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In this paper, three-dimensional numerical simulations of ballooning in spiders using multiple
silk threads are performed using the discrete elastic rods method. The ballooning of spiders is
hypothesized to be caused by the presence of the negative electric charge of the spider silk threads
and the positive electric potential field in the earth’s atmosphere. The numerical model presented
here is first validated against experimental data from the open literature. After which, two cases are
examined, in the first it is assumed that the electric charge is uniformly distributed along the threads
while in the second, the electric charge is located at the thread tip. It is shown that the normalized
terminal ballooning velocity, i.e. the velocity at which the spiders balloon after they reach steady-
state, decrease linearly with the normalized lift force, especially for the tip located charge case. For
the uniform electric charge case, this velocity shows a slightly weaker dependence on the normalized
lift force. Moreover, it is shown in both cases that the normalized terminal ballooning velocity has
no dependence on the normalized elastic bending stiffness of the threads and on the normalized
viscous forces. Finally, the multi-thread bending process shows a three-dimensional conical sheet.
Here we show that this behavior is caused by the Coulomb repelling forces owing to the threads
electric charge which leads to dispersing the threads apart and thus avoid entanglement.

I. INTRODUCTION8

Ballooning is the mechanism of dispersal of wingless arachnids, mainly spiders, to which a silk thread is attached9

[1]. Even though, spiders do not have wings to fly, two centuries ago, Charles Darwin observed hundreds of ballooning10

spiders landing on the HMS Beagle located 60 miles offshore [2]. This peculiar observation, at that time, was also11

reported earlier in the 17th and 19th centuries [3, 4] and it was commonly occurring on relatively calm days with low12

wind speed, below 3 m/s [5–9].13

Since these observations [3, 4], two competing theories were associated to explain the ballooning of spiders. In the14

first, ballooning of spiders is associated to natural convection currents caused by the thermal gradients in the earth15

boundary layer. It is assumed that these rising currents create drag forces on the light spider threads which induce16

lift forces when they overcome the weight of the spider. This hypothesis was extensively studied by several authors17

[7, 10–13]. For instance, Zhao et al. [14] used a fully coupled fluid-structure interaction two-dimensional numerical18

model with the immersed boundary method (IBM) to analyze the effect of spider mass and thread length on the19

ballooning dynamics. They also analyzed the effect of vortex shedding, mainly at the trailing edge of the thread,20

on the oscillations and deformation of the spider silk threads during ballooning. This study is based on several21

assumptions neglecting the thread mass and thickness as well as representing the spider by a point mass. Suter [15]22

studied the condition of airflow on spider ballooning, and highlighted the possibility that atmospheric turbulence23

may affect the ballooning and dispersal of spiders. Other authors studied the effect of atmospheric turbulence on the24

ballooning of spiders and on the bending of the silk threads [16, 17]. For instance, Reynolds et al. [16] modeled the25

dynamics of fully elastic silk thread in isotropic and homogeneous turbulent flows. The thread is modelled by a chain26

of spheres attached by springs. In their study they highlight the fact that the threads are highly twisted and bent27

due to turbulent structures which impede the aerodynamic control of ballooning. This fact was not captured earlier28

by Humphrey [10] who modeled the spider thread by rigid inextensible massless cylindrical rod aligned with the wind29

direction. Meanwhile, the effect of the electric charge of spider silk threads [18] on the thread unfolding dynamics is30

not included in these aforementioned studies [13]. This electric charge may induce Coulomb repelling forces which can31

have an important role in keeping the threads apart to avoid entanglement which may explain the three-dimensional32

conical sheet shape of the silk threads.33
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In the second hypothesis, ballooning of spiders is associated to the electrostatic force caused by the interaction34

between the Earth’s electric field and the electric charge of spider silk threads. This electrostatic buoyancy creates35

a lift force on the threads which may cause spiders ballooning under certain conditions [19–21]. While, the first36

hypothesis discussed in the previous section is extensively analyzed in the open literature, the effect of electrostatic37

force on ballooning of spiders is still not fully studied and it was first introduced recently by Gorham [19]. Gorham38

[19] developed a simplified theoretical model of a spider with a single thread showing that the electrostatic force39

caused by the atmospheric potential gradient and the charged threads could be responsible for spiders take-off and40

ballooning. For instance, it is found [19] that a single silk thread electric charge of 100 nC is needed to lift a spider41

weighting 1 mg under standard atmospheric electric potential over flat field of 120 V/m [19]. From experimental42

observation Morley and Robert [21] showed that spider mechanosensory hairs can detect electric fields which in its43

turn triggers the ballooning behavior. This could explain why spiders prefer to balloon from prominence, such as44

trees, where the electric field is higher than that on flat fields [21]. Recently, Morley and Gorham [22] conducted45

experimental measurements on ballooning behavior inside a closed chamber in which they control the electric field46

with no significant air motion. Coupling their experimental data to a physical one-dimensional model, they estimated47

that the total thread charge required for ballooning is around 1.15 nC for spiders weighting 0.9 mg, i.e. 1.28 nC/mg.48

In their experiment, they consider Erigone spiders on the tip of a conductive launch point subjected to an electric49

field strength of about 1 kV/m, similar to those observed around the tips of tree branches.50

Meanwhile, in all these studies, there is no investigation on multi-thread spider ballooning process neither on the51

effect of the electrostatic repelling force on the terminal shape of the threads and the ballooning velocity [13]. Thus,52

in the current paper we develop a new three-dimensional numerical model including the viscous forces, weight and53

dimensions of the thread and spider, electrostatic lift force and repelling forces and the elastic bending force to explore54

the ballooning and unfolding dynamics of spider silk threads. This can help for instance in designing new types of55

ballooning sensors to explore the atmospheric properties [23].56

This paper is organized as follows, in section II A we state the problem and the physical parameters such as the57

spider weight, electric field, silk thread charge, viscous forces, and silk thread properties. In section II B we present58

the numerical method and governing equations for the ballooning spider. Section III is devoted to the results and59

discussions and in section IV we present the concluding remarks.60

II. METHODOLOGY61

A. Problem Definition62

It is still unclear on how spiders can emit silk threads loaded with static electric charge. According to the literature,63

this could be done during the spinning process where the threads are rapidly loaded with the electric charge, or this64

could happen after the spinning process due to friction with the air flow [18, 19].65

In the present study, the spider is approximated by a sphere attached to nt silk threads initially extended vertically66

and very close to each other with a distance of 100 µm. A schematic of the spider with its threads during typical67

ballooning is shown in Figure 1.68

The size and mass of the spider are chosen based on Erigone spiders studied by Morley and Gorham [21, 22] where69

the spider mass is considered ms = 1 mg and its size is rs = 1 mm. The typical electric charge of the spider body Qs70

is assumed 3 pC [22].The acceleration of gravity is g = 9.81 m/s2 pointing downward. The spider silk thread density71

is taken ρt = 1200 kg/m3 [24] with a radius rt = 300 nm [17, 22].72

The forces acting on the spider and threads are listed in this section. The weight of the spider and threads are73

given respectively by:74

Ws = msg (1)

Wt = ntρtπr
2
t lt (2)

where lt is the length of one thread, ms the spider mass, nt the number of threads, ρt the thread density and rt the75

thread radius.76

The characteristic elastic bending force of the threads is expressed as:77

Eb =
Y I

l2t
(3)
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FIG. 1: Schematic of the spider represented by a sphere of radius rs and several threads of length lt and radius rt

where Y is the thread’s Young modulus and I =
πr4t
4 is the area moment of inertia of the silk thread.78

The Coulomb repulsion force acting on the threads is given by the Coulomb’s inverse-square law:79

Fr = ke
|q1q2|
r2

(4)

where ke = 9×109 Nm2C−2 is the Coulomb constant, q1 and q2 are the signed magnitudes of the charges of the spider80

threads, and r is the distance between the threads.81

The electrostatic force of the threads and the spider is given by the following expression:82

Fl = E (Qt +Qs) (5)

where E is the earth electric field, Qt and Qs are the total charges of the silk threads and spider, respectively.83

Finally the hydrodynamic forces Fv on the spider and threads are computed using the Resistive Force Theory84

(RFT) as explained in the next section.85

In this paper we run parametric sweep simulations by varying the forces acting on the spider and analyzing the86

normalized terminal ballooning velocity, which is the normalized speed at which the spider is ballooning when it87

reaches steady-state. Moreover, the unfolding dynamics of the spider threads under the coupled effect of electrostatic88

and viscous forces are studied.89

B. Numerical Method for Ballooning Spiders90

The numerical method adopted to study the fluid-structure-electric field interaction combines three components.91

The first component concerns the Discrete Elastic Rod (DER) method to compute the elastic deformation of the92

threads [25], i.e., bending, twisting, and stretching, with the primary mode of deformation being bending. The93

second component is the RFT adopted to compute the hydrodynamic viscous forces on the spider and threads [26],94

and finally the third component is the electrostatic forces caused by the atmospheric potential gradient and the silk95

electric charge.96

The numerical simulations in this paper employ a discrete kinematic representation of the spider following the97

DER algorithm [25, 27, 28]. In Figure 2(a), the spider is modeled as a network of elastic rods with one node, x0,98

representing the spider body and Nt nodes per thread. For a spider with nt threads, the total number of nodes is99

ntNt + 1. The vector between two consecutive nodes is an “edge” and each thread is composed of Nt edges. The100

edges, e, on the j-th thread are101
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eNt(j−1)+0 = xNt(j−1)+1 − x0,

eNt(j−1)+1 = xNt(j−1)+2 − xNt(j−1)+1,

eNt(j−1)+2 = xNt(j−1)+3 − xNt(j−1)+2,

. . . ,

eNtj−1 = xNtj − xNtj−1.

Note that an edge can be usually defined as ei = xi+1 − xi (i.e. vector connecting two consecutively numbered102

nodes), except the first edge on each thread. The total number of edges for a spider with nt threads is ntNt.103
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FIG. 2: (a) Discrete representation of a spider with 2 threads. (b) Three nodes, two edges, and the associated
material and reference frames. Bending energy is related to the turning angle φk, twisting energy is related to

(θk − θk−1), and stretching energy is related to the elongation of the edges.

In order to keep track of the rotation of the edges, the k-th edge in Figure 2(b) is decorated with an orthonormal104

material frame,
(
mk

1 ,m
k
2 , t

k
)
, where tk is the unit normal vector parallel to ek (i.e. tangent along the k-th edge).105

Since this frame always has the third director parallel to the tangent, it is an “adapted” frame. A reference frame106 (
ak1 ,a

k
2 , t

k
)

– another orthonormal adapted frame – is also associated with each edge. At time t = 0, the reference107

frame and the material frame are identical. During the time marching scheme of the simulation (Algorithm 1), the108

reference frame is updated through parallel transport in time. Parallel transport is the most natural or twist free way109

of moving an adapted frame from one edge to another; details can be found in Refs. [25, 28]. Using the reference frame,110

the material frame can be fully described using a single scalar quantity – the twist angle, θk, – which is the signed111

angle from ak1 to mk
1 about the tangent tk. As the reference frame is changing with time by time parallel transport,112

twist may accumulate in the reference and this so-called reference twist has to be accounted for when calculating the113

twist of the material frame.114

The degrees of freedom (DOF) vector ξ of the spider with ntNt + 1 nodes and ntNt edges has a size of ndof =115

3× (ntNt + 1) + ntNt and is defined as:116

ξ =
[
x0,x1,x2, . . . ,xntNt , θ

0, θ1, . . . , θntNt−1
]T
, (6)

where the superscript T denotes transpose. The equation of motion at each DOF is117

mi
∂2ξi
∂t2

+
∂Eelastic

∂ξi
− f ext

i = 0, (7)
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where i = 1, . . . ,ndof, Eelastic is the elastic energy responsible for the stretching and bending, f ext
i is the external118

force (or moment for twist angles), e.g. gravity, and mi is the lumped mass at each DOF. The lumped mass at119

the head node which represents the spider mass is ms; the mass on the other nodes is computed using the density120

of thread ρt, its cross-sectional radius rt and the length of the discrete edges. For the DOFs representing rotation121

(twist angles), the lumped mass is 1
2∆mr2

t , where ∆m is the mass of an edge and rt is the silk thread radius. The122

simulation discretizes time into small steps and ∆t is the time step size. The equation of motion to march from t = tj123

to t = tj+1 = tj + ∆t is124

fi ≡
mi

∆t

[
ξi(tj+1)− ξi(tj)

∆t
− ξ̇i(tj)

]
+
∂Eelastic

∂ξi
− f ext

i = 0, (8)

where fi is the force exerted on each node. The old DOF ξi(tj) and velocity ξ̇i(tj) from the previous time step are125

known, Eelastic is the elastic energy evaluated at ξi(tj+1), and f ext
i is the external force evaluated at ξi(tj+1).126

In the simulations reported in this paper, number of nodes per threads is Nt = 102 and the time step size, ∆t, is127

always less than 10−1s. We use an adaptive time stepping scheme where the time step size is automatically reduced128

by a factor of 10 if the simulation fails to converge and is increased by a factor of 10 (but always less than 10−1s) if129

the simulation runs successfully for approximately 10 time steps.130

The Jacobian for equation 8 is131

Jij =
∂fi
∂ξj

= Jinertia
ij + Jelastic

ij + Jext
ij , (9)

where132

Jinertia
ij =

mi

∆t2
δij , (10)

Jelastic
ij =

∂2Eelastic

∂qi∂qj
, (11)

Jext
ij = −∂f

ext
i

∂qj
. (12)

Here, δij represents Kronecker delta. We can solve the ndof equations of motion in equation 8 to obtain the new133

DOF ξ(tj+1). The new velocity is simply134

ξ̇(tj+1) =
ξ(tj+1)− ξ(tj)

∆t
. (13)

Evaluation of the gradient of the elastic energy (∂Eelastic

∂ξi
) as well as its Hessian (∂

2Eelastic

∂ξi∂ξj
) are well documented in135

Refs. [25, 28, 29]. Bending energy is associated with the turning angle (φk in Figure 2) at the internal nodes on each136

thread, e.g. in case of the j-th thread, the associated nodes are x(j−1)Nt+1,x(j−1)Nt+2, . . . ,xj Nt−1. Twisting energy137

is associated with the same nodes. Stretching energy is associated with each edge.138

Unique to the problem of ballooning of spiders is the external forces, described next. Four types of external forces139

are acting on the rod network such that the ndof-sized external force vector (cf. equation 8) is140

f ext = W + Fv + Fr + Fl, (14)

where the term W is the weight vector which can be trivially computed from the weight of the spider body, the density141

of the threads, and their cross-sectional radius. The viscous force term Fv exerted by the surrounding air on the k-th142

node (cf. Figure 2(b)) to march from t = tj to t = tj+1 = tj + ∆t. Following Gray and Hancock’s RFT [30, 31], the143

force on the node is144

Fv,k =
(
−η‖ + η⊥

)
tk tTk ∆lvk − η⊥∆lvk, (15)

where ∆l is the Voronoi length ( ltNt
for the internal nodes on the thread and lt

2Nt
for the terminal nodes), tk is the145

node-based tangent (average of the tangents on the edge before and the edge after the k-th node), vk =
xk(tj+1)−xk(tj)

∆t146

is the velocity of the k-th node, and the Resistive Force coefficients are147

η‖ =
2πµ

log
(
lt
rt

)
− 1

2

, (16)

η⊥ =
4πµ

log
(
lt
rt

)
+ 1

2

, (17)
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where µ is the dynamic viscosity of air.148

Note that η⊥ is approximately twice of η‖, i.e. the resistance from drag is lower when the motion is along the tangent149

and higher when the motion is perpendicular to the tangent. The force calculated at each node using equation 15 is150

used to populate the ndof-sized viscous force vector, Fv.151

The spider body is assumed spherical, and thus the drag force at x0 is computed using Stokes law given as follows:152

Fv,0 = 6πµrsvs (18)

where rs is the sphere radius and vs is the spider body speed.153

It should be noted that RFT is a simplification that ignored the hydrodynamic interaction induced by distant parts154

of one or multiple threads. This is in contrast with more accurate slender body theories (SBT) [32] that capture this155

interaction. While recent works [33] have combined DER with SBT, RFT seems to be reasonably accurate when the156

rod has a low curvature [32]. Further, RFT can be included in the simulation using the backward Euler’s method157

(i.e. the gradient of the external force with respect to the DOFs in equation (12) is known). This is not the case158

when SBT is used and the SBT-derived force has to be incorporated using the forward Euler’s method. Moreover,159

SBT requires solving a dense linear system of size ndof; this worsens the time complexity of the algorithm. The160

interaction between the flows induced by the head and the threads has also been ignored in our setup. It is possible161

to incorporate this interaction [34] at the expense of computational efficiency. However, in this study, the aim is to162

explore the essential physics of the ballooning phenomenon by parameter space exploration in numerical simulations163

and therefore a computationally efficient framework with DER and RFT has been chosen. A more comprehensive164

model is an interesting direction for future research.165

The term Fr in equation (14) is the Coulomb repulsion force on the k-th node given as:166

Fr,k = ke
∑

i6=0,i6=k

qiqk
r3
i,k

ri,k, (19)

where ri,k = ‖xi−xk‖ is the Euclidean norm of the distance between two nodes, ke = 9×109 Nm2C−2 is the Coulomb167

constant, and qi is the charge located at the i-th node. At the first node (spider body), the charge is q0 = Qs, where168

Qs is the spider body electric charge. For all the other nodes (nodes on the thread of the spider), qi can be computed169

from the total thread charge Qt. Two cases will be discussed in Section III B. In the first case, the electric charge is170

located at the thread tip and qi = Qt at the tip nodes (xNt and x2Nt in Fig. 2); qi = 0 otherwise. In the second case,171

the electric charge is uniformly distributed along the thread and qi = Qt∆l/lt, where ∆l is the length of each edge172

and lt is the length of each thread. The force calculated at each node using equation 19 then constitutes the Coulomb173

repulsion vector, Fr, of size ndof.174

Finally the electrostatic lift term Fl which only acts along the z-axis. At the k-th node on the rod network, the lift175

force vector (size 3) is176

Fl,k =

 0,
0,

Ekqk

 , (20)

where Ek is the electric potential evaluated at z-coordinate of the node, xk, at t = tj+1 from equation (22), and177

qk is the charge located at the k-th node. The charge located on the head node, x0, is different than the charges178

located on the thread nodes. After calculating the forces on each node, the ndof-sized electrostatic lift force, Fl, can179

be constructed.180

In the force expressions above, we did not explicitly write down the Jacobian terms (e.g. derivative of the forces181

with respect to the DOFs). However, derivation of the Jacobian terms related to these external forces require is rather182

trivial.183

The main steps of the algorithm are outlined below in Algorithm 1.184
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Algorithm 1 Discrete Elastic Rods

Require: ξ(tj), ξ̇(tj) . DOFs and velocities at t = tj
Require:

(
ak1(tj),a

k
2(tj), t

k(tj)
)
, k ∈ [0, ntNt − 1] . Reference frame at t = tj

Ensure: ξ(tj+1), ξ̇(tj+1) . DOFs and velocities at t = tj+1

Ensure:
(
ak1(tj+1),ak2(tj+1), tk(tj+1)

)
, k ∈ [0, ntNt − 1] . Reference frame at t = tj+1

1: function Discrete Elastic Rods( ξ, ξ̇(tj),
(
ak1(tj),a

k
2(tj), t

k(tj)
)

)

2: Guess: ξ(1)(tj+1)← ξ(tj)
3: n← 1
4: while error > tolerance do
5: Compute reference frame

(
ak1(tj+1),ak2(tj+1), tk(tj+1)

)(n)
using ξ(n)(tj+1)

6: Compute reference twist ∆m
(n)
k,ref at each internal node

7: Compute material frame
(
mk

1(tj+1),mk
2(tj+1), tk(tj+1)

)(n)

8: Compute f and J . Equations. 8 and 9
9: ∆ξ ← J\f . Newton-Raphson method

10: ξ(n+1) ← ξ(n) −∆ξ . Update DOFs
11: error ← sum ( abs ( f ) )

12: n← n+ 1
13: end while

14: ξ(tj+1)← ξ(n)(tj+1)

15: ξ̇(tj+1)← ξ(tj+1)−ξ(tj)

∆t

16:
(
ak1(tj+1),ak2(tj+1), tk(tj+1)

)
←

(
ak1(tj+1),ak2(tj+1), tk(tj+1)

)(n)

17: return ξ(tj+1), ξ̇(tj+1),
(
ak1(tj+1),ak2(tj+1), tk(tj+1)

)
18: end function

C. Validation for Single Thread185

In this section we validate the results computed numerically for a single thread case with those obtained by186

Gorham [19] and Morley and Gorham [22]. In their studies, a spider with a single thread was assumed, thus,187

the repelling forces between the threads are not considered in their models.188

In the first validation study, the electric potential field given in equation (21) is adopted as in the theoretical analysis189

of Gorham [19]. Gorham [19] used an approximated analytical model for the atmospheric electric field as it varies190

with the altitude from flat earth surface on a normal day:191

E = E0e
−αz (21)

where E0 = −120Vm−1 is the reference electric field at zero altitude, α = 3× 10−4m−1 and z is the altitude in m.192

Simulations are carried out by spanning spiders with masses from 0.1 to 2 mg and thread electric charge from 10193

to 200 nC. We observe the vertical velocity of the spider; if this velocity is positive this means that ballooning will194

eventually take place. If the velocity is negative it means that the spider will be in a free fall. Figure 3 shows the195

contour of vertical velocity versus spider mass and electric charge in addition to the required thread charge to obtain196

ballooning found theoretically by Gorham [19] and which corresponds to 100 nC/mg of spider mass. From this figure,197

it is observed that the terminal ballooning velocity reaches up to 1.2 m/s for small spiders weighting 0.1 mg and198

having a thread charge of 200 nC. From the present numerical simulations the required ballooning for single thread199

spider is around 86 nC/mg which is 14 % different than that obtained by Gorham [19] theoretical analysis which was200

simplified by assuming a ballooning acceleration of 3 m/s2 and neglected viscous effects.201

Thus in the second validation we consider the experimental measurement coupled to 1-D numerical simulations202

of ballooning spiders performed by Morley and Gorham [22] inside a controlled closed chamber. In their study, the203

electric potential field is computed using a commercial electromagnetic simulation software. The resulting electric204

potential obtained in [22] is fitted here using the following exponential function and implemented in our simulations:205

E = E1 exp(−z/z1) + E2 exp(−z/z2) + E0, (22)

where E0 = 7.41×103 V/m, E1 = 2.52×105 V/m and z1 = 1.51×10−3 m, E2 = 5.07×104 V/m and z2 = 7.93×10−3 m.206

Following this linear regression model adopted in equation (22), the R2 value is around 0.9973, which is evidence of207

the good fitting.208
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FIG. 3: Contour of vertical velocity versus spider mass and charge electric charge. The black solid line corresponds
to the required charge for ballooning per 1 mg of spider mass obtained theoretically by Gorham [19]. The hatched
region in the plot corresponds to the 86 nC/mg of required charge for ballooning obtained from present numerical

simulations.

It is worthy to note that Morley and Gorham [22] used an aluminum-foil covered prominence in order to concentrate209

the electric field near the tip. The electric potential obtained from equation 22 is compared to that adopted by210

Morley and Gorham [22] in Figure 4. This figure shows a good agreement between the electric potential obtained211

from equation 22 with that used by Morley and Gorham [22]. The Earth’s electrostatic field is on average much212

weaker than the one presented in equation 22; however, Morley and Gorham [22] pointed out the large variations in213

electrostatic field strength due to atmospheric activity that can generate the necessary lift for ballooning. The lift214

necessary for ballooning will be explored later in this paper (Figure 6).215

FIG. 4: Comparison of the electric potential obtained using equation. 22 and that adopted in Morley and Gorham
[22]

According to Morley and Gorham [22], the total required ballooning charge is around 1.28 nC/mg which is much216

smaller than that obtained by Gorham [19] due to higher electric potential field at the tip of the prominence that217

builds the electric field. In this simulation we consider a single 1 thread of length 0.5 m as in [22].218

Figure 5 shows the comparison of the actual computed results for the vertical spider ballooning distance and the219

vertical spider ballooning velocity with those obtained experimentally by Morley and Gorham [22]. In Figure 5 (a), it is220

observed that the ballooning distance obtained in the present study corresponds well to that obtained experimentally.221
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The comparison with the velocity in Figure 5 (b) shows a fair agreement between the present computed results and222

those obtained experimentally by Morley and Gorham [22]. It is observed that the spider is ejected promptly from223

the prominence where its velocity stabilizes at 8.5 cm/s after around 0.1 second.224

(a)

(b)

FIG. 5: (a) Vertical coordinate of the spider and (b) its vertical velocity compared to those obtained from Morley
and Gorham [22]

III. RESULTS225

In this section we present the results for ballooning velocity and thread unfolding dynamics. The electric field given226

in equation 22 is adopted.227

A. Normalized Quantities228

From principles of dimensional analysis, the ballooning phenomenon can be represented as a function of a number229

of non-dimensional (i.e. normalized) parameters. Hereon, we present our results in terms of normalized parameters.230
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First, we introduce the relevant normalized quantities.231

• Normalized terminal velocity. Let us formulate a characteristic velocity, vcharac, from a scaling analysis
based on the balance of forces along the z-axis. The force along the positive z-axis is QtE0−Ws, with QtE0 the
lift force and Ws the spider weight (weight of the threads is negligible) and the viscous force along the negative
z scales as ∼ µntltvcharac. Note that this viscous force is simply an estimate; the exact value depends on the
deformed configuration of the threads and the Resistive Force coefficients. Balancing these forces, we get

QtE0 −Ws = µntltvcharac;

this leads to

vcharac =
QtE0 −Ws

µltnt
.

Since the above characteristic velocity is derived from a simple scaling analysis, the terminal velocity of the232

spider, vt, is expected to be on the same order of magnitude as (but not exactly equal to) vcharac. The terminal233

velocity is normalized by this characteristic velocity to obtain the normalized terminal velocity,234

vt =
vt

vcharac
=

µvtntlt
QtE0 −Ws

. (23)

• Normalized viscous force. The viscous force scales as Fv = µl2t /tcharac and we use tcharac =
√
lt/g as the235

characteristic time. Physically, the time taken by a spider to fall a distance of lt in a viscosity-free environment236

under the influence of gravity is the characteristic time, tcharac. This follows from the kinematic equation of237

free fall: lt ∼ gt2charac. An estimate of the magnitude of the Coulomb repulsion force is Fr = keQ
2
t/[n

2
t l

2
t ]. This238

estimate is obtained from equation (19) under the assumption that two point charges of Qt/nt magnitude are239

located at a distance equal to the spider silk length, lt. Normalizing the viscous force by the Coulomb repulsion240

force, we get the normalized viscous force,241

F̄v =
Fv
Fr

=
µn2

t
√
gl

7/2
t

keQ2
t

(24)

• Normalized lift force. As sufficiently high altitude (z � z0 in equation 22), the lift force scales as QtE0. We242

normalize this by the weight of the spider to get the normalized lift force.243

F l =
QtE0

Ws
(25)

Lift is equal to weight when F l = 1, assuming that the altitude is sufficiently high. If lift is larger than weight244

so that F l > 1, the spider is expected to move up in altitude. On the other hand, if F l < 1, its altitude will245

decrease.246

• Normalized bending stiffness. The characteristic bending force Y I/l2t is normalized by the characteristic247

Coulomb repulsion force Fr = keQ
2
t/[n

2
t l

2
t ] to get the normalized bending stiffness,248

Y I =
n2
tY I

keQ2
t

. (26)

If the normalized bending stiffness is very small compared with 1 (Y I � 1), the elastic stiffness of the threads249

offers no resistance against deformation due to Coulomb repulsion force. The threads behave almost like a250

viscous fluid in this case without any noticeable effect of elastic stiffness on the final shape. The other extreme251

is Y I � 1 when the threads are too rigid to have any deformation under Coulomb repulsion force.252

The normalized lift force is varied by varying the total threads electric charge between 0.5 and 5 nC. The number253

of threads nt considered in this study are 1, 2, 4 and 8. Biologically, the number of threads observed in ballooning254

spiders range from 2 to 100 [17, 35, 36]. However, to be able to explore the main physics of the spiders ballooning by255

parameter space exploration, and due to the associated computational limitations, the number of threads is limited256

to 8. Moreover, it is found that beyond 8 threads, there is no significant effect on the normalized terminal ballooning257

velocity of the spider as well as on the normalized lift and viscous forces.258
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B. Ballooning Velocity259

In this section we present the variation of the normalized terminal ballooning velocity v̄t in terms of normalized lift260

force F̄l, normalized viscous force F̄v and normalized bending stiffness Y I for different number of threads and for two261

cases:262

• Electric charge located at the thread tip, as suggested by Morley and Gorham [22]263

• Electric charge is uniformly distributed along the threads264

In Figure 6 we compare the variation of v̄t in terms of the normalized lift force for varying number of threads. This265

figure shows how the spider elicit ballooning once the normalized lift force exceeds 1. When the lift force is below 1,266

the ballooning velocity is zero since the spider cannot fly when the lift force generated by the electric potential field267

is smaller than the spider weight. For the tip located electric charge, the normalized terminal velocity slightly falls268

linearly with increasing normalized lift force. Referring to equation 23, this implies that the dimensional velocity vt269

increases linearly with the dimensional lift force QtE0. On the other hand, for the uniform distributed thread charge270

the normalized velocity shifts from that for the tip located charge and decreases when the normalized lift force exceeds271

1.5 with a slope around to −1/3, i.e. the dimensional velocity will increase with the dimensional lift force with a slope272

of approximately 2/3 according to equation (23). This dependence is caused by an intricate interplay between the273

Coulomb repulsion force, electrostatic lift force and the viscous drag. The repulsion force causes the threads to spread274

far apart from one another, i.e. all the threads would assume a horizontal configuration if the repulsion force was the275

only force acting on them. However, the shape of the thread influences the amount of viscous drag. According to the276

RFT, drag is the lowest when velocity is parallel to the tangent on the thread (i.e. the threads are vertical) and it is277

the highest when velocity is perpendicular to the tangent (i.e. the threads are horizontal). These competing forces278

cause the threads to deform to eventually find a configuration where all the forces sum to zero. Our simulation tool279

essentially solves this balance of forces and updates the configuration of the threads over time.280

It is observed in this figure that for the one thread case and for F̄l > 1, the normalized terminal velocity stabilizes281

at around 2.2 while for the other cases with higher number of threads, the normalized terminal velocity reaches values282

around 2 for the tip located charge, and values around 1.7 for the uniformly distributed charge, especially for higher283

F̄l. This further highlights the role of the deformed shape of the threads in common spider ballooning process. When284

there is only one thread, it is oriented vertically and thus experiences the least amount of drag. When multiple threads285

are introduced, the threads deform due to the Coulomb repulsion force and the threads are no longer oriented parallel286

to the direction of velocity. As such, more drag is exerted by air on the threads and the velocity is reduced in the287

case of still air. Meanwhile, the 3D conical thread net shape would lead to an increase in the ballooning speed in case288

of updraft wind caused by natural convection for instance.289

FIG. 6: Variation of the normalized terminal ballooning velocity versus normalized lift for a given value of
normalized bending stiffness

In the present study we considered Erigon spiders which are relatively small where their mass is about 1 mg and290

a size around 1 cm. Meanwhile, Schneider et al. [36], observed the ballooning of Stegodyphus dumicola (Eresidae)291



12

(a) 7.22 x 10-3 s (b) 7.22 x 10-2 s (c) 1.72 x 10-1 s (d) 4.22 x 10-1 s

(e) 7.22 x 10-3 s (f) 7.22 x 10-2 s (g) 1.22 x 10-1 s (h) 4.22 x 10-1 s
x

y

z

x

z

10 cm

FIG. 7: Unfolding dynamics of two spider threads with uniformly distributed (a-d) and tip located (e-h) electric
charge. Insets show the top view (x− z plane) of the threads.

Pocock spiders weighting 100 mg and of size 7 to 14 mm. These spiders were found to balloon using 100 threads292

forming a triangular sheet with a length and width of about 1 m at the distal end. In the present study, we limited293

the number of silk threads to 8 due to computational limitations. However, referring to Figure 6, we can see that the294

normalized terminal velocity becomes somehow independent from the number of threads when they exceed 8. And295

thanks to the normalized analysis, we can generalize our study to verify Schneider et al. [36] observation regrading296

the ballooning of large spiders.297

Using Figure 6 and data from Schneider et al. [36], we can deduce that if the spiders were on flat earth ground,298

where the electric field is 100 V/m, the electrostatic charge required for ballooning is around 100 nC per thread. From299

our simulations, it is observed that this very large electrostatic charge on the silk thread will lead to high Coulomb300

repelling forces which will cause the threads to repel diametrically in a plane which is in contradiction to Schneider et301

al. [36] observations. Meanwhile, assuming the spiders are hanging on the top of tree branches where the electric field302

can reach 100 kV/m, the spider needs 0.1 nC per thread to balloon. It is worthy to note that Schneider et al. [36]303

studies were done in farm Omdraai, Namibia which has very few trees. Moreover, the air temperature was reaching304

33.8◦ with almost no wind, a situation in favor for rising thermal currents. Thus, based on our conclusion and on305

Schneider et al. [36] observations, for large spiders to balloon, rising thermal currents seem to be essential. In our306

study, we do not eliminate the fact that wind, turbulence and thermal currents could cause ballooning, however, we307

shed light on that these electrostatic forces could be alone used to balloon small spiders and that they are responsible308

on repelling the threads to avoid entanglement.309

Referring to equation (23), and assuming that the following parameters are unchanged during typical ballooning:310

thread electric charge, Qt, the atmospheric electric field, E0, the air viscosity, µ and the spider weight, Ws, the spider311

could control its ballooning velocity by varying the thread length, lt and the number of threads. In the presence of312

significant wind speed, the spider could also control the flight altitude and direction by varying the number and length313

of ballooning threads. For instance, longer threads can result in larger drag forces and thus higher altitude in case of314

updrift wind. Reducing the length and number of threads could then be used during landing process.315

The variation of the normalized terminal ballooning velocity, v̄t, versus normalized viscous force, F v for Qt = 2.5 nC316

and Y = 20 × 109 Pa was also analyzed. The viscous force was varied by varying the viscosity between 10−7 and317

10−3 Pa·s. It is observed that the normalized terminal ballooning velocity is always equal approximately to 2.12.318

This indicates that the normalized viscous forces do not play a major role in the ballooning of spiders once it reaches319

steady-state.320

The variation of the normalized ballooning velocity, v̄t, versus normalized bending stiffness, Y I for Qt = 2.5 nC and321

µ = 18.37× 10−6 Pa.s shows also that the normalized terminal ballooning velocity is always equal to approximately322

2.12. The normalized bending stiffness was varied by varying the Young’s modulus of elasticity Y between 5 and323

50 GPa where the average known silk modulus of elasticity is around 25 GPa [37]. This indicates that the bending324
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stiffness, representative of the elasticity of the thread, does not play a major role in the ballooning of spiders. This325

is also anticipated from the ratio of characteristic bending force to characteristic Coulomb repulsion force. This ratio326

is defined as the normalized bending stiffness in equation 26 and its value in the regime relevant to ballooning is on327

the order of 10−9 to 10−8 and, therefore, it is expected that the bending stiffness of the threads offers little resistance328

against deformation due to Coulomb repulsion force. We also observed in our simulations that the twisting and329

stretching deformation is negligible compared with bending mode. In summary, once the spider reaches a steady330

velocity after the transient dynamics, the velocity and the shape of the threads do not depend on the elastic bending,331

stretching, and twisting stiffness.332

C. Thread unfolding Dynamics333

The spider threads unfolding dynamics is shown in Figure 7 for the 2 threads case for better visibility. For the334

uniformly distributed thread charge it can be observed that the bending occurs along the threads which move apart335

gradually with an increase in their curvature until they reach a steady-state position with a v-shape as observed in336

real ballooning spiders.337

For the case with tip located charge, the repelling force acts on the tips of the threads pushing them apart while338

maintained in close contact in the bottom region. After a short time, the threads make a v-shape similar to that339

of the previous case. The results are also accompanied with animations showing the time evolution of the unfolding340

dynamics (see Supplementary Material [38]).341

Figure 8 shows the ballooning process and spider threads bending for two, four and eight threads. The threads342

are pushed apart due to the Coulomb electrostatic forces while the spider is moving upward due to the atmospheric343

electric field. A supplemental material also shows an animation of the multi-threaded spider ballooning and unfolding344

dynamics [38].345

t=0 s t=0.01 s t=0.05 s t=0.20 s t=0.50 s

(a)

(b)

(c)

10 cmx

y

z

x

z

FIG. 8: Ballooning process obtained from our 3D numerical simulations for spider with (a) two threads, (b) four
threads and (c) eight threads. Insets show the top view (x− z plane) of the threads. A supplemental animation is

also attached to the paper [38] (click here to play video)

images/Spider_Ballooning_2020_reducedSize.mp4
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IV. CONCLUSION346

Three dimensional numerical simulations are performed for spider ballooning due to electrostatic forces. Spiders with347

multi silk threads are considered in this study. The numerical method of the fluid-structure-electric field interaction348

combines the DER algorithm to compute the elastic deformation of the spider threads. Moreover, the RFT is used349

to compute the hydrodynamic viscous forces on the spider and on the threads. The electrostatic forces caused by the350

atmospheric potential gradient and the thread electric charge is computed based on the Coulomb theory. The spider351

is approximated by a sphere attached to one or multiple silk threads. The numerical results computed in this paper352

are first validated against theoretical and experimental data from the open literature for one-thread case showing a353

good agreement.354

Two cases were studied in this paper. In the first one, we assume that the thread charge is uniformly distributed355

along the threads. In the second, we assume that the charge is located at the thread tip.356

The results show that for one thread case, the normalized velocity is around 2.2 and independent of the normalized357

lift and normalized viscous forces while it is slightly less for the multi-thread cases. In the uniformly distributed358

charge case, the normalized ballooning velocity deviates from that for the tip located charge and decreases slightly359

when the normalized lift force exceeds 2 with a slope equal to -1/3.360

Finally, the Coulomb repelling forces cause the threads to bend and form a three-dimensional conical sheet very361

similar to observations from open literature. This bending behavior is very fast and occurs in the beginning of the362

ballooning process before it stabilizes at a steady-state shape.363

It should be noted that the wind speed and its fluctuations could affect the behavior of trichobothria. In fact, the364

spiders use the deformation of trichobothria signal to determine whether they will balloon or not. Hence, for high365

wind speeds and fluctuations the signals of electric field could be burried and the spider may not be able to distinguish366

whether the deformation of trichobothria is caused by wind or by electric field. Therefore, spiders usually balloon on367

relatively calm days as explained earlier in the introduction section.368

Moreover, in this study, the aim is to explore the essential physics of the spiders ballooning by parameter space369

exploration and therefore a computationally efficient framework with DER and RFT has been chosen. A more370

comprehensive model coupling for instance SBT and DER is an interesting direction for future research.371
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