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The characterization of the interactions between two fully flexible self-avoiding polymers is one
of the classic and most important problems in polymer physics. In this paper we measure these
interactions in the presence of active fluctuations. We introduce activity into the problem using
two of the most popular models in this field. One where activity is effectively embedded into
the monomers dynamics, and the other where passive polymers fluctuate in an explicit bath of
active particles. We establish the conditions under which the interaction between active polymers
can be mapped into the classical passive problem. We observe that the active bath can drive the
development of strong attractive interactions between the polymers and that, upon enforcing a
significant degree of overlap, they come together to form a single double-stranded unit. A phase
diagram tracing this change in conformational behavior is also reported.

One of the defining features of active systems is their
ability of transforming energy in their environment into
translational or rotational motion [1]. This enhanced ki-
netics results in very exotic physical behavior not achiev-
able in systems in thermal equilibrium. A significant
amount of work has been done to understand the inter-
play between active and thermodynamic forces (see for
instance [2–13]) and to discover ways to exploit active
forces to perform specific tasks at the micro scale [14, 15].
Although most of the literature has focused on the behav-
ior of spherical colloidal active particles, more recently,
the way active particles interact with flexible and de-
formable objects or the behavior of active filaments has
been the subject of intense scrutiny [16–29] (see also [30?
] for a brief review on the subject and references therein).
Fully flexible active polymers are of particular interest.
While there is model dependence for the scaling of the
radius of gyration as a function of Péclet number [28], the
scaling behavior for polymers made out of active Brow-
nian particles seems to remain unaffected by the action
of active forces. Within this framework, the radius of
gyration of a fully flexible active polymer follows Flory’s
exponent (at least for weak to moderate activities), and
the active forces only affect the pre-factor of the scaling
law [21]. Similarly, we have recently shown [31] how the
coil-to-globule transition of an active polymer with at-
tractive interactions can also be understood with a rescal-
ing of the temperature. Yet, some of its scaling behavior
breaks down when polymers are placed under strong con-
finement [32].

In this article, we study how adding activity changes
the entropic forces two polymers exert on each other
within the framework of dry active matter. This is a
classic problem in polymer physics of passive polymers
as it is of crucial importance to understand the phase
behavior of dense polymer solutions [33, 34]. What is
somewhat surprising about the interaction between two
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polymers in the infinite dilute limit is that the free-energy
cost of fully overlapping two self-avoiding flexible poly-
mers is finite and accounts for only few kBT , where kB
is the Boltzmann’s constant and T is the temperature of
the system [35, 36].

A simple way of rationalizing this result is to realize
that overlapping two chains of N monomers and radius

of gyration R
(N)
g , is similar to confining a single chain

of double the original length (2N) into a spherical cav-
ity of radius equal to the radius of gyration of a sin-

gle chain, i.e. R = R
(N)
g . The free energy cost asso-

ciated with this operation in units of kBT is equal to

βF ∼ (R
(2N)
g /R)d/(dν−1) [34, 37] where β = 1/(kBT ) is

the inverse temperature, ν = 3/(d+ 2) is the Flory scal-
ing exponent and d is the dimension of the embedding

space. By plugging R
(2N)
g ∼ (2N)ν and R ' R(N)

g ∼ Nν ,
one obtains an estimate of the overlapping free energy
βF ∼ 2dν/(dν−1), which is clearly finite. Unfortunately,
this quantity cannot be directly measured in active sys-
tems as free energies cannot be consistently defined; yet,
their derivatives, i.e., pressures and forces the polymers
exert on each other can be readily measured numerically.

There are two distinct models that have been put for-
ward to study flexible active polymers in the context of
dry active matter. One where a passive chain is free
to fluctuate in an explicit bath containing active parti-
cles [18], which we will refer to here as the explicit model,
and the other where the action of the active bath is incor-
porated into the chain by treating every single monomer
as an effective independent Brownian active particle [38],
which we will refer to as the implicit model.

In experiments, the simplest realization of an active
particle is obtained by coating one hemisphere of a silica
or polymer micro-particle with a thin layer of platinum.
Since the metal hemisphere can be rather heavy, most
active colloids readily deposit at the bottom of the solu-
tion, and perform what is effectively a two dimensional
Brownian active motion with the axis of propulsion par-
allel to the surface that supports them. We therefore
limit our study to two dimensions, and when considering
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the explicit model, we envision the passive polymer as a
chain of colloidal particles having the same diameter of
the active colloids.

In this work, we will perform our measurements us-
ing both models. Our basic model for a flexible, self-
avoiding polymer consists of N monomers of diameter σ
linearly connected with stiff harmonic springs and sub-
ject to thermal forces. Every monomer undergoes Brown-
ian dynamics at a constant temperature T . For the model
with implicit active forces, a self-propelling force is intro-
duced via a directional velocity of constant magnitude vp
directed along a predefined orientation unit vector n̂̂n̂n cen-
tered at the origin of each monomer. For the model with
explicit solvent, the monomers are exclusively subject to
thermal forces, however, Na spherical particles of diam-
eter σ are also added in a simulation box of size L, and
these follow the same active dynamics discussed above
for the monomers of the implicit model. The resulting
equations of motion for both species of particles are

dririri(t)

dt
=

1

γ
fff({rij}) + vp n̂in̂in̂i(t) δti,1 +

√
2Dξξξ(t),

dn̂in̂in̂i(t)

dt
=
√

2Dr ξξξr(t)× n̂in̂in̂i(t),
(1)

where i is the particle index, ti is a binary index that
can acquire two values, 0 for passive particles and 1
for the active ones. δti,1 is a Kronecker delta function
which deactivates the self-propulsion term for the pas-
sive particles. The translational diffusion coefficient D is
related to the temperature and the translational friction
γ via the Stokes-Einstein relation D = kBTγ

−1. Like-
wise, the rotational diffusion coefficient, Dr = kBTγ

−1
r ,

with Dr = 3Dσ−2. The solvent induced Gaussian
white-noise terms for both the translational ξξξ and ro-
tational ξξξr motion are characterized by 〈ξξξ(t)〉 = 0 and
〈ξm(t)ξn(t′)〉 = δmnδ(t − t′). fff({rij}) indicates the ex-
cluded volume forces for all particles and the harmonic
forces between the monomers of each polymers. Ex-
cluded volume forces between any two particles are en-
forced via a Weeks-Chandler-Andersen (WCA) potential

U(rij) = 4ε

[(
σ
rij

)12
−
(
σ
rij

)6
+ 1

4

]
. We use harmonic

bonds between the monomers according to the poten-
tial Ub = kb(ri,i+1 − σ)2. Here ri,i+1 is the distance
between consecutive monomers along the chain. kb is
set to 3500kBT/σ

2 to ensure polymer connectivity while
simultaneously minimizing bond stretching that could
arise from the action of the active forces. Finally, the
hard repulsion between the monomers was selected to be
ε = 100kBT , to prevent interpenetration of the polymers.
To confine the distance between the center of mass of the
two polymers, δRcm, to remain within a given distance
R, we use a boundary defined by the potential

Uc(δRcm −R) =

{
0, δRcm 6 R
k(δRcm −R)2, δRcm > R

(2)

with k = 2000kBT/σ
2. Each monomer in a chain at

position rrri will experience a confining force

fff i = −
(

∂Uc
∂δRcm

)
∂δRcm

∂rrri
(3)

where δRδRδRcm = 1/N
∑N
i=1(rrr

(1)
i − rrr

(2)
i ), and the upper in-

dices refer to whether the monomer is part of the first or
the second chain.

In our simulations, σ and kBT are used as the units
of length and energy scales of the system respectively,
while τ = σ2D−1 is the unit of time. All simulations
were typically run for at least 109 time steps with a time
step ranging from ∆t = 10−4τ to ∆t = 10−5τ . We skip
the first 2 × 106 time steps to let the system achieve a
state of dynamic equilibrium. The strength of the active
forces is reported in terms of the Péclet number defined
as Pe = vpσ/D. The positions of the random active par-
ticles in the explicit model are randomly and uniformly
distributed.

Quadratic

Linear

FIG. 1. Reduced contact force fR
w as a function of Pe for two

polymers of length N = 256. The vertical dashed line indi-
cates the crossover point, Pe∗, between quadratic and linear
behavior obtained as discussed in the text. The solid line is a
fit to the data with the function f(x) = ax/(1+b/x). The in-
set shows the linear relationship between `∗p = (Pe∗/3)σ and
Rg for N = 32, 64, 128, 256.

We begin our analysis with the implicit model. We
measure how the force exerted on the boundary, fw =
−∂Uc/∂δRcm, in the fully overlapping regime, i.e. when
the distance between the centers of mass of two poly-
mers is confined within R = σ from each other, de-
pends on the strengths of the active forces, Pe. The
results are shown in Fig. 1, where we report the re-
duced force fRw = [fw(Pe) − fw(0)]/fw(0) as a function
of Pe − written this way fRw is effectively equivalent to
the reduced pressure between the polymers. The data
displays a quadratic behavior for small activities and a
linear behavior for large Pe. The data for all polymer
lengths considered in this study, N = 32, 64, 128, 256, is
accurately described when fitted to the functional form
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fRw = aPe/(1 + b/Pe), previously proposed to describe
the pressure of active particles within a cavity as a func-
tion of Pe [39]. The crossover Péclet number, Pe∗, is es-
timated using the fitted parameter b. Crucially, we find
that the crossover occurs when the persistence length of
the active force, defined as `p = vp/Dr = (Pe/3)σ, be-
comes of the order of the radius of gyration of the poly-
mers, Rg. This result is important because it indicates
that as long as `p is much smaller thanRg, activity acts as
an effective temperature T ∝ Pe2, and the phenomenol-
ogy of the parent passive system can be easily extended to
incorporate the active forces. In the opposite limit, such
a mapping becomes inappropriate. The inset in Fig. 1
shows that the crossover `∗p tracks with Rg as `∗p ≈ Rg/2.
An analogous result was obtained for the implicit model
embedded in three dimensions (see Fig. S1 in the supple-
mentary material).

Next, we measure the full force curve between two
polymers, each of N = 128 monomers, as a function of
R. The force, fw, contains two contributions, one due to
the repulsion between the polymers, fp, and the other,
the ideal term, fid, due to the overall motion of each
polymer’s center of mass independently of the presence
of the other polymer. Since we are exclusively interested
in extracting the effective polymer-polymer interactions,
we subtract the second contribution from the first and
report fp = fw(R)− fid(R). fid is computed in the same
manner as fw, but now the excluded volume interaction
between monomers from two different polymers is turned
off.

FIG. 2. Force between two active polymers, fp as a function of
their separation R, for different Péclet numbers. The data is
normalized with respect to the radius of gyration of a passive
polymer, Pe = 0, of equal length, Ro

g.

Figure 2 shows how fp depends on the polymer sepa-
ration, R, for different values of Pe. The overall shape
of the force as a function of R is reminiscent of that
expected for two passive polymers [36], where a steep

repulsion observed as one moves from small to moderate
overlaps leaves space to a decay of the force for large over-
laps. This is consistent with a fully repulsive potential
of mean force between the two polymers that flattens as
the two polymers develop a significant degree of overlap.

The phenomenology is richer for the explicit model.
Here, we considered two N = 64 passive polymers em-
bedded in a square box of side length L = 100σ with pe-
riodic boundaries containing Na = 600 active spherical
particles. Each particle in the system interacts via the
purely repulsive WCA potential discussed above. This
particular number density ρ = Na/L

2 = 0.06/σ2 is suf-
ficiently large to ensure the induction of strong active
fluctuations on the polymer, but not too large to drive
motility-induced phase separation in the fluid. The net
force between the polymers as a function of R, computed
in a similar fashion as in the previous case [40] is shown
in Fig. 3. The data indicates a strikingly different be-
havior than what is observed for the implicit model. For

FIG. 3. Force between two passive polymers, fp, in a fluid
of active particles, as a function of their separation R, for
different Péclet numbers. The data is normalized with respect
to the radius of gyration of a passive polymer, Pe = 0, of equal
length, Ro

g. The inset shows fp for small values of Pe.

small Péclet numbers the functional form of the polymer-
polymer force is similar for both models, however, beyond
a certain Péclet number a net negative force develops for
the explicit model, the depth and range of which increases
with Pe. This is clear evidence of the development of
an attractive interaction between the polymers at short
range following a repulsion for intermediate separations.

This attraction develops as a result of condensation
of active particles along the perimeter of the polymers,
which leads to an effective active depletion force not un-
like that previously observed between rigid bodies in an
active fluid (see for instance [41–45]). The net effect is
that at short separations the polymers pair up to form a
single, double-stranded fluctuating unit. This is in oppo-
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sition to the conformations in the implicit model, where
such a pairing is not observed.

We should stress that the range, strength and sign of
depletion interactions between passive objects immersed
in active baths are known to be strongly shape depen-
dent. In a two dimensional system of active depletants,
passive colloidal plates experience an effective long-range
attractive force whereas passive colloidal disks experi-
ence a short-ranged repulsive force [41]. Unlike rigid
objects, flexible polymers are free to fluctuate between
shapes ranging from an extended rod-like conformation
to a coiled up disk-like conformation. Thus, the result
that emerges from our simulations is rather non-trivial
and neatly extends the results obtained for rigid objects
to include fully flexible ones.

The right side of Fig. 4 shows typical paired and un-
paired conformations associated with the two polymers
at full overlap. Although once in a while we observe some
active particles in the interstitial space between the poly-
mers, they can easily wiggle out because of their active
forces and because of fluctuations between the polymer
centers of masses that allow for some breathing room
along the chain. It should be noticed that we also per-
formed simulations with polymers of double the length
(N=256) and even in this case we observe pairing of the
polymer chains. To characterize the transition between
the two conformations as a function of the Péclet number,
we measured the probability distribution of a contact pa-
rameter, q, defined as the average number of monomers
in one polymer that are within a distance of 2σ from
each monomer in the other polymer. With this defini-
tion q ∈ [0, 4], where q = 0 for fully unpaired polymers,
and q = 4 when they are fully aligned. Figure 4 shows

Unpaired

Paired
Unpaired

Paired

FIG. 4. Left side: Probability distribution of the contact
parameter q as a function of Péclet number Pe. Right side:
Snapshots from simulations showing characteristic unpaired
(for small Pe) and paired (for large Pe) configurations of the
two polymers in an active bath while their centers of mass are
confined to be within a distance of R = σ from each other.

the shift of P (q) as a function of Pe when the center
of mass of the two polymers are confined to be within
a distance of R = σ from each other. A peak at small
values of q is visible for small Pe and the peak moves
closer to q’s maximum value for large Pe. In between,
for Pe ≈ 40, we see a broad distribution of q indicating

a region where the polymer can move unobstructed from
one conformation to the other. Although the onset value
of Pe† ≈ 40 appears to be rather independent of N , apart
from possible finite size effects, we do expect Pe† to be
very sensitive to the overall number density of active par-
ticles. By measuring P (q) for different values of Pe, we
can construct a phase diagram tracing Pe† for different
values of active particles density ρ. The results are shown
in Fig. 5. This diagram presents two interesting features.
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FIG. 5. Phase diagram separating the paired and unpaired
configuration of two polymers in an active bath with the dis-
tance between their centers of mass confined within a distance
of R = σ as a function of the density of active particles ρ and
Péclet number Pe.

First, density and Péclet number are inversely related to
each other, and it appears that even for very low densi-
ties it is possible to find a sufficiently large Pe to drive
the pairing of the polymers. Second, our data shows a
lower bound for Pe ≈ 35 below which no pairing occurs,
even for large particle densities. We suspect this is be-
cause upon increasing the density, the number of active
particles condensing on the two polymers become quite
significant. The polymers act as crystallization seeds for
the active particles that form multiple crystalline layers
around and between the contour length of the two poly-
mers, effectively hindering their mobility. We find that
the shape of the boundary is well described by the simple
empirical equation ρ = 0.27/(Pe− 31.3), which predicts
a lower bound for Pe ≈ 31.

Although we haven’t performed systematic simulations
of the full force-separation curves as a function of Pe for
polymers embedded in a three dimensional space, this is
because most of the experiments with active colloids are
in two dimensions, it is nevertheless of interest to look
at the behavior in this case. Our sparse data in three
dimensions for large Péclet numbers suggest that both
the implicit (see Fig. 6) and explicit models generate a
purely repulsive interaction between the polymers which
increases with the strength of the active forces. In this
case the active depletion is not present as it is harder
for the polymers to capture active particles along their
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contour length.
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FIG. 6. Reduced contact force fR
w = [fw(Pe)− fw(0)]/fw(0)

as a function of Pe for two polymers of lengthN = 128 in three
dimensions. Here, both polymers are in the fully overlapping
regime i.e. the distance between the centers of mass of the
polymers are confined to be within a distance of R = σ, the
monomer diameter. The reduced contact force moves from a
quadratic regime at small Pe to a linear regime at large Pe.
The solid line is a fit to the data with the function f(x) =
ax/(1 + b/x). The fitting parameter b = 48.4 is the Pe∗

at which the system moves across the two regimes. At this
crossover, l∗p = Pe∗/3 ≈ 2Rg. Note that the pre-factor is
different from the case of two polymers in two dimensions.

In this article, we measured the forces between two
active polymers. We used two different models to incor-
porate the role of active fluctuations into the problem.
In one model the fluctuations are implicitly incorporated
into the motion of the monomers, in the other, they are
explicitly accounted for by placing the polymers in an ac-
tive bath of active particles. We find that in the former
case, the forces between two fully overlapping polymers
can be understood in terms of an effective temperature

T ∝ Pe2 as long as `p is smaller than Rg/2. Deviations
from this behavior occur in the opposite limit where the
forces grow linearly with Pe.

We observe a very different scenario when considering
the explicit model. For small Péclet numbers, similar to
the previous case, the net effect of the active bath is that
of increasing the overall repulsion between the polymers.
However, as soon as Pe becomes sufficiently large for
active particles to condense on the contour length of the
polymers, a strong depletion attractive force emerges and
drives the polymers to fluctuate as a pair. Our results
extend our current understanding of how active forces
affect polymer fluctuations and set clear limits for their
mapping into effective equilibrium systems. It is also im-
portant to emphasize that the emergence of active deple-
tion force between fully flexible filaments is not a trivial
result, and will have important implications for the dy-
namics and morphology of polymers solutions in an active
bath.

An important limitation of our study is that it does not
account for hydrodynamic effects [2]. At a sufficiently
large concentration of active particles, hydrodynamic in-
teractions could, in principle, drive orientational insta-
bilities that could destabilize the paired configurations.
Whether this is the case requires more work in this direc-
tion, using a more sophisticated description of the active
colloids with explicit squirmer models [46] and explicit
hydrodynamic interactions. We expect possible devia-
tions to be dependent on the specific choice of swimming
mode (puller vs pusher), and on whether the monomers
in the chains are free to rotate or act as a fixed boundary
against the torques applied by the squirmers [47].
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