
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Interacting bosons in a triple well: Preface of many-body
quantum chaos

Karin Wittmann W., E. R. Castro, Angela Foerster, and Lea F. Santos
Phys. Rev. E 105, 034204 — Published 17 March 2022

DOI: 10.1103/PhysRevE.105.034204

https://dx.doi.org/10.1103/PhysRevE.105.034204


Interacting bosons in a triple well: Preface of many-body quantum chaos

Karin Wittmann W.,1 E. R. Castro,1 Angela Foerster,1 and Lea F. Santos2

1Instituto de F́ısica da UFRGS, Porto Alegre, RS, Brazil
2Department of Physics, Yeshiva University, New York, New York 10016, USA

Systems of interacting bosons in triple-well potentials are of significant theoretical and experimen-
tal interest. They are explored in contexts that range from quantum phase transitions and quantum
dynamics to semiclassical analysis. Here, we systematically investigate the onset of quantum chaos
in a triple-well model that moves away from integrability as its potential gets tilted. Even in its deep-
est chaotic regime, the system presents features reminiscent of integrability. Our studies are based
on level spacing distribution and spectral form factor, structure of the eigenstates, and diagonal
and off-diagonal elements of observables in relationship to the eigenstate thermalization hypothesis.
With only three sites, the system’s eigenstates are at the brink of becoming fully chaotic, so they
do not yet exhibit Gaussian distributions, which resonates with the results for the observables.

I. INTRODUCTION

The interest in many-body quantum chaos has grown
significantly in recent years due to its close connection
with thermalization [1–3], scrambling of quantum infor-
mation [4], and the fact that many-body quantum sys-
tems can now be studied experimentally in a control-
lable way with a variety of experimental set-ups, from
cold atoms and ion traps to superconducting devices and
nuclear magnetic resonance. In studies of many-body
quantum chaos, the focus is usually on interacting lat-
tice systems with many sites and many particles, where
the Hilbert space grows exponentially with the system
size. Here, instead, we investigate the onset of quantum
chaos in a system that has only three wells, but where the
number N of particles is large. The Hilbert space grows
quadratically with N , and as N increases, the system is
brought closer to the classical limit.

Fascinating phenomena are explored with systems
of interacting atoms in triple-well potentials, such as
transistor-like behaviors [5–7], entanglement genera-
tion [8, 9], coherent population transfer [10–13], fragmen-
tation [14, 15], quantum-classical correspondence [16–22],
quantum chaos [23–30], superfluidity [31, 32], localiza-
tion [33], and caustics [34], among others [35–47]. One of
the most popular models in this context is the three-well
Bose-Hubbard model with short-range interactions and
local hopping terms [48, 49]. This system, with three or
more wells, is in general not integrable [19, 21, 27, 30, 50–
53]. Integrability is achieved with two or with an infinite
number of wells.

A bosonic triple-well model with an integrable limit
was introduced in Ref. [54] and explored for switching
devices [55],[56]. This model is a member of a family
of quantum integrable multi-well tunneling systems that
have the two-site Bose-Hubbard model [57–59] as a lead-
ing constituent. Integrability requires the presence of
long-range couplings, which is in fact a physical condition
for ultracold dipolar bosons with large dipole moment,
such as chromium, erbium, or dysprosium. Dipolar cold
atoms provide a rich platform for the study of mesoscopic
quantum superpositions [37], macroscopic cat states [60],

quantum droplets [61], and supersolid states [62].

By tilting the potential [55], the bosonic triple-well
model introduced in [54] becomes chaotic. We provide
a systematic study of this transition based not only on
spectral correlations, but also on the structure of the
eigenstates and its consequences to the eigenstate ex-
pectation values and the distributions of the off-diagonal
elements of the number operator of each well, in close
connection with the notion of the eigenstate thermaliza-
tion hypothesis (ETH).

Contrary to systems where the number of wells and
particles are increased, the number of degrees of freedom
in the triple-well model is fixed. Increasing its number
of bosons does not enhance its chaotic features. The
range of values of the integrability breaking parameter
that leads to chaos is not extended for larger N ’s and
the eigenstates do not reach higher degrees of ergodicity.
Even for energies close to the middle of the spectrum, for
which a semiclassical analysis gives positive Lyapunov
exponents [63], the distributions of the components of
the eigenstates and of the off-diagonal elements of the
number operators are not Gaussian, which contrasts with
what happens for multi-well systems.

In non-driven systems, three wells constitute the turn-
ing point for the onset of many-body quantum chaos.
The transition from integrability to chaos does take place,
but with some reminiscence of integrability.

The paper is organized as follows. The model is de-
scribed in Sec. II. The analysis of the spectrum and level
repulsion are presented in Sec. III. The core of the work
is the detailed study of the structure of the eigenstates
in Sec. IV and its consequence to the diagonal and off-
diagonal elements of the number operators in Sec. V.
Conclusions are given in Sec. VI.

II. MODEL

The quantum system that we study consists of N
bosons in an aligned triple-well potential described by
the following Hamiltonian [55],
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where N̂i = â†i âi is the number operator of the well i,

âi (â†i ) is the annihilation (creation) operator, U is the
onsite interaction strength and also the strength of the
interactions between wells, J is the tunneling amplitude
between wells, and ε is the amplitude of the tilt between
the wells. We consider repulsive interaction, U ≥ 0.

Hamiltonian (1) conserves the total number of bosons,
N = N1+N2+N3, and when ε = 0, it commutes with the
parity operator. The matrix has dimension D = (N +
2)!/(2!N !). Our studies of the structure of the eigenstates
are done in the Fock basis, |n〉 = |N1, N2, N3〉. We denote

the eigenstates and eigenvalues of Ĥ by |α〉 and Eα.
A schematic representation of our model is shown in

Fig. 1. When ε = 0 [Fig. 1 (a)], the model is integrable
and solvable with the algebraic Bethe ansatz [54]. At
this point, in addition to energy and the total number of
particles, our three-degree-of-freedom model has a third
independent conserved quantity, Q = J2N3/2+J2N1/2−
J2(a†1a3 + a†3a1)/2 [54, 55]. The system becomes nonin-
tegrable [Fig. 1 (b)] when the tilt is included. As dis-
cussed in Sec. III A, the model shows signatures of quan-
tum chaos when the tilt amplitude is of the order of the
hopping and interaction strengths, ε ∼ J, U .

FIG. 1. Schematic representation of the three-well system
described by Eq. (1) for both the integrable (a) and the non-
integrable (b) regime. The red arrows indicate the intrawell
and interwell interaction strength U , the black arrows indi-
cate the tunneling amplitude J between adjacent wells, and
ε represents the tilt of the potentials of wells 1 and 3 with
respect to well 2.

In the absence of the potential tilt and of the inter-
action between wells, our model coincides with the bare
Bose-Hubbard model with 3 sites. Signatures of quantum
chaos were studied in this model, for example, in [19, 30].
This case and also the extended triple-well Bose-Hubbard
model with dipolar interaction [37] exhibit properties
similar to those of our system in the chaotic domain.
Comparisons between the three models are presented in
the appendix A.

A. Parameters and density of states

In our numerical analysis, we fix J = 1, U/J = 0.7, and
vary ε for different numbers of particles. The choice of U
is justified with Fig. 2 (a), where we show the eigenvalues
as a function of the interaction strength for ε = 0. When
U = 0, there is only hopping and the model is trivially
solved. This is usually referred to as Rabi regime [55] in
analogy with the double-well model [57, 64]. As the in-
teraction strength increases and becomes larger than the
hopping amplitude, U/J > 1, energy bands are formed.
The extreme scenario of U � J is the Fock regime, where
the eigenstates approach the Fock states, and the model
is again trivially solved. The region where we can expect
chaos to develop is therefore for 0 < U/J < 1, which ex-
plains the choice U/J = 0.7 indicated with the red dotted
vertical line in Fig. 2 (a).

FIG. 2. Normalized eigenvalues as a function of the interac-
tion strength, U/J , for ε = 0 (a) and as a function of the
tilt amplitude, ε/J , for U/J = 0.7 (b). The vertical line in
Fig. 2 (a) marks the value U/J = 0.7, which is used in panel
(b) and in all of our subsequent studies. In Fig. 2 (b), the
vertical lines marks the values ε/J = 0.7 (dotted line) and
ε/J = 1.5 (dashed line) used in our studies of the chaotic
regime. In all panels N=10.

In chaotic systems, the eigenvalues are correlated and
avoid each other [65, 66], while in integrable models
(apart from the picket-fence scenario [67–69]), the en-
ergy levels can cross. This difference is clearly seen in
Fig. 2 (b), where we fix U/J = 0.7 and vary ε/J . Level
crossing happens when 0 ≤ ε/J < 1, but is avoided for
ε/J & 1, where the “spaghetti structure”, typical of re-
pulsive energy levels, becomes visible.

In Fig. 3, we compare the density of states (DOS),

ν(E) =

D∑
α=1

δ(E − Eα), (2)

of the model (1) for three values of the tilt, ε/J = 0, 0.7,
and 1.5. In realistic interacting many-body quantum sys-
tems with many degrees of freedom, such as spin models
with many excitations [70] or Bose-Hubbard models with
many particles and many sites [51, 71], the DOS is typ-
ically Gaussian [72, 73], which can be explained using
the central limit theorem. This contrasts with our model
[Figs. 3 (a)-(c)], which has few degrees of freedom.

Systems with few-degrees of freedom, such as the Dicke
model [74], spin-1/2 models with less than 4 excita-
tions [75], and multi-well Kronig-Penney-like systems
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with few particles [76], often present shapes other than
Gaussian. We see in the appendix A that the bare triple-
well Bose-Hubbard model and the extended triple-well
Bose-Hubbard model show distributions that, similarly
to our model in Fig. 3 (c), are not yet Gaussian, but
get close to it. The DOS for the extended Bose-Hubbard
model and for our model are comparable, since both have
long-range couplings.

FIG. 3. Density of states for N = 270, U/J = 0.7, and
ε/J = 0 (a), 0.7 (b) and 1.5 (c). The solid line in (c) is a
linear fitting for the left and right sides of the distribution,
while the dotted line is a Gaussian distribution fitting.

III. SPECTRAL CORRELATIONS

To quantify the degree of correlations between the
eigenvalues, we study the level spacing distribution and
the spectral form factor. We show that for U/J ∼ 0.7,
as ε in Eq. (1) increases from zero, our triple-well model
leaves the integrable point (ε = 0) and moves towards
the chaotic domain.

A. Level spacing distribution

The transition to quantum chaos can be verified with
the distribution P (s) of the spacings s between near-
est unfolded energy levels. For chaotic systems with
real and symmetric Hamiltonian matrices, as in Eq. (1),
P (s) follows the Wigner surmise [66, 77], PW(s) =
(πs/2) exp

(
−πs2/4

)
, as obtained also for the eigenval-

ues of full random matrices from a Gaussian orthogo-
nal ensemble (GOE). This distribution indicates that the
eigenvalues are correlated and repel each other, that is,
P (s = 0) = 0. In integrable models, the level spacing
distribution is Poissonian, PP(s) = e−s, since the energy
levels are uncorrelated [78].

The analysis of the level spacing distribution requires
unfolding the eigenvalues and separating them by sym-
metry sectors. The unfolding procedure corresponds to
rescaling the eigenvalues, so that the local density of
states of the rescaled energies is 1. The separation by
subspaces is necessary, because eigenvalues from differ-
ent symmetry sectors have no reason to be correlated.

In Figs. 4 (a)-(c), we illustrate P (s) for ε/J = 0, 0.7,
and 1.5, respectively. The Poissonian distribution is ob-

tained for the integrable point ε = 0 in Fig. 4 (a), and
the Wigner shape is seen for ε/J = 1.5 in Fig. 4 (c),
as we had anticipated from the “spaghetti structure” in
Fig. 2 (b). An intermediate picture emerges for ε/J = 0.7
in Fig. 4 (b).

FIG. 4. Level spacing distribution for N = 270 and ε/J = 0
(a), ε/J = 0.7 (b), and ε/J = 1.5 (c); and chaos indicator β as
a function of the tilt amplitude for various N ’s (d). In (a)-(c):
The dashed (solid) line represents the Poissonian (Wigner)
distribution. In (d): The green vertical line at ε/J = 1.5
marks where β gets the closest to 1, indicating the Wigner
distribution.

The proximity of the level spacing distribution to the
Poissonian or the Wigner distribution can be quantified
with the chaos indicator β, which is obtained by fitting
P (s) with the Brody distribution [73] (see also [79]),

Pβ(s) = (β+1)bsβ exp(−bsβ+1), b =

[
Γ

(
β + 2

β + 1

)]β+1

(3)
For chaotic systems, β ∼ 1 and for a Poissonian distri-
bution, β ∼ 0.

In Fig. 4 (d), we show β as a function of ε/J for
N = 60, 90, . . . , 210. As evident from the figure, a high
degree of chaos happens for ε/J ∈ [1.3, 1.7]. Notice that
this range of values does not grow as N increases, which
contrasts with interacting many-body quantum systems
with many sites [80–82], where studies of chaos indicators
for different system sizes suggest that in the thermody-
namic limit, an infinitesimal integrability breaking term
may be enough to bring those systems to the chaotic do-
main. In addition and also contrary to the results for
systems with many sites [81, 82], larger values of N do
not take β closer to 1. The only effect that an increased
value of N appears to have for the triple-well model is to
reduce the fluctuations in the values of β for nearby ε’s,
which concurs with improved statistics.
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B. Spectral form factor

The level spacing distribution detects only short-range
correlations. To get a better idea of the degree of spec-
tral correlations, one may resort to other indicators of
quantum chaos, such as the spectral form factor,

SFF (t) =

〈∣∣∣∣∣
D∑
α=1

f(Eα)e−iEαt

∣∣∣∣∣
2〉

, (4)

which captures both short- and long-range correlations.
The spectral form factor is used to study level statis-
tics in the time domain. When the eigenvalues are cor-
related as in random matrices, SFF (t) develops the so-
called correlation hole [83–88], which we further discuss
below Eq. (11). The spectral form factor is advanta-
geous over the direct analysis of the eigenvalues, because
it does not require unfolding the spectrum or separating
the eigenvalues by symmetry sectors [82, 89], although
averages, indicated by 〈.〉 in Eq. (4), are needed, since
this quantity is non-self-averaging [90, 91].

A filter function f(Eα), as used in Eq. (4), is often
added to the spectral form factor [92]. When f(Eα)
coincides with the components of an initial state pro-
jected in the energy eigenbasis, the spectral form factor
becomes the survival probability [91]. In our analysis, we
choose [93]

f(Eα) =
rαg(Eα)∑
β rβg(Eβ)

, (5)

where rα are random numbers from a uniform distribu-
tion in the interval [0, 1], the function g(E) = ρ(E)/ν(E),
and ρ(E) is a chosen energy profile, which, in our case,
is a rectangular function,

ρ(E) =


1

2σ
for E ∈ [Ec − σ,Ec + σ]

0 otherwise,

(6)

of width σ, centered at the energy Ec, and with bounds
at Emin = Ec − σ and Emax = Ec + σ. The division of
ρ(E) by ν(E) is done using the linear fits for the DOS in
Fig. 3 (c). This procedure compensates for variations in
the density of states and ensures the rectangular shape of
the filter function [93]. As it will become clear in Sec. IV,
the region where the eigenstates are mostly chaotic hap-
pens for E/(JN) ∈ [−0.2, 1]. For this reason, we choose
Ec/(JN) = 0.5 and σ/(JN) = 0.35.

In Fig. 5, we consider a large Hilbert space and show
SFF (t) in the chaotic region of strong level repulsion av-
eraged over various realizations of the random numbers
rα and taking into account also a moving time average
starting at t ∼ 5/J , where the fluctuations are large. The
numerical results are presented together with the analyt-
ical expression obtained following Refs. [93–95],

SanalytFF (t) =
1− 〈SFF 〉
η − 1

[
η

sin2(σt)

(σt)2
− b2

(
t

2πνc

)]
+〈SFF 〉,

(7)

where

η =
〈r2
α〉

〈rα〉2〈SFF 〉
=

4

3〈SFF 〉

is the effective dimension associated with the chosen filter
function, and

νc =
η

2σ
(8)

is the density of states at E = Ec, or equivalently, the
inverse mean level spacing probed by the chosen energy
profile [93].

FIG. 5. Spectral form factor for three values of N . The lines
with fluctuations, which have lighter colors, represent numeri-
cal results; the thin smooth lines give the analytical expression
in Eq. (7); and the dashed horizontal lines indicate the satu-
ration point 〈SFF 〉 in Eq. (11). The symbols mark the time
to reach the minimum of the correlation (circle) and the sat-
uration time (diamond). For the numerical results: Averages
over 500 random realizations and also running averages.

The first term in the square brackets of Eq. (7) de-
scribes the behavior of SFF (t) at short times. It is ob-
tained by writing Eq. (4) as an integral,

SFF (t) =

〈∣∣∣∣∣
∫ Emax

Emin

ρ0(E)e−iEtdE

∣∣∣∣∣
2〉

, (9)

and substituting the energy distribution,

ρ0(E) =

D∑
α=1

f(Eα)δ(E − Eα), (10)

with the smoothed energy profile ρ(E) from Eq. (6),
which can be done for large Hilbert spaces. The Fourier

transform in Eq. (9) gives
sin2(σt)

(σt)2
. This function leads

to a power-law decay with exponent 2 due to the bounds
of the filter function [96–98].

The effects of the spectral correlations get manifested
at larger times, when the discreteness of the spectrum
is resolved and the correlations are then detected. This
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results in the dip in Fig. 5 below the horizontal dashed
line that represents the infinite-time average

〈SFF 〉 =
∑
α

|f(Eα)|2. (11)

This dip is known as correlation hole [83–88] and it does
not exist in models that present a Poissonian level spac-
ing distribution. In the case of GOE full random matri-
ces, the dip is described by the two-level form factor [77],

b2(t̄) =

1− 2t̄+ t̄ ln(2t̄+ 1) t̄ ≤ 1

t̄ ln

(
2t̄+ 1

2t̄− 1

)
− 1 t̄ > 1

. (12)

This function describes very well our numerical results
and confirms the chaoticity of our triple-well model.

By comparing the results for different numbers of
bosons in Fig. 5, it is clear that the time to reach the
minimum of the correlation hole and the time to reach
saturation increase with N . Analytical expressions for
these times are given in the appendix B 1. They are much
shorter than those obtained for interacting many-body
quantum systems with many sites [95].

IV. EIGENSTATES

In chaotic quantum systems, the eigenvalues are cor-
related and the eigenstates are uncorrelated. In this sec-
tion, we analyze the transition to quantum chaos through
the changes in the structure of the eigenstates. As ε in-
creases from zero and the system moves from the inte-
grable to the chaotic domain, we expect the eigenstates
away from the edges of the spectrum to become closer to
the eigenstates of GOE full random matrices [1, 2]. The
GOE eigenstates are random vectors with components
that are real and which correspond to independent Gaus-
sian random numbers satisfying the normalization con-
dition. In realistic many-body quantum systems, a frac-
tion of the components of the chaotic eigenstates can be
nearly zero, but the nonzero components follow a Gaus-
sian distribution [70].

To detect the onset of chaotic eigenstates, one can
employ measures of delocalization [79, 99] and fractal-
ity [71], and analyze the distributions of the components
of the eigenstates. These methods are, of course, at-
tached to a basis choice. We use here the Fock basis,
|n〉, which are the eigenstates of the number operators
studied in Sec. V. This basis is in close connection with
cold-atom experiments, where dynamics are initiated by
preparing the system in Fock states. Nevertheless, in
the appendix B 3 and appendix B 4, we also provide the
analysis of the eigenstates using as basis the eigenstates
of the Ĥ(ε = 0) part of the total Hamiltonian in Eq. (1).
Our main conclusion that the components of the eigen-
states of the triple-well model do not follow a Gaussian
distribution holds for either choice of basis.

Even the most delocalized eigenstates of our triple-
well model are not fully chaotic. A similar conclusion
can be drawn for the triple-well Bose-Hubbard model in
Ref. [30]. The anomalous scaling of the eigenstate-to-
eigenstate fluctuations of expectation values of local ob-
servables with the Hilbert space found in that work might
be attributed to eigenstates that are not fully chaotic.

A. Delocalization Measures

In Figs. 6 (a)-(c), we show the Shannon entropy, Sαh ,
of each eigenstate |α〉 written in the Fock basis |n〉,

Sαh ≡ −
D∑
n=1

|Cαn |2 ln |Cαn |2, (13)

as a function of energy. In the equation above, Cαn =
〈n|α〉. This entropy measures the degree of delocalization
of the eigenstates in the chosen basis. If the eigenstate co-
incides with a basis vector, there is a single |Cαn |2 = 1 and
the state is completely localized. In this case, Sαh = 0.
If the eigenstate is homogeneously spread in the Hilbert
space, being therefore completely delocalized, then all
|Cαn |2 = 1/D and the entropy reaches its maximum value
Sαh = ln(D). An equivalent measure of delocalization is
the participation ratio,

PαR ≡
D∑
n=1

1

|Cαn |4
, (14)

whose figures are provided in the appendix B 2. The
participation ratio was also considered in the analysis of
the triple-well Bose-Hubbard model in Ref. [30].

For GOE full random matrices, the components Cαn
of the eigenstates are independent real random vari-
ables from a Gaussian distribution with weights |Cαn |2
that fluctuate around 1/D, so SGOE

h ∼ ln(0.48D). In
Figs. 6 (a)-(c), we show Sαh divided by SGOE

h .
In the integrable regime [Fig. 6 (a)], we see a pat-

tern of lines that must be associated with periodic or-
bits, likely to be found in the phase space of the classical
limit of our model. This subject will be discussed in
detail in a future publication [100]. As ε/J increases,
regions of chaos begin to emerge [Fig. 6 (b)], where the
fluctuations decrease significantly and Sαh reaches values
closer to SGOE

h , as in the vicinity of E/(JN) ∼ 0.3 and
E/(JN) ∼ 0.9. For ε/J = 1.5 [Fig. 6 (c)], an evident
chaotic region emerges for E/(JN) in the interval given
approximately by [-0.2,1]. This energy range explains
our choice for Ec/(JN) = 0.5 in the analysis of the spec-
tral form factor in Eq. (6). We have also verified that
the semiclassical analysis of the model in this region of
energy leads to positive Lyapunov exponents [63].

Notice, however, that the regular pattern of lines seen
in Fig. 6 (a) persists in the edges of the spectrum for
Fig. 6 (b) and even for Fig. 6 (c). Our system is clearly
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FIG. 6. Shannon entropy Sh and overlaps of neighboring
eigenstates Ω as a function of energy for N = 90 (light lime
dots) and N = 270 (dark blue dots). In (a) and (d): ε/J = 0,
in (b) and (e): ε/J = 0.7, and in (c) and (f): ε/J = 1.5.
The solid horizontal lines mark the results for GOE full ran-
dom matrices. The dashed vertical lines in (c) and (f) mark
approximately the center of the chaotic region.

separated into regions of chaos and non-chaos, indepen-
dently of the number of bosons. This is confirmed by
comparing the results for N = 90 (light color) and
N = 270 (dark color) in Fig. 6 (c).

In Figs. 6 (d)-(f), we show the quantity Ωα,α′ first pro-
posed in Ref. [70] to measure how similar two neighboring
eigenstates |α〉 and |α′〉 are,

Ωα,α′ ≡
D∑
n=1

|Cαn |2|Cα
′

n |2. (15)

In full random matrices, where the components |Cαn |2
and |Cα′

n |2 are uncorrelated Gaussian random num-
bers, ΩGOE ∼ 1/D. Correlations result in values of
Ωα,α′ > 1/D. Large values of Ωα,α′ and large fluctu-
ations are found throughout the spectrum of the inte-
grable model [Fig. 6 (d)], while in the chaotic domain
[Fig. 6 (f)] they are restricted to the edges of the spec-
trum, E/(JN) < −0.2 and E/(JN) > 1, where chaos
does not develop. Notice, however, that even in the
chaotic region, Ω > ΩGOE, which indicates that some
level of correlation among the components persists.

To get some insight on how the level of correlations de-
pend on N , in Figs. 7 (a)-(c), we select the eigenstates in
the chaotic region with energies E/(JN) ∈ [0.4, 0.6] and
study how the averages over these states for 〈Sh〉/SGOEh ,
〈Ω〉/ΩGOE , and 〈PR〉/PGOER change from N = 60 to
N = 270. The analysis is done with box-and-whisker
plots [101], which displays the data distribution through
its quartiles. The horizontal line drawn in the middle
of the boxes indicates the median and the whiskers (the
lines extending from the boxes) indicate variability out-
side the upper and the lower quartiles. The averages are
marked with symbols.

FIG. 7. Box-and-whisker plots for the Shannon entropy (a),
overlaps of neighboring eigenstates (b), and participation ra-
tio (c) for various N ’s. The data range comprises eigenstates
with energies E/(JN) ∈ [0.4, 0.6] from those presented in
Fig. 6 (c), where U/J = 0.7 and ε/J = 1.5. The median for
each N is marked with the orange line inside each box and
the average with the diamond symbol.

The medians in Fig. 7 change as N grows. The fact
that the values for all three quantities are below those for
random matrices is understandable, since we are dealing
with the eigenstates of realistic systems with two-body
couplings, so some level of correlation always exists. It
calls attention, however, that the normalized averages
for the entropy grows with N [Fig. 7 (a)], while the av-
erages for Ω [Fig. 7 (b)] and PR [Fig. 7 (c)] move further
away from the random matrix results. The overlaps of
neighboring states and the participation ratio are more
sensitive to fluctuations in the tails of their distributions
than the Shannon entropy, due to the logarithm present
in the latter [102].

We note that the growth of 〈Ω〉/ΩGOE and the decay
of 〈PR〉/PGOE

R with N in Fig. 7 are not artifacts of the
Fock basis. They hold also for the basis corresponding
to the eigenstates of Ĥ(ε = 0) [not shown].

From Fig. 7 (c), it is not possible to conclude whether
〈PR〉/PGOE

R tends to a constant for larger N ’s or keeps
decreasing. The latter would imply absence of fully devel-
oped chaos, in contrast with what is observed for chaotic
multi-well systems, and would suggest multifractality.
Motivated by this discussion, the next subsection inves-
tigates whether the eigenstates with energies in the most
chaotic region, those with E/(JN) ∼ 0.5, might indeed
be multifractal.

B. Multifractality

For a state that is extended, but not fully delocalized,
〈PR〉 is not proportional to PGOE

R . This can be indi-
cated by writing 〈PR〉 ∝ D−D2 , where D2 is known as
the generalized dimension. If D2 = 1, the state is fully
delocalized and 〈PR〉 ∝ PGOE

R . When D2 = 0, the state
is localized in the chosen basis. Contrary to these two
cases, for 0 < D2 < 1, the state is fractal, meaning that
it is extended, but not ergodic.

The analysis of multifractality requires one further
step. To verify whether a state is multifractal, we study
how the generalized dimension Dq, obtained from the
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generalized inverse participation ratio, IqPR =
∑
n |Cαn |2q,

depends on q [103, 104]. The generalized dimension is ex-
tracted from the scaling analysis of

〈IqPR〉 ∝ D
−(q−1)Dq . (16)

Multifractality implies that 0 < Dq < 1 and that Dq

exhibits a nonlinear behavior with q.
We extract the generalized dimension Dq for the eigen-

states with energy E/(JN) ∼ 0.5 by analyzing how 〈IqPR〉
scales with the Hilbert space dimension D. The slope of
the curve for ln〈IqPR〉 as a function of lnD gives Dq, as
illustrated in Fig. 8 (a) for q = 0.5 and Fig. 8 (b) for
q = 1.5, where we vary the dimension of the Hilbert
space from D = 1 891 (for N = 60) to D = 36 856 (for
N = 270).

FIG. 8. Scaling analysis of the generalized inverse participa-
tion ratio averaged over 300 eigenstates with E/(JN) ∼ 0.5
for q = 0.5 in (a) and q = 1.5 in (b), and generalized dimen-
sion Dq as a function of q in (c); ε/J = 1.5. In (a) and (b),
the solid line is a linear fitting and the symbols are the numer-
ical results obtained by varying the dimension of the Hilbert
space from D = 1 891 (N = 60) to D = 36 856 (N = 270).

Our results for Dq as a function of q are shown in
Fig. 8 (c). The values of Dq are larger than 0.9, but
always smaller than 1, and they are nonlinear in q, sug-
gesting multifractality.

C. Distribution of Components

The discussion above prompts a more detailed anal-
ysis of the components of the eigenstates. We select a
representative eigenstate |α〉 =

∑
n C

α
n |n〉 with energy

E/(JN) ∼ 0.5. The distribution of its components in
Fig. 9 (a) shows a high peak at Cαn ∼ 0. This excessive
number of zero amplitudes comes mostly from the Fock
states that have energy en = 〈n|H|n〉 outside the chaotic
region, that is en/J < −0.2 or en/J > 1. By removing
the components associated with these states, the peak is
erased, as seen in Fig. 9 (b). The remaining Fock states
constitute 59% of the Hilbert space, but they are the
main constituents of the selected eigenstate, leading to∑

n
−0.2≤en/J≤1

|Cαn |2 = 0.90.

FIG. 9. Distribution of the components Cαn of an eigenstate
with energy E/(JN) ∼ 0.5; ε/J = 1.5, N = 270. In (a), all
components are considered, while in (b), only those for which
−0.2 ≤ en/J ≤ 1. Solid line: Laplace distribution; dashed
line: Logistic distribution; dotted line: Gaussian distribution.

The best distribution in Fig. 9 (a) is Laplace. After
removing the peak, in Fig. 9 (b), the best distribution
becomes Logistic, which is more similar to a Gaussian,
but exhibits longer tails. A Gaussian distribution is what
one would expect for a fully chaotic state. This is the dis-
tribution obtained for the components of the eigenstates
of full random matrices and also for chaotic systems with
many wells and particles. Thus, the analysis in Fig. 9
shows that the eigenstates of our triple-well model do
not reach fully chaotic structures. A similar conclusion
is reached when the zero-detuning basis is employed, as
shown in the appendix B 4.

The lack of ergodicity of the eigenstates is valid also
for the triple-well Bose-Hubbard models presented in the
appendix A. The distributions of the components of their
most delocalized eigenstates are also Logistic.

V. EIGENSTATE THERMALIZATION
HYPOTHESIS

Chaotic eigenstates explain and ensure the validity of
the eigenstate thermalization hypothesis (ETH) [80, 105].
The ETH says that when the eigenstate expectation val-
ues of a few-body observable O, that is Oαα = 〈α|Ô|α〉,
are smooth functions of the eigenenergies, these values
approach the result from the microcanonical ensemble,
Omic, as the system size increases [3]. The hypothesis
is also attached to the conditions of absence of degen-
eracies and Oαβ � Oαα, where Oαβ = 〈β|Ô|α〉 are the
off-diagonal elements of the observable. These are the
prerequisites for thermalization, where the infinite-time
average of the observable coincides with its thermody-
namic average.

In the case of interacting many-body quantum sys-
tems, the onset of chaotic eigenstates also leads to the
Gaussian distribution of the off-diagonal elements of few-
body observables [106], [107]. In this section, we inves-
tigate the consequences that the lack of gaussianity of
the eigenstates of our model has on the diagonal and off-
diagonal elements of the number operator of each well.
This observable, which is diagonal in the Fock basis, is
chosen for its experimental accessibility.
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A. Diagonal Elements

We start the analysis by investigating the diagonal
elements of N̂i in Fig. 10. As the integrability break-
ing term increases from ε/J = 0 in Fig. 10 (a) to
ε/J = 1.5 in Fig. 10 (c), the fluctuations decrease sig-
nificantly, reflecting the similar behavior of the eigen-
states illustrated in Fig. 6. For the integrable model
in Fig. 10 (a), there is a clear regular structure, and
(N1)αα = (N3)αα due to the Hamiltonian parity sym-
metry. In Fig. 10 (b), smaller fluctuations appear for
E/(JN) ∼ 0.3 and E/(JN) ∼ 0.9, as it happens also for
the entropy in Fig. 6 (b). In Fig. 10 (c), smaller fluctua-
tions are seen throughout the spectrum, consistent with
the notion of ETH. Notice, however, that outside the
chaotic region, for E/(JN) < −0.2 and E/(JN) > 1,
one still sees regular structures that resemble the pat-
tern of lines seen for the eigenstates in Fig. 6 (c).

Close to E/(JN) ∼ 0.5 in Fig. 10 (c), the popula-
tion inversion, where (N2)αα (red) and (N3)αα (green)
become larger than (N1)αα (blue), is consistent with the
tilt, which causes states with occupation on site 2 and,
especially, on site 3 to have larger energies than states
with population on site 1. For very high energies, it is
therefore natural that (N1)αα ' (N2)αα → 0. In con-
trast, for low energies, the distribution of particles is rel-
atively symmetric around (N2)αα, with N1 > N2 > N3

and (N3)αα → 0, as expected.

FIG. 10. Eigenstate expectation values for (N1)α,α (blue),
(N2)α,α (red), and (N3)α,α (green) as a function of energy,
for ε/J = 0.0 (a), ε/J = 0.7 (b), and ε/J = 1.5 (c); N = 270.
Average relative deviation of the eigenstate expectation val-
ues of N̂1 with respect to the microcanonical average (d) and
the normalized extremal fluctuations of the eigenstate expec-
tation values of N̂1 (e) both as a function of the integrability
breaking term ε. In (d) and (e), the eigenstates lie in the en-
ergy range [E/(JN)−∆E/(JN), E/(JN) + ∆E/(JN)] with
E/(JN) = 0.5 and ∆E/(JN) = 0.1.

To study the fluctuations of an observable around the
microcanonical expectation value, we consider the devi-

ation of its eigenstate expectation value,

∆micO =

∑
α |Oαα −Omic|∑

αOαα
, (17)

with respect to the microcanonical result,

Omic =
1

N E,∆E

∑
α,

|E−Eα|<∆E

Oαα, (18)

where NE,∆E is the number of energy eigenstates with
energy in the window ∆E. We also study the normalized
extremal fluctuation [105],

∆mic
e O = |maxO −minO

Omic
|, (19)

where maxO and minO are the maximum and mini-
mum values of Oαα. In Fig. 10 (d) [Fig. 10 (e)], we
present the results for ∆micN1 [∆mic

e N1] for eigenstates
with E/(JN) = 0.5 in the window of width ∆E/(JN) =
0.1. The results for (N2)αα and (N3)αα are similar (not
shown).

Figures 10 (d)-(e) are analogous to Fig. 4. They show
that the smallest fluctuations of the eigenstate expecta-
tion values happen in the vicinity of ε/J ∼ 1.5, where the
chaos indicator β is also the largest . The fluctuations in-
crease as the system approaches both integrable limits, as
ε/J → 0 (Bethe ansatz) and as ε/J →∞ (self-trapping).

At a fixed value of ε/J , one sees that ∆micN1 in
Fig. 10 (d) decreases slightly as the total number of par-
ticles increases. A discussion of how ∆micO scales with
the dimension D of the Hilbert for the triple-well Bose-
Hubbard model is provided in Ref. [30], where it is found
that the scaling does not follow expectations consistent
with fully chaotic eigenstates. Similarly to our analy-
sis of Fig. 4, the results in Fig. 10 (d) suggest that the
reduction of the fluctuations for larger N ’s is caused by
better statistics, not necessarily improved levels of chaos.
Contrary to multi-well systems, our model is limited to
three degrees of freedom.

Our results for the extremal fluctuations in Fig. 10 (e)
add to the above discussion. We see that ∆mic

e N1 does
not decrease as N increases. This contrasts with the case
of interacting many-body quantum systems with many
sites, where the extremal fluctuations do decrease as the
number of particles and wells increase. The extremal
fluctuation is a more rigorous test of the validity of the
ETH [105], and by extension of the degree of quantum
chaos.

B. Off-diagonal elements

The strongest signatures of quantum chaos for our
triple-well model happen for ε/J ∼ 1.5, but the results
for level statistics [Fig. 4], structure of the eigenstates
[Fig. 9], and extremal fluctuations [Fig. 10 (e)] indicate
that even at this point, full chaos is not achieved. Here,
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we investigate how this saturated level of chaos, in par-
ticular the non-Gaussian distribution of the eigenstates
components in Fig. 9, gets reflected into the distribution
of the off-diagonal elements of the number operators.

The off-diagonal elements of N̂i is given by

〈α|N̂i|β〉 =

D∑
n=1

CαnC
β
n〈n|N̂i|n〉

=

N∑
n=1

〈n|N̂i|n〉=1

CαnC
β
n + 2

N−1∑
n=1

〈n|N̂i|n〉=2

CαnC
β
n + . . .+N

1∑
n=1

〈n|N̂i|n〉=N

CαnC
β
n .

(20)

In the case of fully chaotic eigenstates, where Cαn ’s are
independent Gaussian random numbers, the distribution
of (Ni)αβ should also be Gaussian. This is evident from
the equation above. The product of independent random
variables is again an independent random variable, and
according to the central limit theorem, the sum of ran-
dom variables from any distribution follows a Gaussian
distribution.

In Fig. 11, we show the distribution of the number
operator of well 1 (for equivalent results for wells 2 and
3, see the appendix B 5.) As the integrability term ε/J
increases from zero [Fig. 11 (a)] to 1.5 [Figs. 11 (c)], the
peak at (N1)αβ/N ∼ 0 decreases and the distribution
gets more similar to a Gaussian, although this shape is
never achieved, independently of the number of particles.

FIG. 11. Distributions of the off-diagonal elements of the
number operator of well 1, 〈α|N̂1|β〉, for 300 eigenstates with
energy E/(JN) ∼ 0.5. The value of the integrability breaking
parameter is indicated in the panels. The distributions are
shown for different numbers of particles, N = 60 (green) to
N = 270 (red) in increments of 30.

In Fig. 12 (a), we select only the curve for N = 270
from Fig. 11 (c) and show that its best fit is a Laplace
distribution. Some explanations are now in order. The
Laplace distribution (more precisely, a modified Bessel
function of the second kind) describes the off-diagonal el-
ements of single-particle eigenstates in chaotic quadratic
Hamiltonians [108]. In this case, N = 1 and the only
term that survives in Eq. (20) is the last one. This term
is a single product of two Gaussian random variables,
whose distribution is indeed Laplace. Our scenario is
completely different from this one, since in Eq. (20), we
have large sums of the products CαnC

β
n .

FIG. 12. Distributions of the off-diagonal elements of the
number operator of well 1, 〈α|N̂1|β〉, for 300 eigenstates with
E/(JN) ∼ 0.5, N = 270, ε/J = 1.5. The solid line indicates
the best fit: (a) Laplace, (b) Logistic, and (c) Gaussian distri-
bution. In (a), just as in Fig. 11 (c), all the components Cαn of
the eigenstates are considered. In (b), only those components
for which 0.25 ≤ en/J ≤ 0.7 are taken into account. In (c),
the components are those from Gaussian random vectors.

Similar to our analysis in Fig. 9, a closer study of
Fig. 12 (a) reveals that the peak at (N1)αβ/N ∼ 0
is caused by the Fock states with energies outside the
chaotic region. By removing the contributions from the
states with en/J < 0.25 and en/J > 0.75, the distribu-
tion of (N1)αβ becomes Logistic, as seen in Fig. 12 (b),
which is closer but not yet Gaussian. If, however, we
calculate Eq. (20) using eigenstates from GOE random
matrices, then we finally reach the Gaussian shape, as ex-
pected from the central limit theorem and as illustrated
in Fig. 12 (c).

The study of the off-diagonal elements corroborates
our claims that the triple-well model in Eq. (1) do not
have fully chaotic eigenstates. The same holds for the
triple-well Bose-Hubbard models presented in the ap-
pendix A, where the distributions of the off-diagonal el-
ements of the number operators are not Gaussian either.

VI. CONCLUSIONS

We investigated the spectrum, eigenstates, and occu-
pation numbers of an integrable bosonic triple-well model
that becomes chaotic with the addition of a tilting po-
tential. The analysis of the structure of the eigenstates
shows that for values of the tilt where chaos emerges,
there are still regions of energy where the system re-
mains non-chaotic. Furthermore, even within the energy
interval of chaos, the eigenstates are not fully chaotic (er-
godic), that is, their components do not follow Gaussian
distributions and the generalized dimensions are smaller
than 1, which suggest reminiscences of correlations.

Diagonal and off-diagonal ETH, that is the proximity
of the infinite-time average of a local observable to the
microcanonical ensemble and the Gaussian shape of the
distribution of the off-diagonal elements of this observ-
able, are also good indicators of the level of chaoticity
of a many-body quantum system. None of the two are
entirely fulfilled by our model. As we showed, the distri-
butions of the off-diagonal elements of the number opera-
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tors are particularly sensitive to the lack of gaussianity of
the eigenstates, which prevents those distributions from
becoming Gaussian.

Studies of the eigenstates and off-diagonal elements of
observables can reveal details about quantum systems
that are not always easily accessible from a direct study
of their eigenvalues. In our specific case, the analysis of
the eigenstates and observables shows that three wells
constitute the preface for many-body quantum chaos.

A natural extension of our work is to examine how our
results change by increasing the number of wells, the role
played by the geometry of the system, and the addition
of non-linear terms [109] or external drives [110, 111].
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Appendix A: Bose-Hubbard Models

Bose-Hubbard models describe interacting spinless
bosons on a discrete lattice [48] and are experimentally
implemented with ultracold atoms in optical lattices [49].
In the case of three wells, the bare Bose-Hubbard model
is represented by the Hamiltonian

Ĥ =
U0

N

(
N̂1

(
N̂1 − 1

)
+ N̂2

(
N̂2 − 1

)
+ N̂3

(
N̂3 − 1

))
+

J√
2

(
â†1â2 + â†2â1

)
+

J√
2

(
â†2â3 + â†3â2

)
, (A1)

where U0 is the onsite interaction, J is the hopping (tun-
neling) parameter, and N = N1 + N2 + N3 is the total
number of particles.

This system presents signatures of quantum chaos
when the number L of wells coincides with the number
particles, L = N ≥ 5 [51]. However, as shown in [30], the
model is also chaotic for only 3 sites and N � 3. Notice
that the Hamiltonian has parity symmetry, so to study
level statistics, one should either break this symmetry,
as done in [30], or separate the eigenvalues by symme-
try sector. An alternative is to resort to the correlation
hole, which detects level repulsion even in the presence
of symmetries [82, 89].

The extended version of the Bose-Hubbard model,

Ĥ =
U0

N

(
N̂1

(
N̂1 − 1

)
+ N̂2

(
N̂2 − 1

)
+ N̂3

(
N̂3 − 1

))
+
U1

N

(
N̂1N̂2 + N̂2N̂3 +

1

α
(N̂1N̂3)

)
+

J√
2

(
â†1â2 + â†2â1

)
+

J√
2

(
â†2â3 + â†3â2

)
, (A2)

includes also interactions between the wells, which
emerge in dipolar gases. As discussed in [37], the param-
eter α depends on the geometry of the trap and can vary
between 4 ≤ α ≤ 8. The extended Bose-Hubbard model
also has parity symmetry through exchange of wells 1
and 3. Depending on the choices of parameters and with
some rearrangement of the signs, Eq. (A2) coincides with
the Hamiltonian of our model in Eq. (1) in the integrable
limit.

In Fig. 13, we show the DOS for the two Bose-Hubbard
models above for parameters that lead to approximate
Wigner-Dyson distributions. For N = 180 and the pos-
itive parity sector, we get Brody factors β ≈ 0.8. Fig-
ure 13 can be compared with the DOS for the chaotic
triple-well model with the external tilt in Fig. 3 (c). None
of the distributions, that in Fig. 3 (c) or the ones in
Fig. 13, have a Gaussian shape.

FIG. 13. Density of states for (a) the bare Bose-Hubbard
model from Eq. (A1) and (b) the extended Bose-Hubbard
model from Eq. (A2). All eigenvalues from both symmetry
sectors are considered; N = 180. The parameters used lead
to Wigner-Dyson distributions: (a) U0/J = 2.03, (b) U0/J =
1.85, U1/J = 1.2 and α = 2

√
2. The solid lines are Gaussian

fits.

In Fig. 14, we show results for the Shannon entropy,
components of the eigenstates, and off-diagonal elements
of N̂1 for both Bose-Hubbard models in the chaotic do-
main. The plot for the Shannon entropy in Fig. 14 (a),
and Fig. 14 (d) can be compared with Fig. 6. Similarly
to our model, the Bose-Hubbard models present a region
of energy away from the edges of the spectrum where
the entropy is larger and has smaller fluctuations. As
we move closer to borders of the spectrum, a pattern of
regular lines similar to those in Fig. 6 appear.

We studied the distributions of the components of var-
ious eigenstates in the chaotic region of the spectrum,
with energy E/(JN) ∼ 1 [E/(JN) ∼ 1.4] for the bare
Bose-Hubbard model [extended Bose-Hubbard model].
In most cases, the best fit is a Logistic distribution, as
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illustrated in Fig. 14 (b) [Fig. 14 (e)]. For the Bose-
Hubbard models, we do not find an excessive number of
Cαn ∼ 0 as in Fig. 9 (a), but the tails are still longer than
in Gaussian distributions.

The lack of gaussianity of the eigenstates result in the
non-Gaussian distributions of the off-diagonal elements of
the number operators. This is illustrated in Fig. 14 (c)

and Fig. 14 (f) for N̂1. Contrary to Fig. 12, none of
the usual distributions, Laplace, Logistic, Gaussian, or
Lorentzian, capture well the histogram for (N1)αβ .

FIG. 14. Shannon entropy (a,d), distribution of the compo-
nents of an eigenstate in the chaotic region (b,e), and distri-
bution of the off-diagonal elements of the number operator of
well 1 (c,f) for the bare Bose-Hubbard model (a)-(c) and the
extended Bose-Hubbard model (d)-(f) in the positive parity
sector; N = 180. The parameters are the same as in Fig. 13.
In (a,d): Solid line indicates the result for random matrix
theory. In (b,c,e,f): Solid line represents the Laplace; dashed
line, the Logistic; and dotted line, the Gaussian distribution.
The best fit in (b) and (e) is the Logistic distribution. In (b),
E/(JN) = 1.16 and in (e), E/(JN) = 1.33.

Appendix B: Additional results for our triple-well
model

We leave to this appendix some further details about
our triple-well model. This includes the dependence of
the timescales of the spectral form factor on N , a plot
for the participation ratio, and the distributions of off-
diagonal elements for the number operators of the three
wells.

1. Timescales for the spectral form factor

The time tmin to reach the minimum of the correla-
tion hole and the time for the saturation of the spectral
form factor (Heisenberg time) can be derived using the
analytical expression in Eq. (7).

a. Time for the minimum of the correlation hole

To determine the time tmin, we consider the envelope
of the initial oscillatory decay, sin2(σt) → 1, (the choice
sin2(σt) → 1/2 would also be suitable) and use the
expression of the function b2(t/(2πνc)) for short times,
t ≤ 2πνc. The latter is justified, because the minimum of
SFF (t) is the point where the function [η sin2(σt)]/(σt)2,
that causes the decay of the spectral form factor, meets
the b2(t/(2πνc)) function, which is responsible for bring-
ing SFF (t) up to saturation. The time is then obtained
from

dSanalytFF

dt
= 0 (B1)

4η

σ2t3min

=
1

πνc
+

1

πνc(1 + tmin

πνc
)
−

ln
(

1 + tmin

πνc

)
πνc

,

which can be solved numerically to determine tmin. By
expanding the equation above, using tmin � πνc, we get
that

tmin =

(
2πνcη

σ2

)1/3

=

(
16π

9〈SFF 〉2σ3

)1/3

. (B2)

Since 〈SFF 〉 scales with the inverse of the dimension of
the Hilbert space, that is 〈SFF 〉 ∝ N−2, and σ ∝ N , we
have that tmin grows with the number of particles as

tmin ∝ N1/3. (B3)

This is confirmed numerically for all N ’s considered here,
as indicated by the values of tmin marked with circles in
Fig. 5.

b. Saturation time

The saturation time, tS, corresponds to the time when
SFF (t) reaches its infinite-time average 〈SFF 〉. At these
very long times, only the b2 function is relevant, and

since it shows a power-law behavior, b2

(
t

2πνc

)
→ π2ν2

c

3t2
,

the complete saturation is not well determined [95]. We
define tS as the moment when SFF (tS) = (1 − δ)〈SFF 〉,
where δ is a small value that guarantees that SFF (t) is
already within the fluctuations around the infinite-time
average. This gives

tS
2πνc

ln

(
tS/πνc + 1

tS/πνc − 1

)
= δ

(η − 1)〈SFF 〉
1− 〈SFF 〉

+ 1 (B4)

and using that tS � πνc, we arrive at

tS =
πνc

2
√
δ
∝ N, (B5)

which shows that the saturation time grows linearly with
N , as confirmed in Fig. 5, where tS is marked with dia-
monds.
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It is instructive to compare tmin and tS for our model
with the same timescales for the Dicke model [93], which
has two degrees of freedom, and for the one-dimensional
disordered spin-1/2 model with many excitations [95],
which has many degrees of freedom and a Hilbert space
that grows exponentially with the number of sites. While
for our model and the Dicke model, tmin scales with the
number of particles as N1/3 and N1/2, respectively, and
tS ∝ N , for the interacting many-body spin system, tmin

grows with the size of the Hilbert space as D2/3 and tR ∝
D. Based on these timescales, it might be possible to
detect the correlation hole experimentally with the triple-
well model, but more unlikely to get this done with many-
body systems with many sites and short-range couplings.

2. Participation ratio in the Fock basis

We show in Fig. 15 the participation ratio obtained for
eigenstates written in the Fock basis and divided by the
result for GOE random matrices, PGOE

R ∼ D/3. In com-
parison to the results for the Shannon entropy presented
in Fig. 6, we see that the fluctuations are larger for the
participation ratio.

FIG. 15. Participation ratio as a function of energy for N =
90 (light green dots) and N = 270 (blue dots). The solid
horizontal lines mark the results for GOE random matrices.
The dashed vertical line in (c) marks approximately the center
of the chaotic region.

The fluctuations decrease as the system moves from
the integrable limit of Fig. 15 (a) to the chaotic domain
of Fig. 15 (c), but even for ε = 1.5, we still find regions
closer to the edges of the spectrum with patterns of lines
similar to those found in the regular regime. In addition,
the participation ratio is throughout smaller than PGOE

R
and this does not improve as N increases [cf. N = 270
(dark dots) with N = 90 (light dots)].

3. Shannon entropy in the zero-detuning basis

When computing delocalization measures, the results
depend on the basis used. The basis choice is done ac-
cording to the question under investigation. Our studies
of ETH focus on the occupations of each well, which are
observables measured in cold atoms. It is therefore nat-
ural to perform the analysis of the eigenstates in a basis,

where N̂i is diagonal, that is, in the Fock basis |n〉, as
done in Sec. IV. In studies of the transition to chaos,
however, the most appropriate basis corresponds to the
eigenstates of the integrable part of the model considered.
In our case, this basis coincides with the eigenstates |φ〉
of the Hamiltonian in Eq. (1) with zero detuning (ε = 0).

The purpose of Fig. 16 is to compare the Shannon en-
tropy calculated in the Fock basis |n〉 in Fig. 6 (b) and
Fig. 6 (c) [light points in Fig. 16 (a) and Fig. 16 (b)]
with the Shannon entropy computed in the zero-detuning
basis |φ〉 [dark points in Fig. 16 (a) and Fig. 16 (b)].
The data show that using this zero-detuning basis does
not qualitatively change the results for ε/J = 0.7 and
ε/J = 1.5. For ε/J = 0.7 in Fig. 16 (a), patches of
high degrees of delocalization appear for both bases for
E/(JN) ∼ 0.3 and E/(JN) ∼ 0.9; and for ε/J = 1.5 in
Fig. 16 (b), the chaotic region is evident for both bases
for E/(JN) ∈ [−0.2, 1].

FIG. 16. Shannon entropy Sh in the Fock basis (light dots,
as in Fig. 6) and in the zero-detuning basis (dark dots) as a
function of energy for N = 90, U/J = 0.7, and ε/J = 0.7 (a)
[ε/J = 1.5 (b)]. The solid horizontal lines mark the results
for GOE full random matrices. The dashed vertical line in
(b) marks approximately the center of the chaotic region.

If we compare the value of Sh/S
GOE
h as a function of

ε/J , from ε = 0 to ε/J = 1.5, it grows dramatically

for the zero-detuning basis, since in this case, S
|φ〉
h (ε =

0) = 0. One also notices that S
(|φ〉)
h (ε = 1.5)/SGOE

h
reaches values closer to 1 for the zero-detunig basis than

S
(|n〉)
h (ε = 1.5)/SGOE

h for the Fock basis. But the overall
structure of the eigenstates for ε/J in the chaotic region
does not change much from one basis to the other, as
suggested by Fig. 16 and by the results below in Fig. 17.

4. Distribution of the components of the
eigenstates in the zero-detuning basis

The distributions of all the components of an eigen-
state written in the zero-detuning basis and having en-
ergy close to the middle of the chaotic region is given in
Fig. 17 (a). In contrast with the case of the Fock basis
presented in Fig. 9 (a), here we did not find an excessive
number of zero valued components. Yet, in Fig. 17 (b),
we follow the same procedure used in Fig. 9 (b) and kept
only the components associated with states that have
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energy in [−0.2, 1]. With that, the small central peak in
Fig. 17 (a) is erased.

Similarly to what is observed in Fig. 9 (b), the best fit
in Fig. 17 (b) [and even in Fig. 17 (a)] is again Logistic in-
stead of Gaussian. This indicates that the eigenstates of
our triple-well model written in the zero-detuning basis,
just as in the Fock basis, are not ergodic.

FIG. 17. Distributions of the components Cαn of an eigen-
state with energy E/(JN) ∼ 0.5; N = 180, U/J = 0.7 and
ε/J = 1.5. In (a), all components are considered, while in (b),
only those for states with energy in [−0.2, 1] are kept. Solid
line: Laplace distribution; dashed line: Logistic distribution;
dotted line: Gaussian distribution.

5. Distributions of off-diagonal elements

In the main text, we show the distribution of the off-
diagonal elements of the number operators of well 1 in
Fig. 12 (a). Here, we repeat this figure in Fig. 18 (a),
but show also the distributions of the off-diagonal ele-
ments of the number operators of well 2 (b) and 3 (c)
in comparison with Laplace, Logistic, and Gaussian dis-
tributions. The best fit for the three observables is the
Laplace distribution.

FIG. 18. Distributions of the off-diagonal elements of (a) N̂1,

(b) N̂2, and (c) N̂3 for 300 eigenstates with energy E/(JN) ∼
0.5; N = 270, U/J = 0.7 and ε/J = 1.5. The fitting curves
correspond to Laplace (dashed line), Logistic (dashed line)
and Gaussian (solid line) distributions.
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A. Polls, and B. Juliá-Dı́az, Fragmented condensation
in Bose–Hubbard trimers with tunable tunnelling, New
J. Phys. 17, 073014 (2015).

[16] K. Nemoto, C. A. Holmes, G. J. Milburn, and W. J.
Munro, Quantum dynamics of three coupled atomic
Bose-Einstein condensates, Phys. Rev. A 63, 013604
(2000).

[17] R. Franzosi and V. Penna, Self-trapping mechanisms in
the dynamics of three coupled Bose-Einstein conden-
sates, Phys. Rev. A 65, 013601 (2001).

[18] E. M. Graefe, H. J. Korsch, and D. Witthaut, Mean-
field dynamics of a Bose-Einstein condensate in a
time-dependent triple-well trap: Nonlinear eigenstates,
Landau-Zener models, and stimulated Raman adiabatic
passage, Phys. Rev. A 73, 013617 (2006).

https://doi.org/https://doi.org/10.1016/S0370-1573(96)00007-5
https://doi.org/https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1088/1367-2630/17/12/125008
https://doi.org/10.1088/1367-2630/17/12/125008
https://doi.org/10.1088/1367-2630/18/2/025010
https://doi.org/10.1038/ncomms13070
https://doi.org/10.1209/0295-5075/90/10014
https://doi.org/10.21468/SciPostPhysCore.2.1.003
https://doi.org/10.21468/SciPostPhysCore.2.1.003
https://doi.org/10.1103/PhysRevA.85.053609
https://doi.org/10.1103/PhysRevA.85.053609
https://doi.org/10.1103/PhysRevA.88.063608
https://doi.org/10.1088/1367-2630/15/12/123020
https://doi.org/10.1088/0953-4075/47/9/095301
https://doi.org/10.1088/0953-4075/47/9/095301
https://doi.org/10.1103/PhysRevA.88.063645
https://doi.org/10.1088/1367-2630/17/7/073014
https://doi.org/10.1088/1367-2630/17/7/073014
https://doi.org/10.1103/PhysRevA.63.013604
https://doi.org/10.1103/PhysRevA.63.013604
https://doi.org/10.1103/PhysRevA.65.013601
https://doi.org/10.1103/PhysRevA.73.013617


14

[19] M. Hiller, T. Kottos, and T. Geisel, Complexity in para-
metric Bose-Hubbard Hamiltonians and structural anal-
ysis of eigenstates, Phys. Rev. A 73, 061604 (2006).

[20] B. Liu, L.-B. Fu, S.-P. Yang, and J. Liu, Josephson oscil-
lation and transition to self-trapping for Bose-Einstein
condensates in a triple-well trap, Phys. Rev. A 75,
033601 (2007).

[21] M. Hiller, T. Kottos, and T. Geisel, Wave-packet dy-
namics in energy space of a chaotic trimeric Bose-
Hubbard system, Phys. Rev. A 79, 023621 (2009).
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