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A nominally two-dimensional spin model wrapped onto a cylinder can profitably be viewed, es-
pecially for long cylinders, as a one-dimensional chain. Each site of such a chain is a ring of spins
with a complex state space. Traditional correlation functions are inadequate for the study of cor-
relations in such a system, and need to be replaced with something like mutual information. Being
induced purely by frustration, the disorder of a cylindrical zero-temperature triangular Ising an-
tiferromagnet (TIAFM) and attendant correlations have a chance of evading the consequences of
the Perron-Frobenius theorem which describes and constrains correlations in thermally disordered
one-dimensional systems. Correlations in such TIAFM systems, and the aforementioned evasion are
studied here through a fermionic representation. For cylindrical TIAFM models with open boundary
conditions, we explain and derive the following characteristics of end-to-end mutual information:
period-three oscillation of the decay length, halving of the decay length compared to what Perron-
Frobenius predicts on the basis of transfer matrix eigenvalues, and subexponential decay — inverse
square in the length — for certain systems.

1. INTRODUCTION

Traditionally, probabilistic dependence among the el-
ementary degrees of freedom in statistical mechanical
models is studied by means of correlation functions. This
is natural on a regular lattice of any dimension. However,
a spin model wrapped on a cylinder with a length much
greater than its circumference is also naturally viewed
as a one-dimensional chain, except that the elementary
constituents at the sites of the chain are rings of many
spins each having many internal states:

How do we measure the probabilistic dependence among
these constituents? Mutual information [1–4], which has
been of increasing interest in classical statistical mechan-
ics [5–7], as well as quantum information theory [8], is
a good answer. Mutual information precisely quantifies
dependence between two random variables of arbitrary
complexity. In this paper, we apply this information-
theoretic tool to the zero-temperature triangular lat-
tice Ising antiferromagnet (TIAFM) model on cylinders,
giving details of results which were briefly reported in
a previous publication [9], thoroughly explaining some
curious phenomena observed in numerical experiments.
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The TIAFM is an archetype of frustration — the pres-
ence of incompatible but equally strong elementary inter-
actions. The importance of understanding frustration-
induced disorder is indicated by the enormous range of
systems in which it occurs, from water ice [10, 11] to spin
systems [12–17], artificial spin ice [18–20], colloidal as-
semblies [21, 22], Coulomb liquids [23], lattice gases [24],
ferroelectrics [25], coupled lasers [26], and self-assembled
lattices of microscopic chemical reactors [27].

The frustration-induced disorder of the zero-
temperature TIAFM on a cylinder superficially
resembles thermal disorder, but with a subtle and
important difference. Correlations in thermally disor-
dered one-dimensional systems are described by the
Perron-Frobenius theorem [28–32]. Behavior of the
cylindrical TIAFM is incompatible with what that
theorem describes in a variety of ways, in particular in
the rate with which the mutual information between
configurations at the ends of a long cylinder with open
boundary conditions falls off with cylinder length.
Whereas the Perron-Frobenius behavior is a decay
length 2 ln |λ1/λ0|, where λ0 and λ1 are the two largest
eigenvalues of the transfer matrix, TIAFM cylinders
show a decay length half this, except in cases where the
mutual information does not even fall off exponentially,
but only as the inverse square of the length. In addition,
the decay length oscillates with circumference with a
period of three. This last feature is not incompatible
with the Perron-Frobenius scenario, but it is strange,
and its elucidation, as we shall see, is bound up with
that of the features which are so. Vis-à-vis violation of
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the Perron-Frobenius scenario, the point of frustration
is that it provides a kind of disorder which might lead
to such behavior. Interesting analogs of the phenomena
studied in this paper might also be found in dynamical
systems, where the Perron-Frobenius theorem has a
significant role[33] with time taking the place of the
spatial dimension considered here, or possibly in systems
displaying phyllotaxis-like phenomena[34].

Section 2 reviews transfer matrices, the Perron-
Frobenius theorem and its significant consequences, in-
dicating how the zero-temperature cylindrical TIAFM
deviates. Section 3 demonstrates the equivalence of the
zero-temperature TIAFM with a fermionic model, con-
structs the transfer matrix in the fermion language and
works out some of its spectral properties. Section 4 works
out the crucial connectivity properties of the configu-
ration space under powers of the transfer matrix, and
asymptotic behavior of matrix elements. Section 5 re-
turns to the Perron-Frobenius scenario, giving a thorough
discussion of mutual information in that setting, expos-
ing “normal” behavior under conditions of thermal dis-
order. Finally, Section 6 works out details for the asymp-
totic end-to-end mutual information of TIAFM cylinders,
explains the period-three oscillation of decay rate by a
very prosaic fact about energy gaps in systems of free
fermions and the inverse-square decay by the presence of
zero-energy fermion modes, and shows how to the data-
processing inequality gives easy evaluation of decay rates.
Comparison of the asymptotic results with exact numeri-
cal calculations shows that a length only about twice the
circumference is already in the asymptotic regime. We
have labelled some results Proposition or Lemma. This
should not be understood as indicating relative level of
mathematical rigor or importance (though Prop. 4.1 is
certainly important). Rather, it is an organizational de-
vice, used when convenient, which facilitates reference
and aids the reader who wishes to skip technical proofs
by clearly marking out their beginnings and endings.

2. THE PERRON-FROBENIUS SCENARIO

A. Transfer matrices

Transfer matrices are a basic tool[35] of statistical me-
chanics. Their use is brought to a high art in the study
of solvable two-dimensional models[36], where one takes
the limit of both dimensions tending to infinity. Here, we
stay with the one-dimensional case. To fix ideas, consider
the simple Ising chain of length L. The spins s1, . . . , sL
take values in the configuration space X = {−1,+1}, and
the energy of the chain is

E(s) = −J
L−1∑
n=1

sn+1sn − h
L−1∑
n=1

sn (1)

Then, defining the quantities

Ts′s = eβ(Js
′s+hs), (2)

indexed by elements of X , the partition function with
fixed boundary conditions s1, sL ∈ X can be written

Z(sL|s1) =
∑

sL−1,...,s2

e−βE(s) =
∑

sL−1,...,s2

TsL,sL−1
· · ·Ts2s1 .

Taking Tss′ as components of a matrix(
eβ(J+h) eβ(−J+h)

eβ(−J−h) eβ(J−h)

)
, (3)

the partition function becomes simply

Z(sL|s1) = (TL)sLs1 . (4)

Naturally, we are inclined to think of T now as a linear
operator on a free vector space over X , or (better) on a
Hilbert space H(X ) with orthonormal basis {|s〉|s ∈ X}.
Nothing stops us from so doing, but we should pause to
ask whether the vectors in H(X ) are physically meaning-
ful, that is, in the original statistical mechanical context.
Some of them are. Consider for instance

|1̄〉 := |−1〉+ |+1〉. (5)

The partition function with open boundary conditions
is 〈1̄|TL|1̄〉. More generally, any linear combination of
|−1〉 and |+1〉 with non-negative coefficients represents
a (possibly unnormalized) probabilistic mixture, with a
clear statistical mechanical meaning.

τ

τ+1

τ+2

FIG. 1. Part of an unrolled TIAFM cylinder. The thick black
bonds go around the cylinder circumference. (See also Fig. 2

Fig. 1 shows a bit of a cylindrical TIAFM system, un-
wrapped. The details of an appropriate transfer matrix
method for this at zero temperature are different from
the simple Ising chain, though the spirit is the same.
The role of sites is played by the circumferential rings of
bonds, and the configuration space X is now the space
of all bond configurations (satisfied/unsatisfied) on such
a ring. Configurations of the non-circumferential bonds
are implicit in the transfer matrix T.

At zero temperature, the partition function should
simply count ground microstates, once the ground-state
energy is set to zero by addition of a constant. However,
for a ring-to-ring transfer matrix to exist, the property
of being a ground microstate needs to be appropriately
local. This is the role of making our cylinders from rings
of down-pointing triangles (5). That ensures that ev-
ery bond is in one and only one 5, and the ground mi-
crostates are precisely those in which each 5 has two
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satisfied bonds. In turn, this ensures the existence of a
ring-to-ring transfer matrix; Section 3 constructs it ex-
plicitly.

B. Perron-Frobenius Theorem

An appropriate general abstract setting in which to
consider both the zero-temperature cylindrical TIAFM
and the systems to which it will be contrasted, is a chain
of sites, site i hosting the configuration variable Xi taking
value in some finite set X . The partition function might
be a matrix element of TL (fixed boundary conditions),
a sum of matrix elements (open boundary conditions), or
the trace (periodic). As before, it is convenient to identify
X with an orthonormal basis in Hilbert space H(X ), so
that the transfer matrix becomes a transfer operator.

1. The theorem

By nature, the entries of the transfer matrix T are non-
negative in the X basis, since they represent statistical
weights. The Perron-Frobenius theorem addresses the
situation where it has the stronger property

PF: There is an N , such that every element of
Tn is strictly positive when n ≥ N .

This says that, regardless of the configuration at a
given site, at any site sufficiently far away, any config-
uration can occur. One generally expects this condition
to hold for a disordered system, and it certainly holds at
nonzero temperature.

Theorem 2.1 (Perron-Frobenius). When the condition
PF holds, T has a unique eigenvalue λ0 of largest modu-
lus, which is nondegenerate (real) and greater than zero.
Also, every component of the associated left or right
eigenvector is strictly positive with appropriate choice of
overall phase.

For a proof, see, for example, Prop. 5.6.3 of Ref. 31, or
Thm. II.5.1 of 32). The theorem implies that T can be
written as

T = λ0(Q0 + S), (6)

with the following characteristics:

• Q0 is a rank-one projection (generally non-
orthogonal), hence can be written as

Q0 = |e0〉〈θ0|, 〈θ0|e0〉 = 1. (7)

• ∀x ∈ X , 〈e0|x〉 > 0, 〈θ0|x〉 > 0.

• SQ0 = Q0S = 0,

• The spectral radius of S is |λ1|/λ0 < 1, where the
subleading eigenvalue(s) of T have modulus |λ1|.

Generally, we cannot assume that T is hermitian; one
must be on alert against ingrained habits attuned to that
case.

We will be interested in asymptotics as the separation
L between sites of a chain system (possibly the ends)
tends to infinity, and therefore establish some convenient
notation now. We use f(L) - g(L) as a synonym for
Landau big-O: f = O(g) when |f(L)/g(L)| is bounded
for large enough L. This is more convenient than O when
the expression for g is long, and includes the case f =
o(g), when the bound can be taken as small as desired. If
f - g and f % g, we write f ∼ g, as is common notation
in the physics literature. Finally, f(L) ≈ g(L) means
that |f(L)− g(L)| = o(g).

2. The PF scenario

Now we list some implications of the Perron-Frobenius,
which we collectively and somewhat loosely refer to as the
Perron-Frobenius (PF) scenario.

1. For all x, y ∈ X ,

〈y|TL|x〉 ≈ λL0 〈y|Q0|x〉 > 0. (8)

2. Regardless of boundary conditions, in the thermo-
dynamic limit there is a unique bulk state and its
free entropy density limL−1 lnZ is equal to lnλ0.

3. In the thermodynamic limit, and for site 0 in the
bulk (i.e., the ends recede infinitely far from that
site in the limit)

〈f(X0)〉 =
∑
x∈X

f(x)〈x|Q0|x〉. (9)

4. In both the cases that sites 0 and L are in the bulk
of an infinite system, or they are the end sites of
a chain with open boundary conditions, the con-
nected correlations obey

〈f(X0); g(XL)〉 := 〈f(X0)g(XL)〉 − 〈f(X0)〉〈g(XL)〉

- q(L)

( |λ1|
λ0

)L
,

where the subleading eigenvalue(s) of T have mod-
ulus |λ1|. q(L) is a polynomial; this complication is
needed in case some |λ1| eigenspace has algebraic
multiplicity greater than its geometric multiplicity.

The preceding aspects are widely known. We add a for-
mula for the asymptotic behavior of mutual information
between the configurations on sites X0 and XL. (Mutual
information will be reviewed in Section 5).

5. With sites 0 and L again either in the bulk or the
ends of a chain with open boundary conditions,
the mutual information between their configura-
tions obeys

I(X0 :XL) - q(L)

( |λ1|
λ0

)2L

(10)
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FIG. 2. On this diagram of a cylindrical system, there are four strings. In the fermionic picture, there are five fermions at
time 0. The doubling back of one string between τ = 2 and τ = 3 is interpreted as annihilation of a pair of fermions.

C. Oddities of the zero-temperature cylindrical
TIAFM

It is common for a one-dimensional system to violate
the hypothesis of the Perron-Frobenius theorem, at zero
temperature. However, the result is usually a very simple
situation in that there are a few ground states, e.g., for
the simple Ising chain, all spins up or all spins down. The
cylindrical TIAFM differs by exhibiting disorder which
looks very similar to ordinary thermal disorder. It is
therefore a priori plausible that the Perron-Frobenius
scenario applies. Of course, there is a local constraint
(each 5 has exactly two satisfied bonds), but it would
be a mistake to jump to conclusions from that. Consider,
for instance, a clock model with an antiferromagnetic in-
teraction, allowed directions for the spins being spaced
by 15◦. Imposing the constraint that neighboring spins
can differ by at most 30◦ makes no qualitative difference.

1’. There are multiple bulk states in the thermodynamic
limit. They are labelled by the number N of satisfied
bonds on each circumferential ring, and have differing
entropy densities.

2’. In each such bulk state, connected correlation func-
tions and ring-to-ring mutual information behave as
in items 4 and 5 above, but the relevant eigenvalues
are a subset of those for the full transfer matrix T,
specific to N . All the eigenvalues of T are relevant
for end-to-end correlations, however.

3’. Despite that normal aspect of end-to-end mutual in-
formation, it behaves very peculiarly in other re-
spects:

• If the circumference is a multiple of three and N
is odd, then the end-to-end mutual information
decays not exponentially, but as L−2.

• In other cases, the exponent 2L in (10) is re-
placed by L.

• On top of a general increase with circumference,
the rate of decay oscillates with period three.

These aspects are all somewhat interrelated. In fact,
the period-three oscillation for even-N systems has no

direct relation to violation of the Perron-Frobenius con-
dition, but we need to uncover the whole story to see that
clearly. In the following sections, we will construct a very
convenient fermionic representation of the transfer oper-
ator, and use it to explain these features. The coefficient
for the end-to-end mutual information will be calculated,
and shown to agree with direct numerical calculations.

D. Non-Perron-Frobenius in general

As before, consider a chain of sites with a finite single-
site state space X and transfer matrix T. We introduce
a relation of mutual reachability: For Y, Y ′ ∈ X , if there
is some N such that both 〈Y ′|Tm|Y 〉 and 〈Y |Tm|Y ′〉
are nonzero whenever m ≥ N , Y and Y ′ are mutually
reachable, denoted Y ∼ Y ′. This relation is evidently
an equivalence relation, so X is partitioned into equiva-
lence classes {Xα} of mutually reachable states. In graph
theory terminology, these equivalence classes are strongly
connected components. The directed graph G with these
components as nodes and a directed edge from Xα to
Xβ when 〈Yβ |T|Yα〉 for some Yα ∈ Xα and Yβ ∈ Xβ
is directed acyclic (there is no directed path from any
node back to it). The Perron-Frobenius condition holds
when the graph has only one node. As mentioned in Sec-
tion 2 B, thermal disorder always produces this case. The
graphs G for zero-temperature TIAFM cylinders have one
of the simplest nontrivial structures: nodes correspond to
the number N of satisfied circumferential bonds, and T
connects a state only states with a lesser or equal value of
N . Frustration provides the nonthermal disorder making
this possible. Since the cylindrical TIAFM can be stud-
ied in great detail through the fermionic representation,
it is a good model system for this sort of non-Perron-
Frobenius behavior.

3. CONSTRUCTION OF TRANSFER MATRIX
FOR T = 0 CYLINDRICAL TIAFM

We construct the transfer matrix T for the zero-
temperature cylindrical TIAFM in three stages[9]: see
how to represent bond configurations by string diagrams,
identify the elementary processes of which they are com-
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posed, and find appropriate fermionic representations of
those processes.

We work with configurations of satisfied and unsatis-
fied bonds rather than directly with spins. The simple
two-to-one correspondence between spin and bond con-
figurations means there is no loss in doing so. In a system
comprised of 5’s (see Figs. 2 and 3), ground states are
all and only those bond configurations with exactly two
satisfied bonds on each5, with one caveat to be removed
in the next paragraph. To convert a bond configuration
into a system of strings, mark a perpendicular across each
satisfied circumferential bond (horizontal in the Figures)
and across each unsatisfied non-circumferential bond (di-
agonal), as illustrated at the left in Fig. 2. The only

motifs allowed in a 5 are , , and the empty motif
5. corresponds to zero satisfied bonds, ruled out by
the ground-state constraint, and anything else is topo-
logically impossible. It is very natural to interpret these
pictures as a sort of spacetime diagram (Fig. 3) with the
strings being worldlines of particles. These particles are
conserved, except for the events depicted as , which
represents annihilation of neighboring particles.

x

τ

τ

τ

τ

=0

=1

=L

x
=

1

x
=

2

x
=

C

FIG. 3. Spacetime interpretation of a string diagram.

For the ordinary TIAFM, there must be an even num-
ber N of satisfied bonds along any circumferential loop,
because these correspond to spin flips. Therefore, sys-
tems with odd circumference C are circumferentially frus-
trated. We are going to decouple the frustration status
of circumferential loops from the parity of C. The impor-
tant point is that a triangle with one antiferromagnetic
bond is precisely as frustrated as one with three such. If
all bonds crossed by a string running the length of the
cylinder are changed from antiferromagnetic to ferromag-
netic, this alters none of the local characteristics, but
reverses the frustration status of circumferential loops.
Allowing this variant, the parities of N and of C become
independent.

A. Particle-conserving submodel

To construct the transfer matrix, we will first ban pair
annihilation, work out a fermionic representation for the
resulting particle-conserving submodel, and restore pair
annihilation in the following subsection.

The nature of our particle worldlines is such that they
cannot intersect. To implement this constraint automat-
ically, we take the particles to be fermions. The con-

figuration X = (x1, . . . , xN ) is the locations of satisfied
circumferential bonds, in ascending order: 1 ≤ x1 < x2 <
· · · < xN ≤ C. This configuration is identified with the
fermion Fock space vector

|X〉 := c†x1
· · · c†xN |∅〉. (11)

The particle preserving transfer matrix T0 is determined
by the conditions

T0|∅〉 = |∅〉, T0c
†
x = (c†x−1 + c†x)T0, (12)

the point being that a particle at x at time τ can be at
either x or x− 1 at time τ + 1. (See Fig. 3.) In k-space,
the condition (12) translates to

T0c(q)
† = C−1/2

∑
x∈ZC

eiqxT0c
†
x

=
(
2 cos q2

)
eiq/2c(q)†T0. (13)

This is solved by

T0 = eiP/2e−H0 , (14)

where

H0 =
∑
q∈BZ

ε(q)n(q), P =
∑
q∈BZ

q n(q), (15)

have the interpretation of a Hamiltonian and total mo-
mentum operator, respectively, and BZ (see Eq. (17))
stands for allowed momentum values in the Brillouin
zone. n(q) = c(q)†c(q) counts the number (0 or 1) of
fermions in the mode of momentum q with energy

ε(q) = − ln
(

2 cos
q

2

)
. (16)

The allowed fermion momentum modes depend on the
parity of the number of particles N , and are given by

BZ =

{
2π
C Z ∩ (−π, π], N odd
2π
C

(
Z + 1

2

)
∩ (−π, π], N even.

(17)

1. Zero-energy modes

The zeros of the dispersion relation ε(k) are k = ± 2π
3 .

According to (17), the systems for which those momenta
are in BZ are precisely those with C ∈ 3Z and odd N .
Systems with zero-energy modes turn out to behave very
differently from others and will generally require separate
treatment in the following.

2. Eigenvectors

T0 is a hermitian operator, so its eigenvectors com-
prise a complete orthonormal basis. The eigenvectors
have a very simple nature; they are constructed simply
by occupying some particular set of k-states, subject to
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the parity constraint on N . [We speak in the singular,
implicitly referring to systems with some particular cir-
cumference C, and N parity (even or odd).] We will
follow two different conventions for labelling eigenvalues
and eigenvectors, as convenience dictates. The first way
is

T0|ϕi〉 = λi|ϕi〉, (18)

where the eigenvalues are in descending order |λ0| ≥
|λ1| ≥ · · · . (We will never have any significant need
to handle degeneracies systematically.) The other con-
vention is to specify the particle number and order the
eigenvalues of all N -particle states:

T0|ϕN,i〉 = λN,i|ϕN,i〉 (19)

T0 =
∑
i

λi|ϕi〉〈ϕi|, (20)

with |λN,0| ≥ |λN,1| ≥ · · · . Eigenstates of T0 are also

eigenstates of P , which is why the factor eiP/2 is not
very important. In fact, the important eigenvectors for
asymptotic properties are the ϕN,0. These are just filled
Fermi seas of a density depending on N , and they have
P = 0. As N increases, λN ,0 first increases monoton-
ically, while modes of negative energy are being filled,
then decreases monotonically. The number

N0 := | {k ∈ BZ|ε(k) ≤ 0} | (21)

of non-positive energy modes is important. λN0,0 is the
largest eigenvalue λ0 of T0. If there are no zero-energy
modes, it is nondegenerate, otherwise, λN0−2,0 = λN0,0.

B. Pair annihilation

Fig. 2 depicts a single pair annihilation event. The
transfer matrix “chooses” how the configuration will
evolve from time τ to time τ+1. And that can be under-
stood as proceeding in two steps: first, select neighboring
pairs for annihilation, then move or leave in place the re-
maining particles. This annihilation step is implemented
by the operator

Tpr =
∏
i∈ZC

(1 + ci+1ci), (22)

which selects neighboring pairs in all possible ways from
the ring. Note that the operators in the product commute
with each other, so it is unambiguous. Since the opera-
tors ci+1ci square to zero, 1 + ci+1ci = exp(ci+1ci). And,
since they commute with each other, Tpr =

∏
i e
ci+1ci .

Applying commutativity again produces Tpr = e−Hpr ,
where

Hpr = −
∑
i

cici+1 =
∑

0<q∈BZ

2i(sin q) c(−q)c(q) (23)

after Fourier transformation. The exponentiated expres-
sion e−Hpr re-expands to

Tpr =
∏

0<q∈BZ

[1 + 2i(sin q) b(q)], (24)

where

b(k) := c(k)c(−k) (25)

destroys a pair of fermions. The complete transfer matrix
is then

T = T0Tpr = eiP/2e−H0e−Hpr . (26)

Now, P commutes with H0 and b(k), but b(k) does not
commute with T0. Instead,

b(k)T0 = e−2ε(k)T0b(k). (27)

Evidently, zero-energy modes are special, since b( 2π
3 )

commutes with T0, whereas the other pair annihilation
operators do not.

1. Case: no zero-energy modes

When there are no zero-energy modes, we use (27) to
write T as a similarity transformation of T0. Since

[1 + αb(k)] [1 + βb(k)] = [1 + (α+ β)b(k)] , (28)

for any complex α, we have

T0 [1 + αb(k)] = [1 + α̃b(k)]T0 [1− α̃b(k)]

= [1 + α̃b(k)]T0 [1 + α̃b(k)]
−1

(29)

where

α̃ =
α

e−2ε(k) − 1
. (30)

Using this observation, we can write the full transfer
matrix as

T = B(eiP/2T0)B−1, (31)

with the definitions

B :=
∏

0<q∈BZ

[1 + iη(q)b(q)] , (32)

and

η(k) :=
2 sin k

e−2ε(k) − 1
. (33)
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2. Eigenvectors

Corresponding to the eigenvector |ϕi〉 of T0, with
eigenvalue λi, T has a right eigenvector

|ei〉 = B|ϕi〉 =
∏

0<q∈BZ

[1 + iη(q)b(q)] |ϕi〉 (34)

and a left eigenvector

|θi〉 = B−†|ϕi〉 =
∏

0<q∈BZ

[1− iη(q)b(q)] |ϕi〉 (35)

with the same eigenvalue [B−† is short for (B†)−1]. B
removes (k,−k) pairs in all possible ways, with varying
weight; B−† adds them.

These satisfy the biorthogonality relation

〈ei|θj〉 = δij , (36)

so that we can also write the transfer matrix as

T =
∑
i

λi|ei〉〈θi|. (37)

We can also write this in the form (38) introduced in
Section 2:

T = λ0(Q0 + S), (38)

where Q0 = |e0〉〈θ0| and S has spectral radius less than
one. In contrast to the Perron-Frobenius scenario, how-
ever, it is not the case that 〈y|Q0|x〉 > 0 for all y and
x. This is discussed later, and is very important for the
behavior of mutual information.

3. Case: zero-energy modes

As noted in section 3 A 1, the system has zero-energy
modes k = 2π

3 exactly when N is odd and C ∈ 3Z. b( 2π
3 )

commutes with T0, as well as with P and all the other
b(k)’s. We cannot deal with them in the same way as the
others. If we temporarily hold them in reserve and write

B :=
∏

0<q∈BZ
ε(q)6=0

[1 + iη(q)b(q)] , (39)

and

T̃ = B(eiP/2T0)B−1, (40)

then the full transfer matrix can be written as

T = T̃(1 +A0) = (1 +A0)T̃, (41)

where

A0 := i
√

3 b( 2π
3 ). (42)

While the situation is in certain respects more com-
plicated than for systems without zero-energy modes,
there are some conpensations: A0 commutes with T and

squares to zero. Therefore TL = T̃L(1 + LA0).
We can construct a biorthogonal system of eigenvectors

for T̃ just as was done for systems without zero-energy
modes:

|ẽi〉 = B|ϕi〉, |θ̃i〉 = B−†|ϕi〉. (43)

Then,

T|ẽi〉 = (λi +A0)|ẽi〉, (44)

and

T =
∑
i

(λi +A0)|ẽi〉〈θ̃i|. (45)

Eigenstates |ϕi〉 of T0 can be classified according to
whether the number of occupied zero-energy mode is one

(annihilated by A0 and A†0), zero (annihilated by A0 but

not A†0) or two (annihilated by A†0, but not by A0). This

classification survives the passage to |ẽi〉 and |θ̃i〉 because
B does nothing to the zero-energy modes. Every eigen-

vector of T̃ with no zero-energy modes has a partner with
two, and they belong to the same eigenvalue. However,
the vectors with both zero-energy modes occupied are
not eigenvectors of the full transfer matrix T. Indeed, it
is not diagonalizable.

4. STATES OF LONG TIAFM CYLINDERS

A. Bulk states of particle-conserving submodel

The particle-conserving submodel, T0, fails to satisfy
the Perron-Frobenius condition rather trivially. Since
T0 commutes with particle number N , which is also the
number of satisfied circumferential bonds, TL0 can never
connect configurations x and y if N (y) 6= N (x). How-
ever, there is an equally trivial fix: restrict to the sub-
space XN of configurations with N particles, for some
fixed N . By use of the string representation, it is easy to
see that for any x, y ∈ XN , 〈y|TL0 |x〉 > 0 for all L large
enough. The full Perron-Frobenius scenario is recovered
for this restricted model: connected correlations decay as
(|λN,1|/λN,0)L, and so forth.

Now, consider a finite cylinder with open boundary
conditions. The partition function is 〈1̄|T0|1̄〉, where, re-
call,

|1̄〉 =
∑
x∈X
|x〉.

Since we are working in the particle-conserving sub-
model, every allowed configuration of the cylinder has
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the same number of particles N at every point along the
length. Writing

〈1̄|TL0 |1̄〉 =
∑
N,i

〈1̄|ϕN,i〉λLN,i〈ϕN,i|1̄〉, (46)

we see that, as L → ∞, the partition function is domi-
nated by configurations with N∗ particles, where λN∗,0
is largest possible. This value is unique and equal to N0,
except for systems with zero-energy modes, in which case
λN0−2,0 = λN,0.

B. A-expansion

The full model is much more complicated, and some
crucial information is to be obtained by developing a
view of the long cylinder and its partition function which
does not work directly with the eigenvectors |ei〉 and |θi〉.
Instead, decompose the pair annihilation part Tpr of T
given in (22) or (24) as

Tpr = 1 +A. (47)

Here, A removes one or more pairs of particles. Then,
T = T0(1 +A) and TL is expanded as

TL = TL0 +
∑

TL2
0 ATL1

0 +
∑

TL3
0 ATL2

0 ATL1
0

+ · · ·+
∑{

terms with bC2 c A’s
}
. (48)

The restrictions on the Li are that: they must add up to
L and only the first or last is allowed to be zero. In brief,
at each “time step”, there is a choice to annihilate some
pairs, or not. The main point is that there is a strictly
limited number of A’s, so they must become sparser and
sparser on average as L→∞. The regions between them
are characterized by constant values of N , dropping by
two at each A. Such a region of constant N looks like the
corresponding bulk state of the N -conserving submode.

This way of looking at matters is very helpful in de-
ducing the large-L asymptotics of the partition function
〈y|TL|x〉 for fixed boundary conditions x and y at the
top and bottom of the cylinder, with N (y) ≤ N (x), as
given in the following Proposition. States with N in the
interval [N (y),N (x)] are accessible, and as L → ∞, the
bulk will be in the fixed-N phase which maximizes the
entropy density.

Proposition 4.1. If N (y) > N (x), then 〈y|TL|x〉 = 0.
Otherwise, 〈y|TL|x〉 > 0 for all sufficiently large L, and
the following cases obtain:

Without zero-energy modes,

〈y|TL|x〉 ≈ 〈y|eN∗,0〉〈θN∗,0|x〉λLN∗,0, (49)

where N∗ is the value of N in [N (y),N (x)] which maxi-
mizes λN∗,0. Explicitly,

N∗ =


N0 N (y) ≤ N0 ≤ N (x)

N (x) N (y) ≤ N (x) ≤ N0

N (y) N0 ≤ N (y) ≤ N (x)

(50)

With zero-energy modes, the preceding holds except in
the case N (y) ≤ N0 − 2 < N0 ≤ N (x). For such y, x,

〈y|TL|x〉 ≈ 〈y|ẽN0−2,0〉〈θ̃N0,0|x〉LλLN0,0, (51)

Proof. That 〈y|TL|x〉 = 0 when N (x) < N (y) is clear,
since T cannot add particles.

The A-expansion shows that for L′ large enough, there
is some z ∈ XN (y) with 〈z|TL′ |x〉 > 0. Since T acts

irreducibly on XN(y), also 〈y|TL′′ |z〉 > 0 for sufficiently
large L′′. Therefore, L ≥ L′ + L′′ will guarantee that
〈y|TL|x〉 > 0.

Now, with top and bottom boundary conditions fixed
at x and y, as L → ∞, the partition function is domi-
nated by configurations where the bulk has the allowed
particle number (between N (y) and N (x)) which max-
imizes entropy density, namely N∗. This shows that
〈y|TL|x〉 ∼ λLN∗,0. (49) follows immediately, since

〈y|TL|x〉 =
∑
N,i

〈y|eN,i〉〈θN,i|x〉λLN,i.

For a system with zero-energy modes, the essentially
new case is N (y) ≤ N0 − 2 < N0 ≤ N (x). With the
A-expansion picture, we see that the bulk of they system
will be dominated by the N0 “phase” or the N0−2 phase.
These have the same entropy density, so a transition from
N0 to N0−2 comes at no penalty of entropy density, but
can occur at any of L locations. Hence 〈y|TL|x〉 ∼ LλL0 .
Now we make the same kind of comparison as before,

using TL = T̃L(1 + LA0) and A0ẽN0,0 = i
√

3ẽN0−2,0:

〈y|TL|x〉 = 〈y|(1 + LA0)T̃L|x〉
=
∑
N,i

〈y|1 + LA0|ẽN,i〉〈θ̃N,i|x〉λLN,i. (52)

5. MUTUAL INFORMATION IN THE
PERRON-FROBENIUS SCENARIO

Traditional one- and two-spin correlation functions tell
us everything there is to know about the distribution
of a single spin conditioned on the value of one other.
For complex random variables, such as a bond configura-
tion on a circumferential ring, dependences can be much
more difficult to pin down. Mutual information provides
a measure of the dependence in such situations. It does
not characterize the nature of correlations, ferromagnetic
versus antiferromagnetic, for example, but neither does
it require insight into that nature. Correspondingly, it
cannot miss anything we did not know to look for; it is
in that sense a complete measure. Another important
property of the mutual information which is not shared
by ordinary correlation functions is reparametrization in-
variance. The mutual information I(Y :X) between ran-
dom variables X and Y is the same as that between X



9

and Y ′ = 3Y or Y ′ = Y 3; invertible transformations of
the ranges have no effect.

Section 5 A is a quick review of important informa-
tion theory concepts [1–4]. Section 5 B relates mutual
information to the more traditional tool of connected
correlation functions and gives a basic abstract estimate.
Asymptotic formulas for ring-to-ring and end-to-end mu-
tual information in the Perron-Frobenius scenario are
worked out Sections 5 C and 5 D, respectively. The de-
tails of the formulas in these sections will not be needed
later. It is primarily the qualitative behavior that we
wish to contrast with that of the zero-temperature cylin-
drical TIAFM.

A. Generalities about mutual information

The entropy of a discrete random variable Y is given
by

H(Y ) = −
∑
y

PY (y) lnPY (y), (53)

where PY denotes the probability distribution of Y . A
traditional interpretation is in the context of sending sig-
nals to communicate the results of repeated independent
samples of Y . H(Y ) is proportional to the average num-
ber of bits per sample required to reliably encode the
outcomes. Thus, the entropy reduces to a single num-
ber the uncertainty about Y codified by its probability
distribution.

If X is a second random variable, conditional entropy
and mutual information are of interest. The entropy of
Y conditional on X having value x is simply the entropy
of the conditional distribution

H(Y |X = x) = −
∑
y

PY |X=x(y) lnPY |X=x(y), (54)

PY |X=x being the conditional distribution of Y , given
that X takes value x. The entropy of Y conditional on
X (not a particular outcome) is then the expectation of
(54):

H(Y |X) =
∑
x

PX(x)H(Y |X = x)

= −
∑
x,y

PY,X(y, x) lnPY |X=x(y). (55)

In the coding context, if (X,Y ) is sampled jointly and the
X outcome is transmitted, then we need an additional
H(Y |X) bits per sample to reliably communicate Y as
well. It is intuitively clear then that H(Y ) ≥ H(Y |X),
and the difference H(Y ) − H(Y |X) ought to represent
the average amount of information X carries about Y .

We turn that into a definition. The mutual information

between X and Y is

I(X :Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

=
∑
y,x

PY X(y, x) ln
PY X(x, y)

PY (y)PX(x)
.

=
∑
y,x

P(y)P(x)
P(y, x)

P(y)P(x)
ln

P(y, x)

P(y)P(x)
. (56)

Manipulation of the definitions produces the second and
third right-hand expressions, from which it is clear that
mutual information is actually symmetric in its argu-
ments, justifying the name.

In the following, we will use simplified notation as
much as possible, as illustrated in the final line of (56),
relying on context for the proper reading. Mostly, we are
concerned with two variables X and Y , or X0 and XL,
two variables along a chain, and will systematically use
the dummy variables x and y for their values. We will in-
stead use the subscript position PL to indicate separation
along a chain, or its length.

B. Mutual information and connected correlators

Mutual information has not been a concern of statis-
tical mechanics nearly as much, or for such a long time,
as correlation functions and connected correlation func-
tions. We prove here a general abstract result about
asymptotics of mutual information which will be applied
in the following subsections.

Let P be a probability distribution for a pair (Y,X) of
discrete random variables, and define ∆ by

P(y, x)

P(y)P(x)
= 1 + ∆(y, x). (57)

Then, using the notation δx(X) for the function which
evaluates to one in case X = x, otherwise zero,

C(y, x) := ∆(y, x)P(y)P(x)

= P(y, x)− P(y)P(x)

= 〈δy(Y )δx(X)〉 − 〈δy(Y )〉〈δx(X)〉
= 〈δy(Y ); δx(X)〉 (58)

is a connected correlation function; the final rewriting ex-
plicitly claims as much. In fact, all connected correlation
functions can be built from these:

〈f(X); g(Y )〉 =
∑
y,x

f(x)g(y)C(y, x).

1. General asymptotics

Now, assume a family of probability distributions PL,
where L can be distance between two sites in a chain,
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or the length of a chain (among other things), and
suppose the connected correlators (58) tend to zero as
L→∞. This does not imply that ∆(y, x) tends to zero
unless P(x) and P(y) remain bounded away from zero.
That condition, however, is met in the Perron-Frobenius
scenario, and then C(y, x) and ∆(y, x) have the same
asymptotic behavior.

Lemma 5.1. Let (PL : L ∈ N) be a family of probability
distributions for the pair (Y,X), with corresponding ∆L

according to (57), and assume that ∆L(y, x) → 0 for
every x and y. Then,

I(Y :X) ≈ 1

2

〈
∆L(Y,X)2

〉
. (59)

The expectation here, 〈 〉, can be with respect to either
PL or the product of the marginals, since the difference
is O(∆).

Proof. From the definition (57) of ∆, and the formula
(56) for mutual information,

I(X :Y ) =
∑

P(y)P(x)
{

(1 + ∆(y, x)) ln(1 + ∆(y, x))
}
.

Now, observe that

(1 + ∆(y, x)) ln(1 + ∆(y, x)) = ∆ +
1

2
∆2 + · · · ,

while∑
y,x

P(y)P(x)∆(y, x) =
∑
y,x

P(y, x)−
∑
y,x

P(y)P(x) = 0.

C. Ring-to-ring mutual information

Now we consider the mutual information between sites
separated by L in an infinite chain, under the Perron-
Frobenius condition. We use notation introduced in Sec-
tion 2.

The probability of configuration x at a site is

P(x) = 〈θ0|x〉〈x|e0〉 = 〈x|Q0|y〉. (60)

For the product, we can do a swap:

P(y)P(x) = 〈y|Q0|y〉〈x|Q0|x〉 = 〈y|Q0|x〉〈x|Q0|y〉. (61)

To see this equality, recall that Q0 = |e0〉〈θ0|, write
〈y|Q0|x〉 = 〈y|e0〉〈θ0|x〉 and so on. The joint probability
of configurations x and y at separation L is

PL(y, x) := P(Xn+L = y&Xn = x)

= 〈θ0|y〉 〈y|T
L|x〉
λL0

〈x|e0〉

= 〈x|Q0|y〉〈y|Q0 + SL|x〉. (62)

Putting these together, the connected correlation is

CL(y, x) = PL(y, x)− P(y)P(x)

= 〈x|Q0|y〉〈y|SL|x〉. (63)

Also,

∆L(y, x) =
〈y|SL|x〉
〈y|Q0|x〉

. (64)

Finally, applying Lemma 5.1,

I(XL :X0) ≈ 1

2

∑
y,x∈X

〈x|Q0|y〉
〈y|Q0|x〉

〈y|SL|x〉2. (65)

D. End-to-end mutual information

End-to-end mutual information with open bound-
ary conditions in the Perron-Frobenius scenario re-
quires more intricate manipulation, but it is in princi-
ple straightforward. Here, L is the length of the chain.
Apart from the decomposition T = Q0 + S, the criti-
cal point in the calculations is that 〈y|Q0|x〉 > 0 for all
y, x ∈ X . For example, the probability that the config-
uration is x at the initial or “top” end of the chain is
(recall |1̄〉 =

∑
x∈X |x〉)

PL(x) =
〈1̄|TL|x〉
〈1̄|TL|1̄〉 =

〈1̄|Q0|x〉+ 〈1̄|SL|x〉
〈1̄|Q0|1̄〉+ 〈1̄|SL|1̄〉

=
〈1̄|Q0|x〉
〈1̄|Q0|1̄〉

(
1 +
〈1̄|SL|x〉
〈1̄|Q0|x〉

− 〈1̄|S
L|1̄〉

〈1̄|Q0|1̄〉

)
+O(S2L)

where S in O(S2L) stands in for the spectral radius of
S. In similar fashion, we obtain the probability that the
terminal, or bottom, end has configuration y as

PL(y) =
〈y|Q0|1̄〉
〈1̄|Q0|1̄〉

(
1 +
〈y|SL|1̄〉
〈y|Q0|1̄〉

− 〈1̄|S
L|1̄〉

〈1̄|Q0|1̄〉

)
+O(S2L)

and the joint probability of x and y at the ends as

PL(y, x) =
〈y|TL|x〉
〈1̄|TL|1̄〉

=
〈y|Q0|x〉
〈1̄|Q0|1̄〉

(
1 +
〈y|SL|x〉
〈y|Q0|x〉

− 〈1̄|S
L|1̄〉

〈1̄|Q0|1̄〉

)
+O(S2L)

For ∆(y, x), the ratio of the leading terms in PL(y, x)
and PL(y)PL(x) is needed. With the same trick as for
(61), it is

〈y|Q0|x〉〈1̄|Q0|1̄〉
〈y|Q0|1̄〉〈1̄|Q0|x〉

= 1. (66)

Therefore,

∆L(y, x) ≈ 〈y|S
L|x〉

〈y|Q0|x〉
− 〈y|S

L|1̄〉
〈y|Q0|1̄〉

− 〈1̄|S
L|x〉

〈1̄|Q0|x〉
+
〈1̄|SL|1̄〉
〈1̄|Q0|1̄〉

.
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Finally, applying Lemma 5.1 again,

I(XL :X0) ≈ 1

2

∑
y,x

〈y|Q0|x〉
〈1̄|Q0|1̄〉

∆L(y, x)2. (67)

No possibility for general simplification is evident here,
and the result is considerably more complicated than that
for ring-to-ring mutual information in an infinite chain.

6. END-TO-END MUTUAL INFORMATION ON
FINITE-LENGTH CYLINDERS

The previous Section showed that end-to-end mutual
information I(XL : X0) is asymptotically proportional
to |λ1/λ0|2L in the Perron-Frobenius scenario. Finally,
in this Section, we get down to the business of under-
standing its behavior for the zero-temperature cylindri-
cal TIAFM. Barring systems with zero-energy modes,
for which λ0 has algebraic multiplicity two, we show
that I(XL :X0) ≈ A(λ1/λ0)L, for some amplitude A. Sec-
tion 6 B explains why MI cannot fall off any faster than
this, and Section 6 C presents the more technical calcu-
lation of the amplitude A, in the process showing that
(λ1/λ0)L gives the precise decay rate. These results are
compared to direct numerical calculations which reveal
that the asymptotic regime is reached already at L equal
to two or three times the circumference C. Section 6 D
then gives an argument like that of Section 6 B, show-
ing that I(XL :X0) ∼ L−2 for systems with zero-energy
modes and the conclusion is again confirmed with direct
numerical calculation.

Before any of that, we need to understand λ0 and λ1.
Since T has the same eigenvalues as T0, this can be ad-
dressed by an examination of non-interacting fermions.
Section 6 A shows that the lowest-energy excitation are
either of two-particle (pp) or two-hole (hh) type, rather
than particle-hole type. This provides a simple expla-
nation of the period-three oscillation of the decay rate
(see Table I). If, somehow, the lowest energy excitations
were of particle-hole type, the Perron-Frobenius behavior
|λ1/λ0|2L (note, 2L rather than L) would result.

A. Energy gaps

Recall that according to (17), allowed single-particle
momenta satisfy

k

δ
∈
{
Z, N odd,

Z + 1
2 , N even,

(68)

where δ = 2π/C is the finesse of the momentum spec-
trum. The maximum eigenvalue λ0 of T0 is e−E0 , where
E0 is the energy of the filled Fermi sea, with every
negative-energy mode occupied. Linearizing the spec-
trum near the Fermi momentum ±kF = ± 2π

3 gives a
minimum particle-hole excitation energy vF · δk, where

vF = dε/dk|kF =
√

3/2 is the Fermi velocity. For some
0 < α < 1, kF is α · δk above the highest negative-energy
mode. A minimal energy two-hole excitation (removal
of two particles) costs energy 2αvF · δk, while a minimal
two-particle excitation costs 2(1 − α)vF · δk. As long as
α 6= 1

2 , one of these costs less energy than a particle-
hole excitation, specifically, the two-hole (hh) excitation
if α < 1

2 , and the two-particle (pp) excitation, if α > 1
2 .

If α = 1
2 , then there is a three-way tie, in linearized ap-

proximation. Considering the positive curvature of the
dispersion curve ε(k), however, the hh excitation gains an
advantage. The possibility of α very slightly greater than
1
2 need not concern us, as it will not arise. The linearized
approximation is a priori appropriate for large circum-
ference C. Its predictions fail only in the case C = 5,
odd N , where the hh and pp excitations are degenerate.

Now we will examine which case arises according to C
and N parity. Write

C = 3m+ p, m, p ∈ N. (69)

Then, for odd N , (68) tells us that α in the above dis-
cussion is

kF
δk
−m =


0 p = 0
1
3 p = 1
2
3 p = 2

, (70)

This gives us three entries in Table I The first case is
the special one of zero-energy modes, with a degenerate
largest eigenvalue. For even N , α is

kF
δk
−
(
m+ 1

2

)
=


− 1

2 p = 0

− 1
6 p = 1

+ 1
6 p = 2

, (71)

providing the other three entries.

N parity even odd

C mod 3 0 1 2 0 1 2

excitation type hh pp hh hh/pp hh pp

C∆E/(π
√

3) 1 1/3 1/3 0 2/3 2/3

TABLE I. fundamental energy gaps ∆E of T0 and corre-
sponding excitation types. ‘hh’ and ‘pp’ indicate excitations
involving removal (addition) of two particles. Energies are re-
ported in units of vF · δk = π

√
3/C, according to a linearized

approximation. Due to the strict convexity of ε(k), energies
reported for hh (pp) excitations are overestimates (underesti-
mates), improving as C →∞. There is only one cylinder with
C ≥ 3 for which the linearized approximation (with convexity
tie-breaker) leads to an incorrect conclusion: C = 5 and odd
N has exactly degenerate hh and pp excitations.

B. Lower bound from data-processing inequality

Combining the information we now have about the na-
ture of the eigenstates of T with a basic tool of informa-
tion theory called the data-processing inequality[4], we
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can show that I(XL :X0), the end-to-end mutual infor-
mation with open boundary conditions, obeys

I(XL :X0) % (λ1/λ0)L. (72)

It should seem plausible, and is true, that “%” can be re-
placed by “∼”, but that requires a more delicate analysis
carried out in the following subsection.

The data-processing inequality says that ifX ′ is a func-
tion of X, then I(X ′ :Y ) ≤ I(X :Y ). The intuitive ground
for this is simple: I(X ′ :Y ) measures the information X ′

carries about Y , but X carries at least as much, since it
determines X ′. Now, we define random variables S0 and
SL, taking values in {LT,EQ,GT}. S0 is determined by
X0 according to

S0 =


LT N (X0) < N0

EQ N (X0) = N0

GT N (X0) > N0

(73)

and SL in the same way from XL. Then, by two appli-
cations of the data-processing inequality [4], and using
symmetry of the mutual information,

I(X0 :XL) ≥ I(X0 :SL) ≥ I(S0 :SL). (74)

We now show how to get (72) from this.
Consider the case that the eigenvalue λ1 of T0 corre-

sponds to a two-hole excitation, and use the first form
for mutual information in (56) to obtain

I(S0 :SL) =
∑
x

P(S0 = x)[H(SL)−H(SL|S0 = x)]

≥ P(S0 = LT)[H(SL)−H(SL|S0 = LT)]

= P(S0 = LT)H(SL) ∼
(
λ1
λ0

)L
Passage to the final line uses that N (XL) ≤ N (X0).
For the last step, H(SL) tends to some nonzero value
as L→∞, and P(S0 = LT) ∼ (λ1/λ0)L because λ1 cor-
responds to a two-hole excitation. Therefore, we have
the claimed bound in this case.

The case that λ1 corresponds to a two-particle exci-
tation proceeds similarly, but with the roles of the ends
swapped, because we need to use that SL = GT implies
S0 = GT:

I(S0 :SL) ≥ P(SL = GT)H(S0) ∼
(
λ1
λ0

)L
.

C. Open boundary end-to-end mutual information:
no zero-energy modes

Now we show that

I(XL :X0) ≈ A
(
λ1
λ0

)L
(75)

and calculate A.
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FIG. 4. Amplitudes A(C) [see (85) and 86)] of the asymp-
totic decay of end-to-end mutual information [9]. The lines
are empirical fits revealing an approximately exponential de-
cay of A with circumference C for fixed residue class C mod
3 and N parity.

1. categories of end configurations

In the treatment of the asymptotic behavior of mutual
information

I(XL :X0) =
∑
y,x

PL(y, x) ln
PL(y, x)

PL(y)PL(x)
(76)

in the Perron-Frobenius scenario, given in Section 5, a
crucial role was played by the fact that for every x and
y,

∆(y, x) =
PL(y, x)

PL(y)PL(x)
− 1 (77)

tended to zero as L→∞. Now, for the zero-temperature
cylindrical TIAFM, this continues to hold in case N (y) ≤
N0 ≤ N (x), because 〈y|Q0|x〉 6= 0 in that case. The
argument is just the same as for (66).

On the other hand, in case N0 < N (y) ≤ N (x),
〈y|Q0 = 0, so that

PL(y, x) ≈ 〈y|S
L|x〉

〈1̄|Q0|1̄〉

≈ 〈y|eN (y),0〉〈θN (y),0|x〉
〈1̄|Q0|1̄〉

(
λN (y),0

λ0

)L
, (78)

PL(y, x)

PL(y)
≈ 〈y|S

L|x〉
〈y|SL|1̄〉 ≈

〈θN (y),0|x〉
〈θN (y),0|1̄〉

, (79)
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FIG. 5. Ratio of the end-to-end mutual information
I(XL :X0) to the leading behavior A(C)e−∆εL, for cases with-
out zero-energy modes and 3 ≤ C ≤ 11.

and

PL(x) ≈ 〈1̄|Q0|x〉
〈1̄|Q0|1̄〉

=
〈θ0|x〉
〈θ0|1̄〉

. (80)

Together, (79) and (80) yield

PL(y, x)

PL(y)PL(x)
≈ 〈θN (y),0|x〉
〈θN (y),0|1̄〉

〈θ0|1̄〉
〈θ0|x〉

. (81)

Similarly, in case N (y) ≤ N (x) < N0, Q0|x〉 = 0,

PL(y, x) ≈ 〈y|eN (x),0)〉〈θN (x),0)|x〉
〈1̄|Q0|1̄〉

(
λN (x),0

λ0

)L
, (82)

and

PL(y, x)

PL(y)PL(x)
≈ 〈y|eN (x),0〉
〈1̄|eN (x),0〉

〈1̄|e0〉
〈y|e0〉

. (83)

Since (81) and (83) are nonzero and bounded, their
logarithms are bounded. Therefore, in thse cases, the
contribution to the sum in (76) is of the same order as
PL(y, x). Thus, if we wish to calculate I(XL :X0) to or-
der (λ1/λ0)L, we need only consider y with 〈y|e1〉 6= 0
or x with 〈θ1|x〉 6= 0, in addition to the first class
N (y) ≤ N0 ≤ N (x). However, the contribution of this
class vanishes to this order, as we show next.

Lemma 6.1.∑
N (y)≤N0≤N (x)

PL(y, x) ln
PL(y, x)

PL(y)PL(x)
∼
(
λ1
λ0

)2L

Proof. As in Lemma 5.1, up to order (λ1/λ0)2L, the sum
is ∑
N (y)≤N0≤N (x)

PL(y)PL(x)∆L(y, x)

=
∑

[PL(y, x)− PL(y)PL(x)]

= PL((N (y) ≤ N0) ∩ (N0 ≤ N (x)))

− PL(N (y) ≤ N0)PL(N0 ≤ N (x)).

Now, we appeal a small general probabilistic identity:

P(A∩B)−P(A)P(B) = P(Ac∩Bc)−P(Ac)P(Bc). (84)

Given that, our sum is asyptotically equal to

PL((N0 < N (y)) ∩ (N (x) < N0))

− PL(N0 < N (y))PL(N (x) < N0).

However, the first term here is zero, while both
PL(N0 < N (y)) and PL(N (x) < N0) are of order
(λ1/λ0)L.

To finish, we just need to demonstrate the identity
(84):

P(A ∩B)− P(A)P(B)

= P(B)− P(Ac ∩B)− P(B)(1− P(Ac))

= −[P(Ac ∩B)− P(Ac)P(B)].

Repeat, with B and Ac in the roles of A and B.

2. the amplitude

To recapitulate: Section 6 B showed that I(XL :X0) is
of order (λ1/λ0)L at least, while Lemma 6.1 shows that
pairs (y, x) with N (y) ≤ N0 ≤ N (x) contribute nothing
to that order. Estimates (81) and (83) show that the con-
tribution of other pairs is of the same order as PL(y, x).

75
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In case λ1 corresponds to a two-particle excitation, the
relevant contributions come from N0+2 = N (y) ≤ N (x).
We have only to put together the expressions from (78)
and (81):

A =
∑

N (y)=N0+2
N (x)≥N (y)

〈y|e1〉〈θ1|x〉
〈1̄|e0〉〈θ0|1̄〉

ln
〈θ1|x〉〈θ0|1̄〉
〈θ1|1̄〉〈θ0|x〉

. (85)

In case λ1 corresponds to a two-hole excitation, use
(82) and (83) instead:

A =
∑

N (x)=N0−2
N (y)≤N (x)

〈y|e1〉〈θ1|x〉
〈1̄|e0〉〈θ0|1̄〉

ln
〈y|e1〉〈1̄|e0〉
〈1̄|e1〉〈y|e0〉

. (86)

These results for the amplitude A for C up to 15 are
plotted (data points) in Fig. 4. Within each congruence
class of C modulo 3 and parity ofN , the calculated values
appear to behave nearly exponentially in C. In contrast
to the dependence of λ1/λ0 on C mod 3, we have no
explanation for this.

3. Exact numerical calculations

Compared to Exact numerical calculations of the end-
to-end mutual information are compared to the asymp-
totic formulas in Fig. 5. The plots show that the asymp-
totic regime is attained already when L is two or three
times C. The data show that I(XL : X0) always ap-
proaches the asymptotic value from above. Since terms
in (76) can be negative as well as positive, it is not clear
why this is the case.

D. Systems with zero-energy modes

Finally, we analyze systems with zero-energy modes.
The exceptional nature of these systems with regard to
end-to-end mutual information is demonstrated in Fig. 6,
which shows numerical results for the rescaled mutual
information. Evidently, I(XL :X0) decays not exponen-
tially, but as L−2. The task of this section is to derive
this behavior.

According to Prop. 4.1, the partition function of a
length-L system with open boundary conditions is of or-
der LλL0 . PL(y, x) tends to zero exponentially if N (y) ≤
N (x) < N0 − 2 or N0 < N (y) ≤ N (x), tends to zero
as 1/L if N (y) = N (x) is N0 − 2 or N0, and tends to a
nonzero value if N (y) ≤ N0 − 2 < N0 ≤ N (x). Analysis
of the first case is very similar to that for systems without
zero modes, so we shall not go into details. For such a

pair (y, x), PL(y,x)
PL(y)PL(x) is bounded, hence its contribution

to the mutual information is of order PL(y, x), that is,
exponentially small.

The important configurations, then, are those where
N (y) ≤ N0 and N0 − 2 ≤ N (x). As we did for sys-
tems without zero-energy modes, we introduce reduced

1
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FIG. 6. L2IL(X0 :XL), the end-to-end mutual information
multiplied by L2 for the exceptional cases of odd-N , C ∈ 3N,
which have zero-energy modes [9].

variables

S0 =

{
LO N (X0) ≤ N0 − 2

HI N (X0) ≥ N0

(87)

and similarly SL defined in terms of XL. Since the data
processing inequality assures that

I(XL :X0) ≥ I(SL :S0), (88)

we aim to show that I(SL :S0) ∼ L−2. To that end, we
need to determine the asymptotic joint distribution of
the random variables SL and S0. The partition function
is dominated by configurations with N equal in the bulk
to either N0 or N0 − 2. These have the same entropy
density, that is, correspond to the same eigenvalue of T0.
However, one gains additional entropy with the possibil-
ity of inserting a transition (“domain wall”) between the
two. It can go in any of order L locations, not be present
at all, in which case N (y) = N (x) is either N0 or N0−2.
Simply counting possibilities therefore leads to

PL(SL = HI, S0 = LO) = o(L−1)

PL(SL = HI, S0 = HI) = c
L + o(L−1)

PL(SL = LO, S0 = LO) = c
L + o(L−1)

PL(SL = LO, S0 = HI) = 1− 2 cL + o(L−1) (89)

According to the following Lemma, this leads to the con-
clusion I(XL :X0) ≥ I(SL :S0) ≈ (c/L)2, as required.

Lemma 6.2. Suppose a pair (U, V ) of dichotomous ran-
dom variables has joint and marginal probabilities as in
the table

δ 1− 2δ 1− δ
0 δ δ

δ 1− δ

Then,

I(U :V ) = δ2 +O(δ3). (90)



15

Proof. Compute:

I(U :V ) =
∑
u,v

P(u, v) ln
P(u, v)

P(u)P(v)

= 2δ ln
1

1− δ + (1− 2δ) ln
1− 2δ

(1− δ)2
= (1− 2δ) ln(1− 2δ)− 2(1− δ) ln(1− δ).

7. CONCLUSION

The three main inter-related themes in this paper have
been breakdown of the Perron-Frobenius scenario in one-
dimensional systems dominated by non-thermal disorder,
the use of mutual information to study correlations be-
tween complicated elementary degrees of freedom, and
the use of a fermionic representation to extract detailed
information about the zero-temperature triangular Ising
antiferromagnet on long cylinders.

The Perron-Frobenius scenario characterizes such basic
statistical mechanical properties of thermally-disordered
one-dimensional systems as asymptotic behavior of corre-
lation functions, and as we have shown, mutual informa-
tion. Qualitatively different properties can result when
the Perron-Frobenius condition on the transfer matrix
fails. A natural way to obtain nontrivial transfer matri-
ces for which that failure happens is through frustration-
induced disorder. Thermal disorder is completely ex-
cluded at zero temperatue, but frustration can still be
the dominant effect over relatively long length scales for
low enough temperature. Cylindrical TIAFM systems
serve as an excellent model on which to study the break-
down of the Perron-Frobenius scenario. The TIAFM is
of great interest for its own sake, and can be studied
in great detail by use of a powerful mapping to a sys-

tem of fermions. Considered as a one-dimensional chain,
each site of which is a ring of spins, the “elementary”
degrees of freedom are very complicated. Traditional
correlation function techniques are not adequate for this
situation. We therefore use mutual information instead
as the primary tool with which to describe correlations.
Coupled with the fermionic representation, we are able
to obtain asymptotic behavior of end-to-end mutual in-
formation. Phenomena which are contrary to the Perron-
Frobenius (PF) scenario are thereby uncovered, such as
decay lengths half what that scenario predicts, or even
infinite. Other features, which are not contrary to the PF
scenario, but are nevertheless highly surprising, such as
oscillation of the mutual information decay length with
a period of three in the cylinder circumference, are also
completely explained. Some puzzles remain in the details
of the results, such as the clustering seen in the curves
of Fig. 4 and the fact that the asymptote is always ap-
proached from above in Fig. 5.

Direct experimental study of mutual information is
very demanding, since one needs access to microstate de-
tails. Systems where the relevant degrees of freedom are
molecular or atomic scale are therefore very difficult to
access. Mesoscopic systems such as artificial spin ice or
colloidal systems, however, seem relatively promising. It
may even be possible to fabricate fairly precise realiza-
tions of the specific model studied here.
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