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The coherence length of the medium-range order (MRO) in metallic liquids is known to display
a Curie-Weiss temperature dependence; its inverse is linearly related to temperature, and when
extrapolated from temperatures above the glass transition, the coherence length diverges at a neg-
ative temperature with a critical exponent of unity. We propose a mean-field pseudospin model
that explains this behavior. Specifically, we model the atoms and their local environment as Ising
spins with antiferromagnetic exchange interactions. We further superimpose an exchange interac-
tion between dynamical heterogeneities, or clusters of atoms undergoing cooperative motion. The
coherence length in the metallic liquid is thus the correlation length between dynamical hetero-
geneities. Our results reaffirm the idea that the MRO coherence length is a measure of point-to-set
correlations, and that local frustrations in the interatomic interactions are prominent in metallic
liquids.

I. INTRODUCTION

The structure of a metallic liquid and glass, assumed
to be isotropic in what follows, is measured by the atomic
pair distribution function (PDF) [1, 2],

g(r) =
1

4πNρ0r

∑
i,j

〈δ(r − |ri − rj |)〉 , (1)

and its Fourier transform, termed the structure function

S(q) = 1 +
4πρ0
q

∫ ∞
0

dr [g(r)− 1] r sin(qr). (2)

In Eq. (1), N is the total number of atoms, ρ0 is the
number density of atoms, ri is the position of the atom
labeled i, and 〈· · · 〉 denotes the thermal average. The
medium-range order (MRO) of a metallic liquid is mea-
sured by the height of the first peak of the structure
factor, S(QMRO), and the coherence length ξ, which de-
fines the decay of the envelope of the pair distribution
function beyond the first peak:

G(r) ≡ 4πrρ0 [g(r)− 1] = G0(r) exp

(
−r
ξ

)
, (3)

where G0(r) specifies the ideal glass state with infinite-
range density correlations. Recent experiments and sim-
ulations [3] confirm that the quantity S(QMRO)− 1, and
therefore the coherence length ξ, follow Curie-Weiss tem-
perature dependence,

ξ ∝ a(θ + θc)
−1; for θ > θN , (4)
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in the high-temperature regime, above some temperature
θN . When extrapolated from temperatures θ ≡ kBT
above the glass transition, both quantities are seen to di-
verge at a negative Curie temperature −θIG < 0. The
glass transition temperature θg is indicated by a cusp in
the quantities ξ and S(QMRO) − 1. Concomitant with
the rapid increase of both quantities is the increase in
viscosity of the metallic liquid. Indeed, it is suggested in
[3] that the viscosity ηa increases with decreasing tem-
perature as

ηa(θ) = η0 exp

(
Ea(θ)

θ

)
, (5)

where Ea(θ), the activation energy, scales with the
temperature-dependent coherence length ξ(θ) as Ea(θ) ∝
(ξ(θ))

3
, the typical size of a cooperatively rearranging

cluster of atoms [3]. These results are independent of
the specific form of the interatomic potential, suggest-
ing that some fundamental, medium-range mechanisms
are responsible for the cooperative behavior of atoms
in supercooled liquids. Elucidation of such mechanisms
may shed important light on the nature of the coherence
length, as well as the physics of the glass transition itself.

Recent simulations by Tanaka and coworkers [4–6] and
theoretical analyses of these results [7, 8] point to the
physical picture of glass-forming liquids containing a pop-
ulation of twofold degenerate clusters of atoms with local
topological order, that can be described by pseudospin
models that are often invoked to explain glassy behav-
ior. Indeed, the idea of using two-state spin variables to
represent structural features of glass-forming liquids is
not new; there may be some connections between struc-
tural glasses and spin glasses [9], However, the relevance
of popular spin-glass models such as the Sherrington-
Kirkpatrick (SK) model [10–14] and the random-first-
order transition theory (RFOT) [15–17], which embody
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infinite-range interactions between all spins, to struc-
tural glasses with short-range atomic and molecular in-
teractions, may be called into question. In addition, a
straightforward mean-field analysis of typical spin mod-
els necessarily gives a correlation-length critical exponent
of ν = 1/2 [9], contrary to ν = 1 seen in the medium-
range ordering behavior of glass-forming liquids [3].

The crux of the matter, in our view, is that the spin-
spin correlation length refers to a short-range two-body
correlation that is decoupled from the MRO probed by
studies such as Ref. [3]. Indeed, MRO represents the
correlation between an atom and coarse-grained density
fluctuations at some distance r away, or point-to-set cor-
relations [18]. Such density fluctuations are represented
by local clusters of atoms; the cluster size is determined
by short-range two-point correlations. In other words,
the coherence length ξ represents the range over which
these clusters are correlated, and is certainly different
from the two-point or spin-spin correlation length.

The present paper makes these ideas quantitatively ex-
plicit by building upon the spin-like binary cluster model
proposed in [7, 8]. In Sec. II we present a pseudospin
model that takes into account both individual atoms and
the topologically correlated atoms, termed dynamical
heterogeneities, where rearrangement may occur. Then,
in Sec. III, we use statistical thermodynamics to derive
the critical properties of this model, and show that a co-
herence length exponent of ν = 1 naturally emerges from
generic considerations. We make connections to simula-
tions and experiments in Sec. IV and conclude with a
summary and outstanding questions in Sec. V.

II. ISING MODEL OF PSEUDOSPINS AND
DYNAMICAL HETEROGENEITIES: INTERNAL

STATE VARIABLES

Our physical picture of a metallic liquid consists of
short-range interactions between atoms, as well as clus-
ters of atoms where cooperative motion may occur. The
latter are termed dynamical heterogeneities, shear trans-
formation zones, and binary clusters elsewhere in the lit-
erature [7, 8, 19–21].

Two features should emerge from this model: (1) a
coherence length exponent of ν = 1; and (2) a glass tran-
sition temperature θg at which the first peak of the struc-
ture factor S(QMRO), which measures medium-range or-
der, and the coherence length ξ ∝ S(QMRO)− 1, display
a cusp as a function of temperature. This cusp is anal-
ogous to that seen in an antiferromagnet which calls for
at least two order parameters. To this end, we introduce
two order parameters m and η, which are analogous to
the total and staggered magnetization per unit volume.
Physically, one can think of these as representations of
the local atomic environment. The local environment of
an atom is characterized by its nearest neighbors, and
can be described by atomic-level shear stresses, pressure
[22], volume, as well as other physical quantities. To re-

flect the complexity of the state in a simple way, we use
two measures, A and B, which for instance may represent
pressure and shear stresses, and digitize the local atomic
environment into binary states +1 and −1 for each of the
two measures. Thus, if N is the total, extensive number
of atoms in the system, and NA

+ , NA
− , NB

+ , NB
− are the

number of atoms in states +1 and −1 for each of the two
measures A and B, then N = NA

+ + NA
− = NB

+ + NB
− ,

and we can write

m =
NA

+ −NA
−

N
; η =

NB
+ −NB

−
N

, (6)

which give rise to interaction energies proportional to
−Jm2 and −Kη2, respectively, in the mean-field descrip-
tion, with J < 0 and K > 0 to reflect the frustration
in the interatomic interaction. We also include an in-
teraction term proportional to m2η2 which, as we shall
see, is needed to account for the cusp in the correlation
length at the glass transition temperature. Note that
we do not attempt to invoke the replica method here
which, while rather typical for a mathematical descrip-
tion of metastable states in glasses, give results with sim-
ilar mathematical structure in the mean-field description.

In addition to m and η, we introduce the density of dy-
namical heterogeneities Λ and orientational bias M , de-
fined in terms of the number of dynamical heterogeneities
in each of the two states N+ and N−, that can be thought
of as their orientations with respect to some direction in
space, and the total number of sites NS where a dynam-
ical heterogeneity can appear:

Λ =
N+ +N−

NS
; M =

N+ −N−
N+ +N−

. (7)

In the spin language, one can think of dynamical het-
erogeneities as block spins. Note that NS decreases with
decreasing temperature which increases the cooperativ-
ity between atoms and hence the typical size ξS of a dy-
namical heterogeneity; we expect NS ∝ ξ−3S . Dynamical
heterogeneities are the only contributors to plastic strain,
but we do not consider plastic strain in the metallic liquid
that is not undergoing deformation.

The reader may note that our proposed pseudospin
model resembles the approach first proposed in Ref. [23]
and subsequently invoked by Ojovan in his configuron
percolation theory (CPT) [24–26] to account for struc-
tural rearrangements and properties of amorphous mate-
rials. However, the latter theory dealt with the character
of interatomic bonds as a two-state system, while we as-
sign spin variables to each atom as a reduced-order model
for their local environments. In addition, CPT produces
a critical correlation length exponent of ν = 0.88, distinct
from ν = 1/2 in simple mean-field theory and ν = 1 as
observed in simulations and experiments.
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III. STATISTICAL THERMODYNAMICS:
ENERGY, ENTROPY, AND CRITICAL

BEHAVIOR

With these ingredients, we can write the total energy
of the system as (see also, for example, [7, 21]):

U(Λ,M,m, η) = NSΛeZ −
NS

2
J ′ΛM2

−N
2

[
Jm2(1 + αη2) +Kη2

]
. (8)

Here, J ′ < 0 is a negative interaction constant which re-
flects the intuition that in a zero-stress environment, it
is energetically unfavorable for dynamical heterogeneities
to display directional bias. The quantity α > 0 is a small
constant that penalizes neighboring atoms sharing iden-
tical local environments as measured by both A and B.
The formation energy of a dynamical heterogeneity, de-
noted by eZ , is expected to scale as its size ξ3S . More-
over, the entropy can be computed by simple counting.
For example, the contributions from the local atomic en-
vironment equals the logarithm of the total number of
microstates

W =
N !

NA
+ !NA

− !

N !

NB
+ !NB

− !
. (9)

Upon taking the Stirling approximation, and doing
the same for the contributions from dynamical hetero-
geneities, the result is

S(Λ,M,m, η) = NSS0(Λ) +NSΛψ(M)

+N [ψ(m) + ψ(η)] , (10)

where

S0(Λ) = −Λ ln Λ + Λ; (11)

ψ(m) = ln 2− 1 +m

2
ln(1 +m)− 1−m

2
ln(1−m).(12)

One proceeds by looking for minima in the free energy
landscape, with the free energy being

F = U − χS, (13)

by computing the derivatives

∂F

∂Λ
= NS

[
eZ −

J ′

2
M2 + χ (ln Λ− ψ(M))

]
; (14)

∂F

∂M
= −NSΛ

(
JM − χ tanh−1M

)
; (15)

∂F

∂m
= −N

[
Jm(1 + αη2)− χ tanh−1m

]
; (16)

∂F

∂η
= −N

[
(K + Jαm2)η − χ tanh−1 η

]
, (17)

and setting them equal to zero. Here, we have used the
effective temperature χ instead of the true thermal tem-
perature θ for greater generality [e.g., 7, 8, 20]; χ = θ in
thermal equilibrium but χ > θ if the material is out of

equilibrium. The relevanace of χ stems from the fact
that the effective temperature characterizes structural
and configurational disorder and, as such, is related to
correlation and coherence. It is equivalent to the fictive
temperature widely used in the glass community. The
order parameters corresponding to the free energy mini-
mum are thus given by

Λ = exp

[
−eZ − (J/2)M2

χ
+ ψ(M)

]
≈ 2 exp

(
−eZ
χ

)
;(18)

M = tanh

(
J ′M

χ

)
; (19)

m = tanh

[
J(1 + αη2)m

χ

]
; (20)

η = tanh

[
(K + Jαm2)η

χ

]
. (21)

With J ′ < 0, J < 0, it is clear that we require M = 0,
m = 0; this does not mean, however, that there can be no
spatial fluctuations in these quantities. We first note that
with m = 0, it follows immediately from Eq. (21) that
there is a “phase transition” in the “staggered magneti-
zation” η at the “Neel temperature” θN ≡ K; η increases
continuously from zero below θN :

η2 =
3(θN/χ− 1)

(θN/χ)3
, for χ < θN and η � 1. (22)

Above χ = θN , the stable solution is η = 0. Then,
by including fluctuations ∼ ∇2m on the right-hand side
of Eq. (20), and taking the Fourier transform, we can
show that when extrapolated from the equilibrium, high-
temperature regime (χ = θ > θN ), the correlation length
ξS in the local atomic environment, measured by the or-
der parameter m, diverges at the negative temperature
−θc ≡ J with exponent ν = 1/2:

ξS ∝ a(θ + θc)
−1/2; for θ > θN , (23)

where a is the atomic diameter. The more general result,
which holds below θN , is

ξS ∝ a[χ+ (1 + αη2)θc]
−1/2. (24)

Meanwhile, the correlations between dynamical het-
erogeneities are measured by the correlation or coher-
ence length ξ, given in units of the size of a dynamical
heterogeneity or correlation length for the local atomic
environment ξS :

ξ ∝ ξS(χ+ θ′c)
−1/2, (25)

where the critical temperature is now −θ′c = J ′. We
now combine Eqs. (24) and (25), and assume further that
J = J ′, which appears to be physically reasonable. This
is because both repulsive interactions originate from the
atomic potential, and that at high-enough temperatures,
where the coherence length equals the atomic size, there
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(b) Supercooled Cu33.3Zr66.7
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FIG. 1. Coherence length of supercooled (a) Fe and (b)
Cu33.3Zr66.7 as functions of temperature. The solid curve rep-
resents the coherence length given by Eq. (26), with χ = θ
for θ > θN and χ = θN for θ < θN . The dotted curve repre-
sents the thermal equilibrium results given by Eq. (26), with
χ = θ at all temperatures; the dashed curve represents the
high-temperature extrapolation given by Eq. (27). The open
circles represent simulation data using LAMMPS.

is no essential difference between interatomic and dynam-
ical heterogeneity interactions. Then,

ξ ∝ a

(χ+ θc)1/2[χ+ (1 + αη2)θc]1/2
≡ af(χ). (26)

In particular, when extrapolated from the equilibrium,
high-temperature regime where η = 0, one recovers the
result

ξ ∝ a

θ + θc
; for θ > θN , (27)

observed in [3]. Thus one can identify the “Curie tem-
perature” as θIG = θc.

IV. RESULTS AND DISCUSSION

Figure 1 shows the coherence length of supercooled Fe
and Cu33.3Zr66.7 over a range of temperatures up to 3000

K for Fe, and 2000 K for Cu33.3Zr66.7. The data points
were computed from LAMMPS simulation data; details
of the data and simulations are described in [27, 28]. The
theoretical curve is computed from Eqs. (26) and (27). In
units of Kelvin, J = −θIG = −1190 K, K = θg = 950 K
for Fe, and J = −1105 K, K = 675 K for Cu33.3Zr66.7,
with a rescaled accordingly to fit the coherence length
data, and α = 0.8. In both cases the model metallic
liquid has been supercooled and is therefore out of equi-
librium with respect to crystallization, but at the cooling
rates used in simulation (1011 K/s) it is in equilibrium
within the liquid phase. However, at low temperatures
it undergoes the glass transition and goes out of equilib-
rium, so that disorder and atomic as well as point-to-set
correlations are frozen in, as is suggested by the simula-
tion data. As such, we have used χ = θ for θ > θN = θg
above the glass transition, and χ = θN = θg below the
glass transition.

Our derivation leading to Eq. (26) for the MRO coher-
ence length – which involves the notion of “block spins”
– is motivated by the idea that the coherence length
is really a measure of point-to-set correlations, as op-
posed to short-range point-to-point correlations between
pseudospins. The difference between the SRO and the
MRO was clearly demonstrated by recent experimental
and simulation results of the variation in the PDF with
temperature [27]. Whereas the height of the first peak
of the PDF, which describes the SRO, changes smoothly
with temperature through the glass transition at θg, the
height of the third peak, which is a part of the MRO,
shows significant break in the slope at θg. The first peak
of the PDF reflects the positions of 12 to 14 near-neighbor
atoms. In comparison, the third peak, whose width is
about 0.1 nm, represents a few hundred atoms. There-
fore it no longer describes the position of each atom, but
describes coarse-grained density fluctuations [2]. A con-
venient parameter to describe the local density fluctua-
tions is the atomic-level pressure [22],

pi =
∑
j

1

Vi
fi,j · ri,j , (28)

where Vi is the volume of the atom i, fi,j is the two-
body force and ri,j is the separation, between an atom i
and its neighbors j. Because of the summation over the
neighbors it is a quantity already averaged over the local
neighborhood. While the first moment of the atomic-
level pressure is zero, the second moment is proportional
to temperature above the glass transition temperature,
and shows a change in the slope, unlike the first peak
of the PDF [29]. It was recently argued in [28] that
MRO emerges from the atomic-level pressure fluctua-
tions. This is not inconsistent with our conjecture that
MRO emerges from the cooperative behavior in dynam-
ical heterogeneities, for dynamical heterogeneities them-
selves are a manifestation of local density fluctuations
and, being sites at which atomic rearrangements occur,
must accommodate local pressure fluctuations. The ex-
act relationship between local density fluctuations as de-
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scribed by Eq. (28) and the pseudospin variable is beyond
the scope of the present paper, but will be an interesting
subject for future studies.

V. CONCLUDING REMARKS

In this work we have demonstrated that a coherence
length critical exponent of ν = 1 is emblematic of point-
to-set correlations which itself is a hallmark of medium-
range order. Specifically, the Curie-Weiss behavior of
the coherence length ξ results from the cooperative be-
havior of topologically ordered clusters of atoms, or dy-
namical heterogeneities, whose size ξS is determined by
the point-to-point correlations in the glass-forming liq-
uid, and grows with decreasing temperature. Our model
shows, in addition, that the cusps in the quantities ξ and
S(QMRO)−1 as functions of temperature are direct conse-
quences of the frustration in the atom-atom interactions,
analogous to antiferromagnetic ordering. A major impli-
cation of our model results is that cooperative behavior
of dynamical heterogeneities is a key contributor to the
rapidly increasing viscosity with decreasing temperature
as one approaches the glass transition, in accordance with
Eq. (5). While the glass transition itself emerges from the
frustration in the interactions, the clustering behavior of
atoms do play a prominent role here.

We note that in the present work, we did not attempt
to model structural disorder with conventional tools typ-

ical in the study of spin glasses, such as the replica
trick [9, 12–14]. Rather, our point is to demonstrate the
essential ingredients for the diverging coherence length
and the Curie-Weiss behavior. To that end, a few coarse-
grained internal state variables along with a mean-field
description would suffice. This has enabled us to extract
the coherence length directly from the Ising pseudospins
model framework instead of resorting to some hypotheti-
cal dynamic mechanism from which one deduces a corre-
lation length, as has been done in RFOT [15–17]. On the
other hand, it is known that below the glass transition,
replica symmetry is broken and the glass-forming mate-
rial sits in one of many degenerate free energy minima
[12–14]. The extent to which the simplified analog η of
the “staggered magnetization” in the present Ising model
of pseudospins and dynamical heterogeneities describe,
or fail to describe, the slow dynamics of heterogeneities
below the glass transition, will be an important subject
of future investigation.
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