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There is great interest in using near-term quantum computers to simulate and study foundational
problems in quantum mechanics and quantum information science, such as the scrambling measured
by an out-of-time-ordered correlator (OTOC). Here we use an IBM Q processor, quantum error
mitigation, and weaved Trotter simulation to study high-resolution operator spreading in a 4-spin
Ising model as a function of space, time, and integrability. Reaching 4 spins while retaining high
circuit fidelity is made possible by the use of a physically motivated fixed-node variant of the
OTOC, allowing scrambling to be estimated without overhead. We find clear signatures of ballistic
operator spreading in a chaotic regime, as well as operator localization in an integrable regime. The
techniques developed and demonstrated here open up the possibility of using cloud-based quantum
computers to study and visualize scrambling phenomena, as well as quantum information dynamics

more generally.

A key concept in modern quantum physics is the non-
commutativity of operators corresponding to physically
separated local observables W and V' caused by scram-
bling. Scrambling is a spreading of quantum information
over many degrees of freedom, generated by chaotic uni-
tary evolution [I]. The resulting growth of an operator
W(t) = eHtWe=Ht in time can be diagnosed by the
nonvanishing of the “commutator” [2H9]

te(p|[W (£), V(0)]*) = tr[oW () V (0)V (0) W (1)

+ tr[pV (0)W (t)W (t)V (0)] — 2Re F(¢) (1)
in some state p (often a thermal state). Here
F(t) = te[pW )V (0)W )V (0)] (2)

is the out-of-time-ordered correlator (OTOC). The the-
oretical study of scrambling and OTOCs has enhanced
our understanding of entanglement in condensed matter,
quantum field theory, and quantum gravity [T0-28].
Fast scrambling appears in a variety of systems, in-
cluding black holes [2H5] and strange metals [6] [7], while
slow scrambling indicates a breakdown of ergodicity and
thermalization [8, @]. However, the dynamics of infor-
mation away from these two extremes, such as operator
spreading in ordinary quantum matter, is less well un-
derstood [24], 25]. Open problems also include predicting
the scrambling generated by a given model Hamiltonian
(without simulating it) [25], the nature of scrambling in
models without particle-like classical limits [24H27], and
determining when a fast scrambler has a dual description
as a black hole [I]. Additional questions that can be ad-
dressed with the techniques developed here include the
dependence of scrambling on p, the dependence on W
and V, and the difference between thermal scrambling in

gapped and gapless phases, such as integer versus half-
integer-spin 1d antiferromagnets (with or without the
Haldane gap [29]).

Experimental measurement of is challenging be-
cause it requires reversing the direction of time (chang-
ing the sign of the Hamiltonian) during the experiment.
But it can be simulated on a classical or quantum com-
puter. While classical simulation is limited to small or
weakly correlated models, fault-tolerant quantum com-
puters promise to make large-scale scrambling simula-
tions practical. This should provide a valuable tool for
quantum information science by complimenting the study
of solvable models [2H9]. However, near-term quantum
simulations are restricted to a small number of qubits
and short circuits. Online users may also face additional
restrictions that limit the number of distinct quantum
circuits that can be measured, and thus the overall com-
plexity of an experiment and the resulting data quality.

The quantum simulation of scrambling with near-
term processors is especially challenging because, at each
time ¢, four Hamiltonian simulations of length ¢ are im-
plemented to calculate F', two each moving forward and
backward in time. In addition, F' is complex so it has to
be measured interferometrically [30H32], requiring extra
qubits and gates, or via weak measurement [33], which is
not widely available. It is also possible to measure scram-
bling via correlations between randomized measurements
[18]. But achieving an accurate simulation over long
times with high time resolution is difficult with stan-
dard Trotter simulation [34H45]. We introduce techniques
to address these limitations and help enable the study
and visualization of quantum information dynamics with
cloud-based quantum computers.



FIG. 1. Commutator C1;(t) versus qubit position j and time
t. (a) Integrable regime, where no spreading occurs. The
OTOC is calculated at times ¢t € {0, 7,27, - , 247}, with res-
olution 7=0.06, and time is plotted in units of 7. (b) Chaotic
regime, calculated with 7 = 0.03, showing ballistic operator
spreading. Parameters for both regimes are given in Tablem
The solid green line indicates the rate of spreading by plot-
ting as a function of ¢ the lowest j value (for j > 1) where
C < 0.05.

The first quantum simulations of an OTOC were made
by Li et al. [46] on a nuclear magnetic resonance simu-
lator and by Géarttner et al. [47] on a long-range Ising
spin simulator. Since then, the experimental study of
scrambling has made impressive progress [48458], includ-
ing recent striking demonstrations of teleportation-based
OTOC measurement [50} [51], which distinguishes OTOC
decay due to unitary scrambling from decoherence, and
Google’s measurement of OTOC fluctuations on random
circuits containing up to 53 qubits [54], which distin-
guishes operator entanglement from spreading. Google
also measured operator spreading in a 2d array of qubits
[54].

In this work we use quantum simulation techniques to
study spreading of the Pauli operator X (t) =t Xe~iHt
in the Ising chain

H=H"+B,» X (3)
i=1
n—1 n
H° = JZZiZi—H +BZZZ1‘7 (4)
i=1 i=1

with n spins. The model is separated into a classical Ising
chain H® plus a noncommuting transverse field. This is
a paradigmatic model for quantum chaos [59H62]. When
B, = 0 or B, = 0, it is integrable and can be exactly
solved. Otherwise, it is chaotic. The model permits
efficient Hamiltonian simulation via Trotterization. We
measure and plot the commutator

Cis (1) = te(p|[X:(1), X;(0)]|%) = 2 — 2Re Fiy (£), (5)

in the state p = |0000)(0000|, with X (¢) initially localized
at ¢ = 1. In particular, we study Cy; as a function of
qubit position j € {1,2,...,n} and time ¢. The quantum
simulations are implemented on the IBM (Q processor

FIG. 2. Chaotic Cy;(t) commutator of Fig. [Ip recalculated
with the fixed-node OTOC.

ibmq_sydney [63]. The measured OTOC is
Fy;(t) = (0000|UT X, UX,;UTX,U X;]0000),  (6)

where U is a 4-qubit circuit simulating e =*#*. The com-
mutator was chosen because it exhibits a particu-
larly smooth, easily visualized dynamics, using an easy-
to-prepare state. Operator spreading diagnosed by alter-
native commutators are compared in [63].

In the experiments we always use one of the two pa-
rameter sets given in Table [ both of which simulate
ferromagnetic spin chains. One set corresponds to an
integrable regime of the dynamics; the other generates
quantum chaos, which causes unitary OTOC decay. The
models are chosen to display smooth charge spreading
dynamics on the timescales of interest. The measure-
ments in the integrable regime are relevant for recent
theoretical work investigating the role of integrability on
scrambling [24] 26], as well as serving as a scrambling-
free experimental control. The commutator is a real
number 0 < Cy;(t) < 4, and can be represented by
a surface in spacetime j xt. Figure [I] shows two such
surfaces, obtained by classical simulation, for n = 6.
These simulations assume perfect Hamiltonian simula-
tion U = e *H! with no Trotter error. Operator local-
ization in Fig. and spreading in Fig. are evident.
These high-resolution simulations allow one to investi-
gate operator spreading dynamics in great detail.

TABLE I. Ising model parameters.
J|Bg | B
Integrable regime|-1| 0 | 1
Chaotic regime [-1(0.7[1.5

Fized-node OTOC. A standard approach to measuring
an OTOC on n qubits is to add a qubit that can con-
trol the W and V gates [30} 31]. Here we introduce an
alternative approach, which is approximate but allows



one to reach larger problem sizes. Writing the OTOC
in polar form as F;; = e'®&ii |F};|, we note that the
phase becomes irrelevant in the scrambling regime, be-
cause |Fj;| ~ 0 there. |F;;| can be measured directly with
no qubit overhead [30], at least on simple states. There-
fore we introduce an approximation for arg Fj; that is
exact in the integrable regime, namely arg F}, where F}}
is the OTOC calculated with the classical Hamiltonian
H°. For the Ising model (3)),

e4i(J+Bz)t lf] =1,
FY(t) = q ettt if j =2, (7)
1 if j > 2.

This results in a fized-node variant of the OTOC,
Fi‘ = €iargFioj ‘F1]| (8)
One can think of the fixed-node OTOC as an approxi-
mation to , or as an independent quantity that also
diagnoses scrambling.
Using the fixed-node OTOC, the commutator takes the
form

Cij =2 2|FU| cos(arg Fz(_)g) (9)

The chaotic surface of Fig. [Ip, recalculated with the
fixed-node OTOC, is shown in Fig.

By construction, the fixed-node OTOC is close to
the exact OTOC in the late time regime, where Fj; =~
0 (Ci; =~ 2). However, it also satisfies an important
causality constraint that extends its accuracy to the
regime of F;; ~ 1 (C;; ~ 0) as well, namely, the early
scrambling regime. Causality requires that the exact
OTOC satisfies F;; = 1 outside the lightcone, i.e. when
|r; —r;| > vt, with r; ; the local operator positions and
v the butterfly velocity. Therefore arg(F;;) = 0 there.
Because FZ% also satisfies this constraint, C;; computed
from the fixed-node OTOC is also accurate outside the
lightcone, as is evident in Fig. Thus the fixed-node
approximation accurately captures the spreading dynam-
ics. Specifically, the spreading rates, as indicated by the
green lines in Fig. b) and Fig. |2, agree exactly. While
there are small differences in the peak structure, mainly
at j=1, the overall contribution is minor, resulting in a
mean squared difference between the two surfaces of 0.05.
The fixed-node commutator in the integrable regime is
identical to the surface of Fig. [Th.

Trotter weave. To measure C;;(t) with the high time
resolution used in Fig. |1} one might construct a Trotter
approximation U(7) ~ e T for evolution by a short
time 7. Then, to simulate later times ¢t ={7, the operator
U(7) is applied ¢ times:

eI o U (1)E (10)

The value of 7 determines the time resolution. However,
the circuit depth resulting from this standard Trotteriza-
tion, based on the repeated application of a single step
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FIG. 3. (Color online) Weaved time evolution. (a) Stan-
dard Trotter method, where a step U(7) is repeatedly ap-
plied. (b) Weaving implements a fine-grained time evolu-
tion, with time resolution 7, without incurring the gate er-
rors of (a). Here the red column represents the sequence
U(kt)---U(kt), orange represents U(k7)---U(kT)U(T), yel-
low represents U(kr)---U(kT)U(27) and purple represents
U(kr)---U(kr)U((k—1)T).

FIG. 4. (Color online) Measured operator spreading surface
in the integral regime, using the fixed-node OTOC. The main
figure uses a 6-weave with 7 = 0.06, and includes both CNOT
and measurement error mitigation. C1; is defined in , with
j €{1,2,3,4} the coordinate of the probe qubit. The OTOC
is measured at times t € {0,7,27,37,---,247}, and time is
plotted in units of 7. The inset shows the classically computed
noise-free surface.

U(r), is t/7. Thus, the performance of quickly de-
grades with ¢t due to gate errors and decoherence, limit-
ing the simulation to short times. We address this by an
extension of Trotter simulation based on a collection of
elementary evolution operators.

A k-weave is a set of k unitaries

{U(T),U(QT),~~- ,U(kT)}, (11)
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FIG. 5. (Color online) Operator spreading in the chaotic
regime using the fixed-node OTOC. We use a 6-weave with
7 = 0.03, and also include error mitigation. The OTOC is
measured at times ¢ € {0,7,27,---,727}. The inset shows
the noise-free surface.

where 7 is a fixed short evolution time and each U(dt)
is a Trotterized evolution operator, propagating a state
for a short time dt. The integer k € {1,2,3,---} is called
the weave modulus. The unitaries in have differ-
ent roles: U(kT) is the cell operator and the remaining
k — 1 unitaries are called shift operators. Repeated ap-
plications of the cell propagates a state from ¢ = 0 to a
time t = (£ —£mod k)7, but with coarse time resolution
k7. The coarse evolution is then followed (or preceeded)
by a single shift operator propagating for a short inter-
val with fine-grained time precision 7. Instead of ,
weaving implements a time evolution according to

e T = U (kT) e

U(¢{mod k x 7), (12)

where the cell operator is applied (¢ — ¢ mod k)/k times
after a single shift operator. This is illustrated in Fig.
When ¢ > k, this leads to a k-fold reduction in cir-
cuit depth, and to higher circuit fidelity, at the expense
of increased of Trotter error. Weaving can be applied
to Hamiltonian simulation techniques beyond Trotteri-
zation as well.

For our first set of measurements we use the weave
operators {U({7)}5_,, where

n—1

Ry(Bylr)i x | [ Rea(2707)ii41
1 =1

b

U(lr) =

.
I

x [[P.(2B.t7); x [ [Rx(Butr):, (13)

1 i=1

=

-
Il

resulting from a Trotterization of the model . Here

R, (0);=e~"X/2 is a rotation on qubit i,
R..(0);; = e "2%®% = CNOT;; P.(0); CNOT;; (14)

is a ZZ rotation, P,(p)=diag(1, e'¥) is a phase gate, and
CNOT}; is an X on qubit j controlled by i. For general
angles 6, R..(8);; requires two CNOTs per graph edge,
or 2(n—1) CNOTSs per Trotter step on a chain of length
n. The quantum simulation results reported here use
(up to) two weave operators per Hamiltonian simulation,
requiring 4(n — 1) CNOTs per evolution. This leads to
a total of 16(n — 1) CNOTs per OTOC simulation (48
CNOTs for n = 4).

Results.  All of the quantum simulation results in
this study were obtained with the IBM Q processor
ibmq_sydney on the 4-qubit chain {Q1, Q2, @3, @5} [63].
Quantum simulations using Trotter weave modulus & = 6
are shown in Figs. ] and Figure [ shows the mea-
sured spreading surface Ci;(t) in an integral regime of
the spin chain. Figure [5] is the same, but calculated in
a chaotic regime of the model. The parameter values
used are shown in Table [} The data in both regimes are
corrected for measurement errors using transition ma-
trix error mitigation [64HG8], and for incoherent CNOT
errors using zero-noise extrapolation [69] [70]. The raw
data from this study is provided in [63].

The values of 7 (time resolution) and k (weave modu-
lus) are chosen to balance gate errors and Trotter errors
over the relevant time scales of the simulation. In partic-
ular, 7 has to be small enough to resolve the oscillations
in the peaks of the spreading surfaces (see Figs.|l|and .
However, 7 also has to be large enough to enable sim-
ulations that probe the long-time spreading dynamics.
A large value of k is desirable because it enables longer
simulations, as fewer applications of the cell circuit are
required. But a large value of k also leads to larger Trot-
ter errors in the weave operators. The optimal & value
will thus depend on the noise level of the quantum de-
vice, with larger k values only advantageous for noisier
devices.

Magic cell. In many weaving applications, the largest
Trotter error will come from the cell U(k7), because its
evolution time k7 is largest. However, some simulations
admit simplified Trotter steps U(dt) for certain “magic”
values of dt. In the Ising chain, for example, this occurs
when 2J dt = £7, because for these angles we can use
the decomposition

Rzz(g)ij = €7i%zi®zj = eii%SiSjCZij, (15)
or its Hermitian conjugate, instead of . Here S =
diag(1,e'3) and CZ is a controlled-Z gate that can be
implemented using a single CNOT and two Hadamard
gates. This leads to a two-fold reduction in the number of
CNOTs required. We demonstrate this variation, where
the weave is built around a magic cell operator with evo-
lution time dtmagic = k7 = m/4|J|. Because dtmagic is now



FIG. 6. (Color online) Measured operator spreading surfaces
using the fixed-node OTOC and magic cell operator. (a) 16-
weave in the integrable regime with 7 = 0.098 and up to 32
steps. (b) 20-weave in the chaotic regime with 7 = 0.079 and
up to 30 steps. Insets show the noise-free surfaces.

fixed to a special value, the use of a magic cell imposes
a constraint dtmagic =Fk7 on k and 7; they are no longer
independent. Operator spreading measurements using a
16-weave with magic cell in the integrable regime, and a
20-weave with magic cell in the chaotic regime, are shown
in Fig. [6] The parameter values used are shown in Ta-
ble[l The data in both regimes are error mitigated. The
benefits of using a magic cell here are modest, because we
only apply it once. However, the use of a magic cell has
the potential to significantly extend the range of Trot-
terized quantum simulation as gate errors improve and
larger circuits become possible.

Conclusions. Recent experiments have established
that scrambling can be simulated with current gate-based
quantum computers [50H58], making it possible to inves-
tigate interesting unsolved problems at the intersection
of quantum information and physics. In this work we
introduce and demonstrate techniques to enable high-
resolution operator spreading measurements with cloud-
based quantum computers. Trotter weaving provides the
high time resolution, and the fixed-node OTOC enables
larger problem sizes. Both approaches are practical for
use on publicly available quantum hardware and have
applications elsewhere in quantum information science.
We observe clear signatures of operator spreading in a
chaotic regime of a 4-qubit Ising model, as well as opera-
tor localization in an integrable regime. These techniques
help make it possible to study information dynamics in
strongly correlated and highly entangled quantum sys-
tems.
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