances
∆ij between external states for the bi-monomer shown in Fig. 8 with
γin = 0.01 and different γex. In the limit γex � γin [22], there is an
emergence of a chiral edge flow, i.e., a convection cycle around the
lattice’s outer boundary. (B) The corresponding persistence barcodes
capture the emergence of this prominent convection cycle and other
convection cycles within the lattice.

implications for the quantum Hall effect, biological rhythms,
and the dynamics of monomers [22]. In Fig. 9(B), we visual-
ize persistence barcodes for EVCs filtrations constructed us-
ing the method that we described in Sec. III A. The chiral edge
cycle corresponds to the 1-cycle with having the largest lifes-
pan, and its homology becomes more persistent (i.e., promi-
nent) in the limit γex � γin.

V. DISCUSSION

In this paper, we examined the patterns of convection cycles
that arise under irreversible Markov chains (MCs) from the
perspective of persistent homology. Our approach required
formalizing a type of filtration (EVC filtration) for scalar func-
tions that are defined on the edges of a graph, and we studied
convection cycles by choosing the filtration function to be an
MC’s flow imbalances in the stationary state. Because Markov
chains are crucial to so many diverse applications, we expect
our methods to be broadly applicable across the sciences and
engineering. Herein, we highlighted two such applications:
the PageRank algorithm for centrality analysis and chiral edge
flows that arise for the configuration dynamics of monomers.
Our experiments revealed how system properties can act as
homology regularizers of convection cycles, and we intro-
duced homological bifurcation diagrams to summarize these
changes. This approach automates the detection, summary,
and examination of convection cycles over networks, places it
on stronger mathematical and computational foundations, and
paves the way for further investigation into convective flows
on networks.

Additionally, our work highlights the need for new persis-
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tent homology methods to study convection cycles as well as
other functions and signals defined on directed graphs. In
Sec. III B, we discuss the relation between convection cycles
and homological 1-cycles, and we showed that these are two
closely related, but notably different, notions of cycles. Some-
times there is a one-to-one correspondence between these cy-
cles, and sometimes the relation is more complicated, due in
part to the fact that a given homological k-cycle can be equiv-
alently represented by possibly more than one homological
generator. Such generators may or may not correspond to con-
vection cycles. Moreover, convection cycles can also corre-
spond to the boundaries of 2-simplices, and as such, they will
not be identified via the traditional tools of persistent homol-
ogy. Developing persistent homology techniques that cater to
convection cycles, and which specifically account for edge di-
rections, remains an important open challenge for the applied
mathematics and physics communities.

Our work opens up several other new lines of research that
are also worth noting. First, convection cycles were recently
found to be an emergent property of multiplex Markov chains
[30] in which a set of (intralayer) Markov chains are coupled
together by another set of (interlayer) Markov chains. It would
be interesting to employ persistent homology to gain a deeper
understanding of this phenomenon. Second, chiral edge flows
are known to be important to other applications including the
quantum Hall effect and biological rhythms [22], and future
work could utilize our methods to investigate these exciting
applications. Notably, our methods can reveal convection cy-
cles that exists in addition to a chiral edge flow, which may
lead to new insights for these applications and other appli-
cations (e.g., reinforcement learning) that rely on irreversible
Markov chains.

See [27] for a codebase that reproduces our results and can
be used to study the persistent homology for convection cycles
arising for other applications.

Appendix A: Convection cycles are better revealed by filtrations
that decrease the filtration parameter ε versus increase ε

In Sec. II B, we defined EVC filtrations in which one de-
creases a filtration parameter ε, retaining edges for which
f(i, j) > ε. Our numerical experiments that study convection
cycles using persistent homology use this approach and let
the filtration be given by the flow imbalances f(i, j) = |∆ij |.
By decreasing ε, the cycles that are first revealed correspond
to large-flow convection cycles, which we consider to be the
ones that are more significant. One could also construct
EVC filtrations by increasing ε and retaining edges for which
f(i, j) < ε. Here, we show that this latter filtration reveals
1-cycles that relate to small-flow convection cycles, which we
consider to be insignificant.

In Fig. 10, we study EVC filtrations applied to flow imbal-
ances arising under the PageRank algorithm with α = 0.8 for
the same MC that we investigated in Sec. IV A. In Fig. 10(A)
and Fig. 10(B), we illustrate EVC filtrations with decreasing
and increasing ε, respectively. Observe in Fig. 10(A) that the
1-cycles revealed by decreasing ε correspond to large-flow

convection cycles. In contract, observe in Fig. 10(B) that the
1-cycles revealed by increasing ε are small-flow cycles that
relate to low-probability transitions that occur due to telepor-
tation.
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(A)

(B)

FIG. 10. Comparing EVC filtrations with decreasing and increasing filtration parameter ε. Extending our study in Sec. IV A that uses
persistent homology to study convection cycles arising for a MC under the PageRank algorithm with α = 0.8, we now study homological 1-
cycles obtained via two different EVC filrations. (A) Similar to our results in Fig. 6, we construct EVC filtrations by including edges for which
|∆ij | > ε while decreasing ε. Observe that the 1-cycles reveal large-flow convection cycles that are associated with large values of |∆ij |. (B)
For comparison, we construct EVC filtrations by including weighted edges |∆ij | < ε while increasing ε. Observe that these 1-cycles now
correspond to small-flow convection cycles that are associated with small values of |∆ij |. They primarily describe low-probability transitions
that occur due to teleportation. In this work we focus on EVC filtrations with decreasing ε, since we consider high-flow convection cycles to
be the ones that are most important.
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