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Limit cycle oscillators have the potential to be resourced as reservoir computers due to their
rich dynamics. Here, a Hopf oscillator is used as a physical reservoir computer by discarding the
delay line and time-multiplexing procedure. A parametric study is used to uncover computational
limits imposed by the dynamics of the oscillator, using parity and chaotic time series prediction
benchmark tasks. Resonance, frequency ratios from the Farey sequence, and Arnold tongues were
found to strongly affect the computation ability of the reservoir. These results provide insights into
fabricating physical reservoir computers from limit cycle systems.

I. INTRODUCTION

Reservoir computing (RC) is an unconventional com-
putation technique, which utilizes the physics of a non-
linear dynamical system for computation [1–8]. Emerg-
ing from echo state networks [9] and liquid state ma-
chines [10], the RC scheme differs from the Turing ma-
chine principle, since the computation performed by RCs
do not rely on static memory. The computation is ob-
tained by mapping the transient dynamics of the non-
linear physical system to a higher dimensional space.
Some of the popular applications of RC include logical
operations [11–15], spoken and handwritten digit recog-
nition [8, 16, 17], wireless communications [2], complex
and chaotic time series predictions [2, 8, 18–21], long-
term chaotic time-series prediction [22, 23], image recog-
nition [24], and morphological computation [25, 26]. Due
to the echo state network structure, many physical sys-
tems have been used as reservoirs, which are commonly
known as physical reservoir computers (PRCs). Some of
the classical PRCs include an array of Duffing oscillators
[11, 27, 28], a limit cycle based Hopf oscillator[29], soft
robotic bodies [25, 30–33], tensegrity structures [26, 34],
and origami structures [35].

Besides systems from classical physics, quantum phys-
ical systems have also been used as RCs to perform tasks
from both classical and quantum domains. The natu-
rally disordered quantum dynamics of an ensemble sys-
tem was utilized to emulate nonlinear time series, includ-
ing a chaotic system [36]. A Kerr nonlinear oscillator
was used in sine wave phase estimation using its com-
plex amplitudes as computational nodes [37]. A nuclear-
magnetic-resonance spin-ensemble system was used for
a nonlinear dynamics emulation task by implementing a
spatial multiplexing approach to increase computational
power [38]. Dissipative quantum dynamics was used to
build a quantum reservoir computer for nonlinear tempo-
ral tasks [39]. Statistical physics has played an important
role in the theoretical development of neural networks,
which formed a connection between information process-
ing and physics [40, 41].

Popularly, delayed dynamical systems have been used

as reservoirs from a single nonlinear node [42, 43]. Cou-
pled delay systems have also been used in computing by
making deep neural networks [6] and signal processors
[44]. A simpler implementation can also be achieved
by excluding the delay or feedback line [45]. Here, a
reservoir computer is built by implementing a two-state
Hopf oscillator. The Hopf oscillator reservoir computer
was previously studied, and it was shown that it could
successfully complete several benchmark tasks [29]. The
Hopf oscillator has an inherent capability of storing and
learning information due to the presence of stable limit
cycles, which also makes it suitable for building adaptive
oscillators [46, 47]. Conventionally, a binary mask is used
in a time multiplexing procedure to create virtual nodes
for computation [8, 13, 48]. Besides this, noise can also
be used as a mask [49]. Previously, an eigenvalue analysis
was linked with the non-resonant condition to design a
reservoir computer operating near the stable equilibrium
[50]. However, the focus of this article is different, since
the Hopf reservoir is a limit cycle based reservoir. So the
analysis from [50] would not be applicable here. It is also
noted that the popular notion of “edge-of-chaos” was not
used in this article to optimize the reservoir performance.
It is supported in many literature findings that the “edge-
of-chaos” is not a necessary condition to achieve good
computational ability for a reservoir computer [31, 51].
Hence, being distant from a chaotic region and tuning a
set of network parameters can also be a route to construct
a reservoir computer with good performance.

Microwave-based magnetic forced synchronization was
implemented in a spintronic oscillator to increase the
reservoir computing performance in [52]. The spin dy-
namics of a magnetic tunnel junction was also used to
build a reservoir system [53]. Additionally, a nanoscale
spintronic oscillator was optimized as a reservoir, based
on the magnetization dynamics [54]. These spintronic os-
cillators may further be optimized by utilizing the rela-
tionship between the period of input (pseudo-frequency)
and forcing as described in the current paper.

Here, a driven Hopf oscillator is studied as a reser-
voir computer, with both masking function used in [29]
and the commonly used delay line excluded; the masking



2

function and delay lines were discarded to focus on the
dynamics of the oscillator on computation. Resonance
phenomena, Arnold tongues, and the Farey sequence all
contribute to the performance of the Hopf oscillator as
a reservoir computer. Arnold tongues refer to a phase-
locked or synchronized region in the parameter space,
which has a strong effect on this Hopf oscillator reservoir.
Parity and chaotic laser time series benchmarks are used
to perform the parametric study of this Hopf oscillator
computer. This oscillator was experimentally realized as
an analog electrical circuit to study the information pro-
cessing capability of the reservoir. A modified version of
Shannon’s information rate is used as the performance
metric for the parity tasks [55].

II. DESCRIPTION OF HOPF RESERVOIR
COMPUTER

The nonlinear system is perturbed by an input signal,
which carries the information to be processed. The input,
u(t), is embedded into the reservoir dynamics using the
single nonlinear node as follows:

u(t) = r(z) for (n − 1)Tp ≤ t < (n)Tp

f (t) = 1 + u(t) (1)

Here, r(z) is a discrete signal, which encodes logical values
sequentially. This discrete signal is then mapped to a
continuous function as described by Eq. 1, where n, z ∈
Z+. Since r(z) is a random sequence of logical statements,
u(t) is a random square wave with a pseudo-period, Tp,
and a pseudo-frequency, ωp =

2π
Tp

.
The Hopf reservoir computer is described by the fol-

lowing equations of motion:

Ûx =
(
µ f (t) − (x2 + y2)

)
x − ω0y + A f (t) sin(Ωt + φ)

Ûy =
(
µ f (t) − (x2 + y2)

)
y + ω0x

(2)

This system is a two-state, forced Hopf oscillator,
where x and y are the state, Ω is the harmonic forc-
ing frequency, ω0 is the resonance constant, and µ is a
parameter controlling the limit cycle radius [46, 47, 56].

The governing equation of the Hopf RC in Eq. 2 is
numerically integrated, and the x state is then scaled
by subtracting the mean and dividing by the standard
deviation. Next, dividing each pseudo-period equally,
N virtual nodes are collected from each pseudo-period,
Tp. The nodal states are then nonlinearly scaled us-
ing a nonlinear activation function, tanh−1x. 80% of
the scaled nodal states are used for the training pro-
cess, and the remaining 20% are used for testing the RC’s
performance. These virtual nodes, which are extracted
by down-sampling the time histories, are similar to the
nodes found in a delay-based reservoir. Since there is
only one real node, which is the oscillator itself, the other

nodes are called virtual, in keeping with the terminology
of delay-based reservoirs. However, the Hopf RC stud-
ied in this paper does not include any delay lines nor
masking functions (time-multiplexing), which simplifies
the system.

The reservoir computer is trained using ridge regres-
sion with Tikhonov regularization, as shown in Eq. 3.

w = MLT (LLT + λI)−1

o(k) =
∑N

i=1 wiXi(k)
(3)

Here, M is the target vector, which the reservoir should
match. X is the scaled nodal states. L is the matrix
containing the nodal states of the reservoir. λ, which
is set to 10−1, is the regularization parameter to avoid
over-fitting. I is the identity matrix. N is the number
of nodes. w is the weight vector, which is found from
the training procedure. o(k) is the reservoir’s prediction,
where k ∈ Z+.

The δ delayed nth order parity function, Pn, is defined
by the following equation [13]:

Pn,δ(t) =
n−1∏
i=0

u[t − (i + δ)Tp] (4)

where, δ ∈ Z+ is the delay. For the tested parity tasks
here, δ = 0 is used. For n = 2, Eq. 4 is the second order
parity, which is the exclusive or (XOR) task, Y. Since this
letter only deals with parity benchmarks that are logical
tasks, the input, u(t) = {−1,+1}, is chosen randomly for
each pseudo-period. Hence, the final prediction of the
reservoir is also binarized, making a high (+1) or low (-
1) bit. Shannon’s information rate is used to evaluate the
reservoir’s performance [11]. The logical bits are used to
calculate the information metric, R, as follows:

R = H(x) − Hy(x) (5)

Here, H(x) is the Shannon entropy, which is a measure
of the encoded information in a signal; it can be defined
as:

H(x) = −
∑
i

pi log2(pi) (6)

pi is the probability of getting a particular bit, i. Hy(x) is
the conditional entropy, which measures the probability
of getting an incorrect bit in the target signal:

Hy(x) = −
∑
i, j

p(i, j) log2(pi( j)) (7)

Here, pi( j) = p( j |i) = p(i, j)∑
j p(i, j)

. p(i, j) is the joint prob-
ability distribution of the two variables, i and j. i and
j can be valued as “1” or “-1” for a logical task. i is as-
sociated with the target signal, while j is the associated
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bit value from the prediction signal of the RC. It should
be noted that the maximum value of R is 1.0 for these
parity tasks. Using Eq. 2, the Hopf RC was fabricated
as an analog circuit [29, 46, 47]. The circuit was built us-
ing TL082 operational amplifiers and AD633 multipliers
in standard integrator network configurations. National
Instrument (NI) cDAQ-9174 was used as the data acqui-
sition device.

FIG. 1. Parametric study of the Hopf RC’s limit cycle radius
constant, µ, and harmonic forcing amplitude, A, based on
parity tasks. ωp = 20π (Tp = 0.1 seconds), Ω = ω0 = 40π
rad/s, N = 1000 nodes, φ = π/3 rad, and the simulation time
is 4000Tp seconds. a) 2nd order parity, b) 3rd order parity,
c) 4th order parity, and d) 5th order parity. The color bar
denotes the information metric, R.

III. PARAMETRIC STUDIES

In this section, the dynamic limits of the Hopf reser-
voir computer will be explored by studying the effects of
different parameters on its information processing capa-
bility. The performance is quantified using the informa-
tion rate for various parameter combinations and orders
of the parity tasks. The results render a deeper under-
standing of the interplay of the oscillator’s dynamics and
its computational ability as a reservoir computer. Some
of these results can be used as guiding principles for tun-
ing other virtual node-based reservoir computers, such as
those found in [8, 13, 48].

The input signal to the Hopf RC is embedded into the
oscillator through the limit cycle radius, µ f (t), and the
harmonic forcing amplitude, A f (t). Hence, tuning the
parameters µ and A potentially controls the amount of
information being sent into the oscillator. A parametric
sweep of this two-parameter space is presented in Fig.
1. It is observed that a small limit cycle with a low

FIG. 2. Fine resolution parametric study of the Hopf RC’s
resonance constant, ω0, and harmonic forcing frequency, Ω,
based on parity tasks. ωp = 20π (Tp = 0.1 seconds), µ = 5,
A = 0.5, N = 1000 nodes, φ = π/3 rad, and the simulation time
is 4000Tp seconds. a) 2nd order parity, b) 3rd order parity,
c) 4th order parity, and d) 5th order parity. The color bar
denotes the information metric, R.

forcing amplitude is ineffective for computation, as ex-
pected. However, a band is observed for higher order
tasks, which is unintuitive. This relationship could be
used to maximize the computational ability of the oscil-
lator. Previously, it was reported that the information
processing capacity can be changed by simply altering
the input magnitude of a spintronic reservoir [57]. The
input magnitude was varied to get different limit cycle
response in the spintronic oscillator [57]. Similarly, the
current Hopf RC varies the input magnitude by varying
A to optimize the RC performance.
The external forcing frequency has been found to be

important in determining a reservoir computer’s perfor-
mance [11, 13, 27]. Tuning the forcing frequency of an
RC created from an array of Duffing oscillators, Arnold
tongue-like structures and topological mixing were ob-
served [11]. In a similar manner, a parametric study is
performed using the resonance constant, ω0, and har-
monic forcing frequency, Ω.

A resonance condition of the Hopf oscillator is achieved
when the resonance constant and harmonic forcing fre-
quency are equal (ω0 = Ω). In Fig. 2a-d, a band along
a 45◦ angle in each of the ω0-Ω parametric plots corre-
sponds to this resonance condition. However, if the reso-
nance condition (ω0 = Ω) is achieved, the reservoir’s per-
formance jumps suddenly from poor performance to suc-
cessful computation. Hence, the resonance phenomenon
is a necessary condition for the Hopf oscillator to function
as an effective RC.
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FIG. 3. Coarse resolution experimental and numerical parametric qualitative study of the Hopf RC’s resonance constant, ω0,
and harmonic forcing frequency, Ω, based on parity tasks. ωp = 20π (Tp = 0.1 seconds), µ = 5, A = 0.5, N = 1000 nodes, φ = π/3
rad, and the length of time is 4000Tp seconds. Top - analog circuit experiment: a) 2nd order parity, b) 3rd order parity, c)
4th order parity, and d) 5th order parity. The color bar denotes information metric, R. Bottom - numerical simulation: e) 2nd

order parity, f) 3rd order parity, g) 4th order parity, and h) 5th order parity. The color bar denotes information metric, R.

FIG. 4. The ratio of ωp

ω0
is varied along the horizontal axis with values from the Farey sequence (30th order) marked with tick

marks, and the forcing amplitude, A, is varied along the vertical axis. Top: 2nd order parity task where the color bar denotes
the information metric. Bottom: Chaotic laser time series prediction where the color bar denotes performance based on RMSE,
which has been binarized to be high (logical 1) if RMSE> 0.3 and low (logical 0) for RMSE ≤ 0.3. For these tasks, µ = 5,
Ω = 40π rad/s, N = 1000 nodes, φ = 0 rad, ωp = 20π rad/s (Tp = 0.1 seconds), and the simulation time is 3000Tp seconds. In
both cases, the computational ability of the Hopf RC is strongly predicted by ωp

ω0
aligning with a Farey sequence number.
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FIG. 5. Synchronization plays an important role in the RC’s computational ability, which is observed as an Arnold tongue
around the resonance region where ωp

ω0
= 1

2 . a) Simulation showing an Arnold tongue region for the 2nd order parity task for
the RC. The color bar denotes the information metric, R. b) Simulation showing an Arnold tongue region in the 2nd order
parity task for the Hopf oscillator. The color bar denotes the phase lag (degrees) between the Hopf oscillator response, x, and
the external forcing, (sinΩt + φ). c) Simulation showing an Arnold tongue region in the chaotic time series task for the RC.
The color bar denotes the RMSE. d) Simulation showing an Arnold tongue region in the chaotic time series task for the Hopf
oscillator. The color bar denotes the phase lag (degrees). e) Experiment showing an Arnold tongue region in the chaotic time
series task for the RC. The color bar denotes the RMSE. f) Experiment showing an Arnold tongue region in the chaotic time
series task for the Hopf oscillator. The color bar denotes the phase lag (degrees). In (c) and (e), RMSE has been binarized
to be high (logical 1) if RMSE> 0.1 and low (logical 0) for RMSE ≤ 0.1. For these tasks, ωp = 20π rad/s (Tp = 0.1 seconds),
µ = 5, A = 0.5, N = 1000 nodes, φ = 0 rad.

FIG. 6. The time series of the x state of the Hopf RC is shown for a portion of the chaotic time series task. Top: The Hopf RC
is at resonance (ω0 = Ω), and the oscillations are locked with the external forcing. Bottom: The Hopf RC is not at resonance
(ω0 = 1.7391 ∗Ω), and the oscillations are not locked with external forcing. Here, ω0 = 80π, ωp = 20π rad/s (Tp = 0.1 seconds),
µ = 5, A = 0.5, N = 1000 nodes, φ = π/3 rad.
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Another matching condition is met when ω0 is an inte-
ger multiple of the pseudo-period, ωp (ω0 = zωp, where
z ∈ Z). This can be observed for all the parity tasks pre-
sented in Figs. 2 and 3. The ω0-Ω parametric space is
also explored experimentally, which is presented in Fig.
3, by building an analog circuit that can be modeled with
Eq. 2. Due to experimental limitations, a comparatively
coarse parametric space is shown in Fig. 3. The experi-
ments show a similar trend near the resonance and at the
matching conditions. From the Fig. 3, the best perfor-
mance for a numerical reservoir is found for the resonance
condition when ωp

Ω
=

ωp

ω0
= 1/3; the best performance for

the experimental reservoir is found when ωp

ω0
= 0.333 and

ωp

Ω
= 0.344. Deviation between the experiment and sim-

ulation are likely explained by the precision of the circuit
elements and nonlinear effects of the circuit (e.g., para-
sitic effects).

Next, the effects of the frequency ratio, ωp

ω0
, and the

harmonic forcing amplitude, A, on the computational
ability of the Hopf RC are shown in Fig. 4. The ωp

ω0
-A

parametric space is studied using the 2nd order parity and
chaotic laser intensity prediction tasks, while keeping the
system parameters the same. For the chaotic time series
benchmark [29], the task for the RC was to predict one
step ahead based on the previous steps. The root mean
square error (RMSE) was used as the performance met-
ric for this task. To verify that frequency ratios from the
Farey sequence are important to other tasks, a chaotic
time series benchmark is also used to compare the perfor-
mance with a non-binary task. The harmonic frequency,
Ω is set to 40π such that the Hopf oscillator experiences
resonance when ωp/ω0 =

1
2 . In Fig. 4, it is observed that

the Hopf reservoir can have high computational ability
even when the resonance condition is not met.

From Fig. 4, it is observed that the Hopf RC has a
high computational ability when ωp

ω0
is a number from

the Farey sequence from number theory [58]. Using a
30th order Farey sequence, it is observed that the reser-
voir’s computational ability is strongly influenced by the
frequency ratio, ωp

ω0
, matching a number from the Farey

sequence. To observe the correlation between the Farey
ratio and the RC’s performance for the chaotic time se-
ries task, the RMSE was binarized to be high (logical
1) if RMSE> 0.3 and low (logical 0) for RMSE ≤ 0.3.
The Farey sequence is found in many natural phenom-
ena, such as in the auditory system [59], the resonance
diagrams of accelerators [60], mode-locking in quantum
accelerators [61], and cardiac dysrhythmias [62]. How-
ever, to the authors’ knowledge, this is the first time the
Farey sequence has been reported in the context of reser-
voir computing.

Fig. 5(b,d,f) shows the phase difference between
the Hopf oscillator’s x state and the harmonic forcing,
sin(Ωt + φ), for parity and chaotic time series prediction
tasks. When ωp

ω0
is near 1

2 , a resonance relationship forms
an Arnold tongue in the ωp

ω0
-A space. These tongues are

formed both in the reservoir’s performance metric space

and the oscillator’s phase deviation space. It is noted
that the phase difference is not constant throughout the
time history. Hence, the maximum phase difference is
taken into consideration by binning the response, tak-
ing fast Fourier transforms, and then plotting the max-
imum phase difference. Arnold tongue-like regions were
also found in a reservoir computer composed of a Duff-
ing oscillator array [11]. The Hopf RC performs best
when this resonance condition holds. In Fig. 5(a,c,e), an
Arnold tongue is observed in the performance space of the
reservoir when the Hopf RC operates near the resonance
frequency. Here, Fig. 5(e,f) depict Arnold tongues for
the experimental Hopf RC, and Fig. 5(a,b,c,d) are found
from numerical simulations. Fig. 6 shows the time his-
tory of the oscillator’s response, when it is locked with the
forcing and when it is not phase-locked. The tongue re-
gion could be particularly important in experimental de-
sign. For this tongue region, there is a range of frequency
ratios centering on the resonance frequency, which can
result in better computation. Hence, this is the only
region found where the reservoir has some tolerance to
mistuning. This implies that the synchronization in the
Arnold tongue region causes robust computing. There is
also a comparatively broader range of amplitudes and fre-
quency ratios available for which the resonance constant
can be tuned such that the Hopf RC has high computa-
tional ability while staying inside the Arnold tongue. It
is noted that the studies presented in this paper are per-
formed considering no masking in the system. The pres-
ence of robust computational ability despite the absence
of a masking function suggests that a single nonlinear
node based reservoir can also be reliably constructed dis-
carding the conventional periodic or non-periodic mask.

To understand the effect of resonance on computation,
the memory capacity of the Hopf oscillator reservoir is
calculated. For a δ delayed, nth order parity function
given in Eq. 4, the memory capacity of a system can be
calculated as follows [13]:

MIn,δ = pn,δ log2(2pn,δ) + (1 − pn,δ)log2[2(1 − pn,δ)]
MCn =

∑∞
δ=0 MIn,δ

(8)
The memory capacity (bits) is plotted against ωp/ω0 in
Fig. 7, which shows that the reservoir possesses high-
est memory at the resonance condition, when ωp

ω0
= 1

2 .
Hence, with sufficient nonlinearity being present at this
condition, the Hopf oscillator should conduct better com-
putation than at other parametric combinations. This
explains the superior computing performance of the res-
onance condition, as seen in Figs. 2-5.

The effect of the nonlinear activation function
(tanh−1X) on the performance of the Hopf oscillator RC
is also studied, and the results are presented in Fig. 8. It
is found that in the absence of nonlinear activation, the
Hopf oscillator RC shows similar performance for lower
order tasks (e.g., 2nd and 3rd order parity tasks). How-
ever, the nonlinear activation function becomes impor-
tant in performing higher order tasks. Hence, the base
Hopf oscillator dynamics has some level of computing
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FIG. 7. Memory capacity calculations of the Hopf RC with δ delayed 1st , 2nd, 3rd, and 4th order parity tasks (δ = 0 to 10).
ωp = 20π (Tp = 0.1 seconds), Ω = 40π, A = 0.5, µ = 5, N = 1000 nodes, φ = π/3 rad, and the simulation time is 4000Tp seconds.

FIG. 8. Effects of nonlinear activation function on the Hopf
RC’s performance. ωp = 20π (Tp = 0.1 seconds), ω0 = 40π,
Ω = 40π, µ = 5, N = 1000 nodes, φ = π/3 rad, and the
simulation time is 4000Tp seconds. a) 2nd order parity, b) 3rd

order parity, c) 4th order parity, and d) chaotic time series.

ability. Furthermore, a linear oscillator is also tested as
a reservoir computer in the presence of a nonlinear ac-
tivation function. In this case, the nonlinear activation
function cannot make the linear oscillator act as a reser-
voir computer. This is similar to the effect of nonlinearity
in the acoustic transformation for a digit recognition task
[64].

FIG. 9. The echo state property (ESP) index calculation [63]
for the Hopf RC for the chaotic laser time series task and the
parity task. a) ESP index for resonance and non-resonance
conditions for chaotic time series task. b) One set of ran-
dom initial conditions (x0 and y0 chosen from {−3, 3}) for the
chaotic time series task. c) ESP index for resonance and non-
resonance conditions for the parity task. d) One set of random
initial conditions (x0 and y0 chosen from {−3, 3}) for the par-
ity task. ωp = 20π (Tp = 0.1 seconds), ω0 = 80π, φ = π/3
rad, A = 0.5 and the simulation time is 3000Tp seconds. For
the resonance condition, Ω = ω0, and for the non-resonance
condition, Ω = 1.7391ω0.
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The echo state property (ESP) is one of the basic prop-
erties found in a successful reservoir computing frame-
work [9]. Limit cycle-based systems were not found to
satisfy ESP requirements in [65, 66]. However, the Hopf
RC formulation described in this paper is different, since
the limit cycle radius keeps changing depending on the
forcing used to encode the information. Additionally, the
resonance phenomenon was taken into consideration to
build the reservoir system. In the literature, generalized
synchronization [67] or common signal induced synchro-
nization [65, 66, 68] were used to verify the existence
of ESP in a reservoir. ESP was empirically studied in
[63] to measure the stability of input-driven reservoir dy-
namics. It is implied that a reservoir possesses the echo
state property if the asymptotic trajectory of the reser-
voir state relies distinctively on the inputs and is indepen-
dent of the initial conditions. Hence, to obtain the echo
state property, the effect of the initial conditions on the
reservoir dynamics should fade as the time progresses.

The echo state property of the Hopf reservoir is stud-
ied when the reservoir is encoded with the inputs of the
chaotic laser time series task and a parity task. Follow-
ing the algorithm of estimating ESP of a reservoir from
[63], an ESP index was calculated for the two bench-
marks, which is averaged over 20 randomly generated
initial conditions in the range of {−3, 3}. The deviation
of the reservoir state trajectories for different initial con-
ditions was calculated using the same input sequence for
all of the different initial conditions. To calculate the de-
viation, initial conditions of (x0, y0) = (0, 0) were used as
the common trajectory while the other trajectory came
from each of the different initial conditions, while dis-
carding the initial transients. Finally, an average of the
deviation is calculated to find the ESP index. If the ESP
index goes to zero for a reservoir’s dynamics, the reser-
voir is said to possess the echo state property. These
results are given in Fig. 9, where it is observed that the
reservoir has the echo state property for the resonance
condition (ω0 = Ω), while it does not possess this prop-
erty when the resonance is not met (ω0 , Ω). This can
also explain why the resonance helps in computation. It
is also important to note that a reservoir may still have
information processing capability when the ESP is not
met [65].

IV. CONCLUDING REMARKS

In this paper, the Hopf oscillator is constructed as a
reservoir computer to gain insights into the relationship

between the oscillator’s dynamics and the RC’s compu-
tational ability. This implementation of a Hopf reser-
voir computer offers a simpler design by discarding the
popularly used delayed feedback line and masking func-
tion. An analog electrical circuit is used as a physical
realization of the reservoir. The reservoir demonstrates
high computational ability when the ratio of the pseudo-
frequency of the input, ωp, and the natural frequency
of the oscillator, ω0, are taken from the Farey sequence.
Additionally, a resonance phenomenon happens when the
harmonic forcing frequency and natural frequency of the
oscillator are equal, which provides a favorable condition
to construct the reservoir computer. Enhanced compu-
tational ability is achieved when the limit cycle radius is
relatively small while the forcing amplitude is relatively
large. An Arnold tongue structure is observed in the
reservoir’s information metric space near the resonance
location, which is correlated with a Arnold tongue exhib-
ited in the phase deviation space. The reservoir is also
found to possess both maximum memory capacity and
the echo state property when the resonance condition is
met, which is indicative of better computing performance
in principal. Finally, the results also suggest that a reser-
voir computer can be constructed with only a single non-
linear node and neither a time multiplexing process nor a
delayed feedback. By harnessing some of the underlying
dynamics of the system, limit cycle reservoir computers
can be constructed that are both simple and robust.

ACKNOWLEDGMENTS

Partial support for this project from DARPA’s Young
Faculty Award is greatly appreciated. Research was
sponsored by the Army Research Office and was ac-
complished under Grant Number W911NF-20-1-0336.
The views and conclusions contained in this document
are those of the authors and should not be interpreted
as representing the official policies, either expressed or
implied, of the Army Research Office or the U.S. Gov-
ernment. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes
notwithstanding any copyright notation herein. The au-
thors acknowledge the computing resources provided on
Henry2, a high-performance computing cluster operated
by North Carolina State University; the authors would
like to thank Dr. Andrew Petersen for his assistance with
parallel computing, which was provided through the Of-
fice of Information Technology HPC services at NC State
University.

[1] K. Nakajima and I. Fischer, “Reservoir computing,”
(2021).

[2] H. Jaeger and H. Haas, science 304, 78 (2004).
[3] M. Lukoševičius and H. Jaeger, Computer Science Re-

view 3, 127 (2009).

[4] K. Nakajima, Japanese Journal of Applied Physics 59,
060501 (2020).

[5] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, Scientific
reports 5, 10487 (2015).



9

[6] B. Penkovsky, X. Porte, M. Jacquot, L. Larger, and
D. Brunner, Physical review letters 123, 054101 (2019).

[7] N. D. Haynes, M. C. Soriano, D. P. Rosin, I. Fischer, and
D. J. Gauthier, Physical Review E 91, 020801 (2015).

[8] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danck-
aert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso,
and I. Fischer, Nature communications 2, 1 (2011).

[9] H. Jaeger, Bonn, Germany: German National Research
Center for Information Technology GMD Technical Re-
port 148, 13 (2001).

[10] T. Natschläger, W. Maass, and H. Markram, Spe-
cial issue on Foundations of Information Processing of
TELEMATIK 8, 39 (2002).

[11] M. R. E. U. Shougat, X. Li, T. Mollik, and E. Perkins,
Journal of Computational and Nonlinear Dynamics 16,
081004 (2021).

[12] G. Marcucci, D. Pierangeli, and C. Conti, Physical Re-
view Letters 125, 093901 (2020).

[13] G. Dion, S. Mejaouri, and J. Sylvestre, Journal of Ap-
plied Physics 124, 152132 (2018).

[14] F. Laporte, J. Dambre, and P. Bienstman, Scientific Re-
ports 11, 1 (2021).

[15] M. R. E. U. Shougat, X. Li, T. Mollik, and E. Perkins,
International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference
(2021).

[16] R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo,
and L. Larger, Physical review letters 108, 244101
(2012).

[17] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and
W. D. Lu, Nature communications 8, 1 (2017).

[18] M. Inubushi and K. Yoshimura, Scientific reports 7, 1
(2017).

[19] R. Wang, E. Kalnay, and B. Balachandran, Nonlinear
Dynamics 98, 2903 (2019).

[20] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gi-
gan, Physical Review X 10, 041037 (2020).

[21] A. Röhm, D. J. Gauthier, and I. Fischer, arXiv preprint
arXiv:2108.04074 (2021).

[22] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys-
ical review letters 120, 024102 (2018).

[23] K. Srinivasan, N. Coble, J. Hamlin, T. Antonsen, E. Ott,
and M. Girvan, arXiv preprint arXiv:2108.12129 (2021).

[24] S. Borlenghi, M. Boman, and A. Delin, Physical Review
E 98, 052101 (2018).

[25] G. Urbain, J. Degrave, B. Carette, J. Dambre, and
F. Wyffels, Frontiers in neurorobotics 11, 16 (2017).

[26] K. Caluwaerts, M. D’Haene, D. Verstraeten, and
B. Schrauwen, Artificial life 19, 35 (2013).

[27] J. C. Coulombe, M. C. York, and J. Sylvestre, PloS one
12, e0178663 (2017).

[28] T. Zheng, W. Yang, J. Sun, X. Xiong, Z. Li, and X. Zou,
Scientific reports 11, 1 (2021).

[29] M. R. E. U. Shougat, X. Li, T. Mollik, and E. Perkins,
Scientific Reports 11, 1 (2021).

[30] H. Hauser, A. J. Ijspeert, R. M. Füchslin, R. Pfeifer, and
W. Maass, Biological cybernetics 105, 355 (2011).

[31] K. Nakajima, H. Hauser, R. Kang, E. Guglielmino, D. G.
Caldwell, and R. Pfeifer, in 2013 IEEE International
Conference on Robotics and Automation (IEEE, 2013)
pp. 1504–1511.

[32] K. Nakajima, H. Hauser, R. Kang, E. Guglielmino, D. G.
Caldwell, and R. Pfeifer, Frontiers in computational neu-
roscience 7, 91 (2013).

[33] K. Nakajima, T. Li, H. Hauser, and R. Pfeifer, Journal
of The Royal Society Interface 11, 20140437 (2014).

[34] K. Caluwaerts, J. Despraz, A. Işçen, A. P. Sabelhaus,
J. Bruce, B. Schrauwen, and V. SunSpiral, Journal of
the royal society interface 11, 20140520 (2014).

[35] P. Bhovad and S. Li, Scientific Reports 11, 1 (2021).
[36] K. Fujii and K. Nakajima, Physical Review Applied 8,

024030 (2017).
[37] L. Govia, G. Ribeill, G. Rowlands, H. Krovi, and

T. Ohki, Physical Review Research 3, 013077 (2021).
[38] K. Nakajima, K. Fujii, M. Negoro, K. Mitarai, and

M. Kitagawa, Physical Review Applied 11, 034021
(2019).

[39] J. Chen, H. I. Nurdin, and N. Yamamoto, Physical Re-
view Applied 14, 024065 (2020).

[40] E. Agliari, F. Alemanno, A. Barra, and G. De Marzo,
arXiv preprint arXiv:2109.00454 (2021).

[41] E. Agliari, A. Barra, P. Sollich, and L. Zdeborová, J.
Phys. Math. Theor 53, 500401 (2020).

[42] D. Pinna, G. Bourianoff, and K. Everschor-Sitte, Phys-
ical Review Applied 14, 054020 (2020).

[43] F. Köster, S. Yanchuk, and K. Lüdge, arXiv preprint
arXiv:2108.12643 (2021).

[44] M. Hermans, P. Antonik, M. Haelterman, and S. Massar,
Physical review letters 117, 128301 (2016).

[45] D. Marković, N. Leroux, M. Riou, F. Abreu Araujo,
J. Torrejon, D. Querlioz, A. Fukushima, S. Yuasa,
J. Trastoy, P. Bortolotti, et al., Applied Physics Letters
114, 012409 (2019).

[46] X. Li, M. R. E. U. Shougat, S. Kennedy, C. Fendley,
R. N. Dean, A. N. Beal, and E. Perkins, Plos one 16,
e0249131 (2021).

[47] X. Li, M. R. E. U. Shougat, T. Mollik, A. N. Beal, R. N.
Dean, and E. Perkins, Journal of Applied Physics 129,
224901 (2021).

[48] L. Appeltant et al., These de Doctorat, Vrije Universiteit
Brussel/Universitat de les Illes Balears (2012).

[49] J. Nakayama, K. Kanno, and A. Uchida, Optics express
24, 8679 (2016).

[50] F. Köster, S. Yanchuk, and K. Lüdge, Journal of Physics:
Photonics 3, 024011 (2021).

[51] M. Mitchell, J. P. Crutchfield, and P. T. Hraber,
in SANTA FE INSTITUTE STUDIES IN THE
SCIENCES OF COMPLEXITY-PROCEEDINGS
VOLUME-, Vol. 19 (ADDISON-WESLEY PUBLISH-
ING CO, 1994) pp. 497–497.

[52] S. Tsunegi, T. Taniguchi, K. Nakajima, S. Miwa,
K. Yakushiji, A. Fukushima, S. Yuasa, and H. Kubota,
Applied Physics Letters 114, 164101 (2019).

[53] T. Furuta, K. Fujii, K. Nakajima, S. Tsunegi, H. Kubota,
Y. Suzuki, and S. Miwa, Physical Review Applied 10,
034063 (2018).

[54] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi,
G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros,
K. Yakushiji, A. Fukushima, et al., Nature 547, 428
(2017).

[55] C. E. Shannon, The Bell system technical journal 27, 379
(1948).

[56] A. H. Nayfeh and B. Balachandran, Applied nonlinear
dynamics: analytical, computational, and experimental
methods (John Wiley & Sons, 2008).

[57] N. Akashi, T. Yamaguchi, S. Tsunegi, T. Taniguchi,
M. Nishida, R. Sakurai, Y. Wakao, and K. Nakajima,
Physical Review Research 2, 043303 (2020).



10

[58] V. Sukhoy and A. Stoytchev, Scientific reports 11, 1
(2021).

[59] Y. V. Ushakov, A. Dubkov, and B. Spagnolo, Physical
review letters 107, 108103 (2011).

[60] R. Tomás, Physical Review Special Topics-Accelerators
and Beams 17, 014001 (2014).

[61] A. Buchleitner, M. dâĂŹArcy, S. Fishman, S. Gardiner,
I. Guarneri, Z.-Y. Ma, L. Rebuzzini, and G. Summy,
Physical review letters 96, 164101 (2006).

[62] H.-X. Wang, R. de Paola, and W. I. Norwood, Physical
review letters 70, 3671 (1993).

[63] C. Gallicchio, arXiv preprint arXiv:1811.10892 (2018).

[64] F. Abreu Araujo, M. Riou, J. Torrejon, S. Tsunegi,
D. Querlioz, K. Yakushiji, A. Fukushima, H. Kubota,
S. Yuasa, M. D. Stiles, et al., Scientific reports 10, 1
(2020).

[65] T. Kubota, H. Takahashi, and K. Nakajima, Physical
Review Research 3, 043135 (2021).

[66] K. Goto, K. Nakajima, and H. Notsu, New Journal of
Physics 23, 063051 (2021).

[67] Z. Lu, B. R. Hunt, and E. Ott, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 28, 061104 (2018).

[68] M. Inubushi, K. Yoshimura, Y. Ikeda, and Y. Nagasawa,
in Reservoir Computing (Springer, 2021) pp. 97–116.


	Dynamic Effects on Reservoir Computing with a Hopf Oscillator
	Abstract
	Introduction
	Description of Hopf Reservoir Computer
	Parametric Studies
	Concluding remarks
	Acknowledgments
	References


