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In this work we present an analytical and numerical study of rogue and solitary waves in a coupled
one-dimensional nonlinear lattice that involves both axial and rotational degrees of freedom. Using a
multiple-scale analysis we derive a system of coupled nonlinear Schrödinger-type equations in order
to approximate solitary waves and rogue waves of the coupled lattice model. Numerical simulations
are found to agree with the analytical approximations. We also consider generic initialization data
in the form of a Gaussian profile and observe that they can result in the spontaneous formation of
rogue wave-like patterns in the lattice. The solitary and rogue waves in the lattice demonstrate both
energy isolation and exchange between the axial and rotational degrees of freedom of the system.
This suggests that the studied coupled lattice has the potential to be an efficient energy isolation,
transfer, and focusing medium.

I. INTRODUCTION

Rogue waves are large waves that appear suddenly and
disappear without a trace [1]. Ocean rogue waves were
first measured in the North Sea several decades ago [2–
5] sparking interest in their scientific study. Since then,
multiple measurements were conducted elsewhere across
the globe [5–7], providing evidence that ocean rogue
waves are an important feature worthy of further explo-
ration. According to the statistical maritime definition,
rogue waves are localized both in space and time with
an amplitude two times larger than the significant wave
height [1]. The study of the rogue wave has gone well be-
yond oceanographic settings, and includes other spatially
continuous systems, such as water tanks [8–11], ultra-cold
bosonic gases [12], nonlinear optics [13–16], microwave
transport [17], and space plasma [18–21]. Indeed, at this
point, numerous reviews [22] and books [7, 23] have sum-
marized the rapidly expanding state of the art on the
subject.

A central possibility towards the existence of rogue
waves, including many of the above themes, involves the
nonlinear effects of the underlying system. In particular,
in the previously mentioned physical settings the focus-
ing nonlinear Schrödinger equation (NLSE) [24, 25] can
be derived as an approximate model under a suitable set
of assumptions/approximations. Among the exact so-
lutions of NLSE, the Peregrine soliton solution [26] is
considered a prototypical example of a rogue wave, given
that it has only one localized peak in the spatio-temporal
domain. The peak amplitude is three times larger than
the background plane wave amplitude and satisfies the
classical maritime definition of the rogue wave. Indeed,
not only the Peregrine soliton but even the correspond-
ing higher order (breather) generalizations thereof have
been observed in recent experiments [9].

Despite the vast amount of recent activity on the study
of rogue waves, there have been relatively few reports
on their study in solids or structures, and in the asso-
ciated spatially discrete models. Only recently, rogue

waves in chains of interacting particles (so-called granu-
lar crystals) have been numerically and analytically ex-
plored [27]. Another example of a discrete setting where
rogue waves have been studied is the integrable Ablowitz-
Ladik lattice [28], which is known to have an exact solu-
tion that has similar properties as the NLSE Peregrine
soliton. Rogue waves have also been studied in the dis-
crete Hirota lattice [29, 30] and Salerno lattice [31, 32].
It is interesting to note that in a number of relevant
NLSE lattice models, it was recognized that rogue waves
are more likely to arise at or near the integrable limit
(such as the Ablowitz-Ladik lattice), rather than its non-
integrable analogue, e.g., the standard discrete NLSE
case [32–34].

At the level of granular systems, the pioneering work
of [35] was the firs, to our knowledge, to recognize the po-
tential of such systems for unusually large (rogue) fluc-
tuations in late time dynamics, in the absence of dis-
sipation. Recent work in this direction has, in fact,
posited that in Fermi-Pasta-Ulam-Tsingou (FPUT) non-
integrable lattices, rogue fluctuations may be generic for
sufficiently long times [36].

Models of one-dimensional (1D) lattices that include
additional degrees of freedom have also gained signifi-
cant recent attention [37–44]. For example, the stan-
dard model of the granular crystal accounts for axial
(translational) motion of the particles but ignores any
rotation. Models that account for the additional de-
gree of freedom in the form of rotation have the obvi-
ous benefit of being more realistic representations of the
physical system, but such models can also lead to other
novel dynamics such as rotational-translational modes
[37]. Further studies have demonstrated the localized
translational-rotational modes in the coupled linear sys-
tems [38], which can offer mechanisms for energy trans-
fer from one degree-of-freedom to another by utilizing
topologically protected modes [39]. The wave propaga-
tion in the linear, multi-degree-of-freedom 1D lattice has
also been shown to facilitate the energy spreading [40],
or be easily manipulated by tuning the lattice configura-
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tion by using one of the degrees of freedom as a control
knob in the magneto-granular crystal [41]. By introduc-
ing nonlinearity, the linear dispersion relationship can
be corrected with nonlinear terms resulting in nonlin-
ear resonances that can significantly enhance the energy
harvesting capability of the lattice [42, 44]. The action
of nonlinearity may also have significant further impli-
cations, such as the existence of amplitude gaps for the
existence of traveling (nonlinear) waves [43] in a meta-
material lattice constructed out of LEGO bricks. An-
other example of a coupled system (which incorporates
axial and rotational degrees of freedom) is the origami-
inspired mechanical lattice. Recently, it has been shown
that rarefaction solitary waves exist in this lattice [45].
Elastic vector solitons with more than two components
(e.g., two translational and one rotational) have also been
studied recently via combinations of analytical and nu-
merical tools and present a rich phenomenology in their
own right, including the potential emergence of focusing,
sound bullet-forming events [46].

In the present study, we consider a lattice with two
coupled channels (i.e., one that accounts for two sets of
degrees of freedom) with a polynomial nonlinearity to ex-
plore wave-focusing events, leading to the potential for-
mation of solitary or of rogue waves. The coupling mech-
anism investigated in this study can either facilitate or
prevent the transfer of energy between two modes. For
example, we can manage mechanical energy (e.g., en-
ergy harvesting, vibration filtering, and impact mitiga-
tion) in one mode by imposing a specific initial condition
in the other mode. This control mechanism can be po-
tentially useful for multiple degree-of-freedom mechani-
cal setups, which are ubiquitous in engineering systems,
such as beams [47–49], plates [47], tensegrity [50–52], and
origami [45, 53, 54]. The study of such effects on the gen-
eral coupled nonlinear lattice may, in fact, be of broader
interest to applications not only in engineering fields such
as efficient energy transfer and harvesting, but also in
other discrete physics platforms, such as granular crystals
in substrates [44] and nonlinear DNA dynamics [55–57].

The paper is structured as follows: In Sec. II we intro-
duce the physical setup and corresponding model equa-
tions. An analytical approximation is derived in Sec. III
by performing a multiple-scale expansion to obtain an
NLSE-like system. Section IV summarizes the exact and
approximate solitary waves of the derived NLSE, which
are used to initialize the simulations of the full lattice
model, yielding good agreement between the NLSE-based
approximation and the full direct numerical simulation
of the original nonlinear lattice system. Sec. V considers
simulations with initial data given by the Peregrine so-
lution of the derived NLSE-like system. More general
conditions leading to the formation of rogue-wave-like
structures are considered in Sec. VI, where simulations
starting from (more “generic”) Gaussian initial data are
used. The energy exchanged between the two channels
(i.e., the different degrees of freedom) is quantified in
Sec. VII. Section VIII concludes the paper and presents

some possible directions for further study.

II. PHYSICAL SETUP AND MATHEMATICAL
MODEL

In this study, we consider a lattice consisting of par-
ticles with two sets of degrees of freedom: an axial de-
gree of freedom u and a rotational degree of freedom ϕ.
The particles have mass m and rotational inertia j. See
Fig. 1(a) for a schematic representation of an example
physical system with two sets of degrees of freedom; sim-
ilar systems can also be found, e.g., in Ref. [39, 45, 58].
The equivalent mass-spring system of Fig. 1(a) is shown
in Fig. 1(b), where axial and rotational sets of degrees
of freedom are considered separately (see Supplementary
Note 1 for more detail). In the mass-spring visualiza-
tion, there are two one-dimensional lattices composed of
lumped masses and inertial discs that are connected to
each other via nonlinear springs. Other examples where
our model would be relevant include the aforementioned
granular crystal [37], Kresling origami [59], and a com-
pliant mechanism [60]. Note, if the coupled nonlinear
springs are significantly stiff, the lattice can be consid-
ered as a quasi-one degree of freedom system [45].

The coupled lattice is governed by the following equa-
tions of motion,

mnün = V ′1(∆un−1,∆ϕn−1)− V ′1(∆un,∆ϕn), (1a)

jnϕ̈n = V ′2(∆un−1,∆ϕn−1)− V ′2(∆un,∆ϕn), (1b)

where mn and jn are the mass and rotational iner-
tia of the axial and rotational component, respectively,
∆un = un − un+1 and ∆ϕn = ϕn − ϕn+1 are the axial
and rotational strains, with un and ϕn being the axial
displacement and angle of rotation of the n-th particle
respectively. V ′1 and V ′2 are the general nonlinear force
and torque terms determined by differentiating the to-
tal potential energy V = V (∆u,∆ϕ) of the unit cell as
follows:

V ′1 =
∂V

∂(∆u)
, V ′2 =

∂V

∂(∆ϕ)
. (2)

Here, the total potential energy V is a function of ∆u
and ∆ϕ, and therefore the Hamiltonian of this system is

H =
∑
n∈Z

[
1

2

(
mnu̇

2
n + jnϕ̇

2
n

)
+ V (∆un,∆ϕn)

]
. (3)

In the present work, we assume that the masses are
identical (mn = m and jn = j), and that the potential
V is a fourth-order polynomial, which can be thought of
as a Taylor expansion of an application specific potential
(e.g., V has the form of a power-law in the case of the
precompressed granular crystal lattice [61]). In particu-
lar, the total potential energy function V considered here
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(b)
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FIG. 1: Schematic of the axial-rotation coupled lattice. (a)
Prototypical model of the coupled system. The system con-
sists of plates that have mass m and rotational inertia j,
connected through truss-like nonlinear springs. (b) Schematic
of the corresponding 1D lattice with two sets of degrees of
freedom, which is modeled as a coupled lattice system with
lumped mass m and disc with rotational inertia j. The
lumped masses are connected with nonlinear springs, and so
are the discs. Adjacent masses and discs are connected with
nonlinear springs as well, denoted as dashed and dash-dotted
lines. (c) The dispersion relationship both with and without
the coupling term α12. Black dashed line: α11 = α22 = 16
and α12 = 0; red solid lines: α11 = 20, α22 = 12, and α12 = 0;
blue solid lines: α11 = 20, α22 = 12, and α12 = 8.

is:

V (x, y) =
1

2
α11x

2 + α12xy +
1

2
α22y

2

+
1

6
α111x

3 +
1

2
α112x

2y +
1

2
α122xy

2 +
1

6
α222y

3

+
1

24
α1111x

4 +
1

6
α1112x

3y +
1

4
α1122x

2y2

+
1

6
α1222xy

3 +
1

24
α2222y

4. (4)

In the above definition, we assumed nondimensional pa-
rameters (note that we retained the same symbols for

u, ϕ, t)

un →
un
D0

, ϕn →
R0ϕn
D0

, t→ ω0t, (5)

where D0 is the lattice constant, R0 is the radius of the
particle (i.e., of the disc in Fig. 1(b)), and T0 = 1/ω0 =

c
√
m/a11 is the characteristic time scale. The parameter

c is an arbitrary real constant such that α11 = c2 and can
be set to any positive real values including α11 = 4, which
we use in the following sections. The a11 is the dimen-
sional linear stiffness coefficient of the axial channel (see
Supplementary Note 2 for how the nondimensional coef-
ficients α are related to the dimensional coefficients a).
With this rescaling, the coupled equations of motion be-
come

ün = V ′1(∆un−1,∆ϕn−1)− V ′1(∆un,∆ϕn), (6a)

ϕ̈n = V ′2(∆un−1,∆ϕn−1)− V ′2(∆un,∆ϕn). (6b)

III. MULTIPLE-SCALE EXPANSION

To analytically explore the behavior of our coupled lat-
tice, we employ asymptotic expansions accompanied with
multiple-scale variables [27, 62, 63]. We define the per-
turbation parameter 0 < ε� 1 and use the perturbative
decomposition,

un = ε [A1,0 + (A1,1En + c.c.)]

+ ε2
[
A2,0 +

(
A2,1En +A2,2E

2
n + c.c.

)]
+ ε3

[
A3,0 +

(
A3,1En +A3,2E

2
n +A3,3E

3
n + c.c.

)]
,

(7a)

ϕn = ε [B1,0 + (B1,1En + c.c.)]

+ ε2
[
B2,0 +

(
B2,1En +B2,2E

2
n + c.c.

)]
+ ε3

[
B3,0 +

(
B3,1En +B3,2E

2
n +B3,3E

3
n + c.c.

)]
,

(7b)

where En = En(t) = ei(kn−ωt), where k and ω are the
wave number and angular frequency, respectively and
(c.c.) is the complex conjugate. The Ai,j = Ai,j(ξ, τ)
and Bi,j = Bi,j(ξ, τ) are amplitude functions to be de-
termined that depend on the slow scale variables in space
ξ = ε(n−λt) and in time τ = ε2t with λ being the group
velocity. This is the usual dispersive scaling that is em-
ployed to derive the NLSE and involves considerations of
slow spatial scales of size 1/ε and slow temporal scales of
size 1/ε2.

Substituting ansatz (7) into Eq. (6) and collecting the
terms according to the order of ε yields the wave disper-
sion relationship ω = ω(k) at order O(ε1E1

n),

ω2
± = 2

(
α11 + α22 ±

√
(α11 − α22)

2
+ (2α12κ)2

)
× sin2

(
k

2

)
, (8)
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where κ2 = R2
0/r

2 = mnR
2
0/jn is the normalized curva-

ture (i.e., r is a radius of gyration of the disc).
The wave dispersion relationship is shown in Fig. 1(c)

for a few selected sets of linear coefficients: α11, α12,
and α22. If we keep the coupling term α12 = 0 and set
α22 6= α11, this results in two distinct curves denoted as
red lines in Fig. 1(c). Similarly, if we let α11 6= α22, but
now set α12 6= 0, the wave dispersion curves appears as
two blue curves in Fig. 1(c).

At the order O(ε2E1
n), we obtain the group velocity

λ = dω/dk,

λ = − 1

ω±

(
(α11 + α22)±

√
(α11 − α22)

2
+ (2α12κ)2

)
× sin k.

(9)

Note that the group velocity can equivalently also be
obtained, by definition, through differentiating the wave
dispersion relation (Eq. (8)) with respect to the wave
number k [64].

Finally, at order O(ε3E1
n), nonlinear partial differential

equations of A1,1 and B1,1 emerge,

i∂τA1,1 + ν2∂
2
ξA1,1 + ν3∂

2
ξB1,1 + ν4|A1,1|2A1,1 + ν5|B1,1|2B1,1

+ ν6|B1,1|2A1,1 + ν7|A1,1|2B1,1 + ν8B
∗
1,1A

2
1,1 + ν9A

∗
1,1B

2
1,1 = 0, (10a)

i∂τB1,1 + µ2∂
2
ξA1,1 + µ3∂

2
ξB1,1 + µ4|A1,1|2A1,1 + µ5|B1,1|2B1,1

+ µ6|B1,1|2A1,1 + µ7|A1,1|2B1,1 + µ8B
∗
1,1A

2
1,1 + µ9A

∗
1,1B

2
1,1 = 0, (10b)

where superscripts (∗) denote the complex conjugate, and
ν and µ with subscripts are the real constant coefficients
defined in terms of the coefficients α (see section 3 in the
Supplementary Note for more details of the asymptotic
expansion and section 4 therein for the detailed expres-
sions of coefficients νi, µi). Note that Eq. (10) resembles
a coupled-NLSE, such as the Manakov system [65]. Un-
like the Manakov system, Eq. (10) is non-integrable for
generic values of the coefficients ν and µ.

IV. SOLITON INITIAL DATA

To start our investigation, we first consider two spe-
cial cases where Eqs. (10) reduce to well-known cou-
pled NLSEs. In particular, we consider two represen-
tative variants of NLSE, (i) the Manakov system and
(ii) the coherently-coupled NLSE with energy exchange
term. These special cases have exact solutions, which we
use as a reference for the validation of our multi-scale
approximation of the lattice dynamics.

A. Manakov Special Case

If we let all NLSE coefficients be zero except for ν2, µ3,
ν4, ν6, µ7, and µ5, Eq. (10) reduces to the incoherently-

coupled NLSE,

i∂τA1,1 + ν2∂
2
ξA1,1 +

(
ν4|A1,1|2 + ν6|B1,1|2

)
A1,1 = 0,

(11a)

i∂τB1,1 + µ3∂
2
ξB1,1 +

(
µ7|A1,1|2 + µ5|B1,1|2

)
B1,1 = 0.

(11b)

The above equations are generally non-integrable except
for a few special sets of coefficients [66–68]. One of these
is the well known Manakov system [65]. In this section,
we consider the Manakov system with the coefficients
ν2 = µ3 = 1/2 and ν4 = ν6 = µ7 = µ5 = 1, which has
exact solutions of the form,(

A1,1(ξ, τ)
B1,1(ξ, τ)

)
=

(
a(ξ)
b(ξ)

)
ei2q

2τ , (12)

where the envelopes a and b are real valued functions
(without loss of generality in the 1-dimensional case con-
sidered herein), and q is a real parameter associated with
the wave frequency. Among the many possible solutions
of this form, we consider here the fundamental (bright)
one-soliton solutions [25, 65],(

a(ξ)
b(ξ)

)
=

2q√
P 2
1 + P 2

2

(
P1

P2

)
sech(2qξ). (13)

Alternatively, if we assume(
A1,1(ξ, τ)
B1,1(ξ, τ)

)
=

(
a(ξ)ei2q

2
1τ

b(ξ)ei2q
2
2τ

)
, (14)
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FIG. 2: Coupled soliton solutions, which are analytically predicted (solid lines) and numerically computed for the full lattice
equations, Eq. (6), and extracted at τ ≈ 8 (open symbols). (a) Initial data given by the single-component soliton of the
two-component NLSE model, see Eq. (13) with P1 = 1, P2 = 0, (b) Initial data given by the two-component soliton with
different amplitudes, see Eq. (13) with P1 = 1, P2 = 0.5, (c) Initial data given by the incoherently-coupled NLSE soliton with
bimodal b component, see Eq. (15), (d) Initial data given by the coherently-coupled NLSE soliton with unimodal b component,
see Eq. (17) with m = 0, and (e) Initial data given by the coherently-coupled NLSE soliton with bimodal b component, see
Eq. (17) with m = 1. The parameters are ε = 0.09, ε1 = 0.027, q = 0.1, q1 = 0.1, and q2 = 0.08. Red solid lines and
open circles correspond to the axial mode; blue solid lines and open squares correspond to the rotational mode. All numerical
solutions presented are the envelope amplitudes determined via the Hilbert transform. The markers are plotted for every 50
spatial points for better visibility. The insets are zooms of the rotational modes and the markers are plotted for every 25 spatial
points.

where two different real frequency parameters q1 and
q2 exist, Eq. (11) allows the multi-hump soliton solu-
tions [69, 70],

(
a(ξ)
b(ξ)

)
=

2

F (ξ)

[(
P1e

2q1ξ

P2e
2q2ξ

)
+g

(
P2q

2
1e

2q2ξ

−P1q
2
2e

2q1ξ

)
e2(q1+q2)ξ

]
(15)

where P1 and P2 are the arbitrary amplitude parameters,

F (ξ) =
P 2

1

4q21
e4q1ξ +

P 2
2

4q22
e4q2ξ +

P 2
1 P

2
2 (q1−q2)

2

16q21q
2
2(q1+q2)

2 e4(q1+q2)ξ, and

g = [P1P2 (q1 − q2)]/[(2q1q2)2 (q1 + q2)].

B. coherently-coupled NLSE System

Another interesting example where solitary wave so-
lutions can be identified is by setting the coefficients
ν3, ν5, ν7, ν8 and µ2, µ4, µ6, µ9 of Eq. (10) to zero. Un-
der such a selection, Eq. (10) reduces to the coherently-

coupled NLSE [71] with the form:

i∂τA1,1 + ν2∂
2
ξA1,1

+
(
ν4|A1,1|2 + ν6|B1,1|2

)
A1,1 + ν9A

∗
1,1B

2
1,1 = 0,

(16a)

i∂τB1,1 + µ3∂
2
ξB1,1

+
(
µ7|A1,1|2 + µ5|B1,1|2

)
B1,1 + µ8B

∗
1,1A

2
1,1 = 0.

(16b)

Once again, this is a model that frequently arises in non-
linear optics in the realm of processes such as four-wave
mixing and a systematic derivation of such models can
be found, e.g., in [71].

When ν2 = µ3 = 1/2 and ν4 = µ5 = 1, this system also
has solutions of the form given by Eq. (12) [66–68, 71],
but now the amplitudes are only approximations,

a(ξ) =2q sech(2qξ), (17a)

b(ξ) ≈ε1
√

1−G(ξ)22F1

(
−m,m+ 3, 2,

1−G(ξ)

2

)
.

(17b)

Here, 0 < ε1 � 1 is another perturbation parameter,
G(ξ) = tanh(2qξ), and 2F1 is a hypergeometric func-
tion. In this expression, as is discussed in [71], m is a
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non-negative integer, and for each distinct corresponding
value a different branch of vector solitons exists. With
the constraint that m is an integer, in order for m-th
order solitons to exist, the NLSE coefficients require the
following relations, ν9 = (m + 1)(m + 2) − ν6, µ9 =
(m+ 1)(m+ 2)− µ7.

C. Numerical simulations of coupled solitons

Figure 2 shows a comparison of analytical and numer-
ical soliton solutions of axial and rotational components.
The lattice model shown in Eq. (6) initialized with vari-
ous soliton solutions of the special cases considered above
is numerically solved in the domain ξ ∈ [−150, 150] and
τ ∈ [0, 10] with perturbation parameter ε = 0.09 (see
Supplementary Note 6 for the effect of the choice of ε).
We employ a Runge-Kutta-Fehlberg method with step
size h = 10−4 for the time discretization (see Supplemen-
tary Note 7 for the numerical error and convergence).
Spatial profiles of the analytical and numerical solutions
are extracted at τ = 8 (i.e., t ≈ 987.7), and plotted as
solid lines and open symbols, respectively. We choose the
lattice coefficients to correspond to the cases considered
in Sec. IV(A,B). In particular, for the Manakov case, we
used the coefficient values: α11 = α22 = 4, α111 = −1,
α112 = α122 = α222 = α1122 = α1222 = 1, α1111 =
α2222 = 2, and α12 = α1112 = 0. For the coherently-
coupled case, we used: for n = 0, α11 = α22 = 4,
α11 = α22 = 3, α112 = 1, α1111 = 6, α1112 = α1122 = 3/2,
α2222 = 11/2, and α12 = α122 = α1112 = 0. For
n = 1, α11 = α22 = 4, α111 = 3, α222 = 19, α112 = 1,
α1111 = 6, α1112 = 3/2, α1122 = 11/2, α2222 = 363/2,
and α12 = α122 = α1112 = 0. Notice that in all the above
cases, the leading order coupling term α12 is zero, but
the lattice is still coupled at higher orders (e.g., α112u

2 or
α111u

3). Although above coefficients are arbitrarily cho-
sen, they are reasonable approximation for a particular
setup for the mechanical system in Fig. 1. For some ex-
amples, see Supplementary Note 1.

In general, both numerically solved axial and rota-
tional components agree well overall with the analytical
approximation, regardless of the initial condition or the
choice of coefficients. There are, however, also deviations
between the prediction and the actual dynamics, which
is to be expected, given the approximate nature of the
reduction. For example, there exists a small non-zero
solution in the rotational component in Fig. 2(a) (see
inset figure), despite initializing the lattice with a single-
component solitary wave. This suggests that there is a
weak energy leakage from the axial channel (with non-
zero initial data) to the rotational channel (with zero
initial data). However, given that the spatial profile in
rotational mode is very small in amplitude, the relevant
energy transfer is rather minimal (see Supplementary
Note 8.1 for how this energy leakage varies depending
on the strength of the coupling terms).

When we have non-zero amplitude initial data in both

axial and rotational components (Fig. 2(b-e)), we see a
good agreement with the analytical prediction, even for
the case where either or both the axial and rotational
component initial condition is asymmetric rather than
unimodal (Fig. 2(c) and (e)). There exist some slight
disparities in the coherently-coupled NLSE case (i.e.,
Fig. 2(d-e); see inset figures as well), presumably due to
the stronger coupling in the coherently-coupled case (see
Supplementary Note 8.2 for how the disparities vary for
different values of the coupling coefficients). Neverthe-
less, the overall agreement is excellent, regardless of the
initial condition profile.

V. ROGUE WAVE INITIAL DATA

Next, we consider solutions that are spatio-temporally
localized, namely the rogue wave solutions of the two-
component NLSE system (Eq. (11)). Again, the NLSE
coefficient ν2 = µ3 = 1/2 and ν4 = ν6 = µ7 = µ5 = 1 are
chosen (i.e., the Manakov system).

One of the fundamental rogue wave solutions of the
Manakov system [72] is given by(

A1,1(ξ, τ)
B1,1(ξ, τ)

)
=

[
L

(
P1

P2

)
+M

(
P2

−P1

)]
ei4q

2τ

B
,

(18)

where a and b are arbitrary real parameters, the real
frequency parameter is q =

√
P 2
1 + P 2

2 , L = 3
2 −

32q4τ2−8q2ξ2 + i16q2τ+ |f |2e4qξ, M = 4f(2qξ− i4q2τ−
1
2 )e2qξ+i2q

2τ , and B = 1
2 + 32q4τ2 + 8q2ξ2 + |f2|e4qξ with

f being an arbitrary complex parameter.
Setting f = 0, we obtain coupled vector solutions in

the axial and rotational components that are reminiscent
of the Peregrine soliton. We consider two case examples.
One where the axial and rotational components are cho-
sen to be identical (i.e., effectively the single component
situation), see Fig. 3(a) and (b). We also consider a case
example where the rotational component is 1/10 of the
amplitude of the axial component, see Fig. 3(c) and (d).
In both cases, the peak amplitude is three times higher
than the background and is localized at the origin. There
are also density dips in the vicinity of the principal peak.

Using the spatial profile at τ = −5 from the NLSE
approximation as initial data, we simulate the lattice dy-
namics in the domain τ ∈ [−5, 5] and ξ ∈ [−40, 40]. The
perturbation parameter is set to ε = 0.09, and we choose
the following coefficients: α11 = α22 = 4, α122 =

√
2,

α1111 = α1122 = 1, α2222 = 2, and α12 = α111 = α112 =
α222 = α1112 = α1222 = α1222 = 0. The resulting numer-
ical solutions are shown in Fig. 3(e-h). In both compo-
nents, the time until the localization coincides well with
the analytical prediction, however there are slight dis-
crepancies after the formation of the rogue wave (i.e.,
τ > 0). In particular, the peak formed at the origin splits
into smaller amplitude waves in the lattice case. Similar
observations have been made in other lattice settings [27].
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(a) (c)(b) (d)

(e) (g)(f) (h)

FIG. 3: Coupled rogue wave solutions, which are analytically predicted (top row) and numerically solved for the full lattice
equations initialized with Eq. (18) (bottom row). The perturbation parameter is ε = 0.09, and the amplitudes are (a,b,e,f)
P1 = P2 = 0.2, f = 0, and (c,d,g,h) P1 = 0.2, P2 = 0.02, and f = 0.

10-110-1 (a) (b)

FIG. 4: Spatial profiles of coupled rogue wave solutions ex-
tracted at τ = 0 for NLSE (solid lines) and lattice solutions
(open symbols) (a) P1 = P2 = 0.2, f = 0, and (b) P1 = 0.2,
P2 = 0.02, and f = 0. Red lines and circles: axial component;
Blue lines and squares: rotational component.

As discussed in Ref. [27], the formation of smaller waves
may be induced by the modulational instability of the
NLSE background, which is activated due to the large
peak amplitude (see Supplementary Note 8.3 for how the
deviation from the analytical prediction grows as time
evolves).

In Fig. 3(g-h) where the axial and rotational compo-
nent have different amplitudes, the waves tend to focus
and thus localize at the origin. In the axial component,
we see that the peak amplitude of the numerical solution
is slightly lower than the analytical prediction. On the
contrary, the rotational component shows a peak that
is twice as high as the analytical prediction. The de-
viation from the analytical prediction suggests there is
energy leakage from the axial component into the rota-
tional component (see Supplementary Note 5 for longer
time spatio-temporal evolution and how it differs from
analytical prediction). We believe that this is due to

the non-zero coupling terms of the lattice equation (e.g.,
α122), which possibly trigger the energy transfer between
two components, in a way that is not reflected in the re-
duced NLSE system (see Supplementary Note 9 for the
effect of coupling terms on the evolution of the coupled
rogue wave solution).

VI. GAUSSIAN INITIAL DATA

To further explore rogue wave solutions in the cou-
pled lattice, we hereafter numerically study Eq. (10) in
the more general case (i.e., with all coefficients being
present). However, as mentioned previously, Eq. (10) is
non-integrable, therefore no exact Peregrine-like solution
is analytically known. Thus, the lattice cannot be initial-
ized with an analytical prediction to examine the time
evolution. As an alternative, we consider more general
unimodal shaped data. In particular, we use the Gaus-
sian initialization, which has been shown to be effective
in leading to rogue-like waves as a result of the gradi-
ent catastrophe phenomenon in the focusing NLSE [73].
This has been mathematically explored originally in the
so-called semi-classical continuum NLSE system in the
work [73], and more recently explored in correspond-
ing experimental studies in nonlinear optics in the work
of [16].

Let the initial data be the Gaussian envelope func-
tion [27],(

A1,1(ξ, τ = 0)
B1,1(ξ, τ = 0)

)
=

(
P1

P2

)
exp

(
− ξ2

4σ2

)
, (19)

where P1 and P2 are arbitrary real parameters that de-
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termine the amplitude of the initial profile of A1,1 and
B1,1 respectively, and σ is the width of the localiza-
tion. The numerical simulation is then conducted in the
domain τ ∈ [0, 5] and [0, 20], and ξ ∈ [−30, 30] with
the perturbation parameter ε = 0.09. The lattice co-
efficients are set to: α11 = α22 = 16, α12 = 0.016,
α111 = α222 = α1111 = α1112 = α1122 = α1222 = α2222,
and α112 = α122 = 1.6. Here, these choices are made
such that the NLSE becomes the focusing equation (i.e.,
νi > 0 and µi > 0). The corresponding simulations of the
NLSE (Eq. (10)) are also conducted as a reference solu-
tion to be compared with the lattice dynamics solutions.
Again, for both lattice and NLSE simulations, we use
Runge-Kutta-Fehlberg method with step size h = 10−4

and η = 5× 10−6, respectively, for the time discretization
of the lattice equation (Eq. (6)) and NLSE (Eq. (10)).
The NLSEs are spatially discretized via fourth order cen-
tral difference scheme with grid size dξ = 10−2. Note that
the lattice equation is solved in t domain, and NLSE in
τ domain.

Figures 5 and 6 show both lattice and NLSE simulation
results for two different cases of initial conditions. Specif-
ically, (i) the initial condition where axial and rotational
modes have equal amplitude (i.e., P1 = P2 = 1.0; Fig. 5),
and (ii) the initial condition with the rotational mode be-
ing 1/10 of axial mode (i.e., P1 = 2.0, P2 = 0.2; Fig. 6)
to examine how the energy transfer differs between the
lattice and the NLSE simulation. The localization width
σ = 4 is kept constant between the two cases.

First, if we use the equal amplitude initial conditions,
the NLSE creates a tree-like pattern stemming from sin-
gle peak localization at τ ≈ 1.1. This is in line with
the integrable NLSE theory of [73] and has also been
observed in other systems, both continuum [12] and dis-
crete [27]. The single peak localization has dips on the
left and right side, which are directly reminiscent of a
Peregrine soliton. In the lattice simulation, we also see
the tree-like pattern starting from the peak at τ ≈ 1.1,
where the single large peak is formed. If we closely exam-
ine the peak at τ ≈ 1.1, we can see that both the height
and width of the peak agree with the NLSE prediction,
as can be seen in Fig. 5(e). As can be observed, the
branches formed after τ ≈ 2 show small differences be-
tween the lattice simulation and the NLSE (e.g., the two
center peaks are formed slightly later in the lattice spatio-
temporal evolution compared to the NLSE and the peak
amplitude is different). However, in general, the NLSE
and lattice behave in a fairly similar manner, especially
from the standpoint of the time at which the wave local-
izes in the early stage of the time evolution, the formation
of the original Peregrine pattern, and also the tree-like
pattern that follows.

Similarly, if we employ a smaller amplitude initial con-
dition in the rotational mode, the NLSE and the lat-
tice agree well in their spatio-temporal profiles. In the
NLSE simulation, the axial component (Fig. 6(a)), wide
Gaussian initial data first decreases and then forms the
teardrop-like peak at τ ≈ 1.01. This single peak splits

=1.1 =2.0

(a) (b)

(c) (d)

(e) (f)

FIG. 5: Numerical solutions of NLSE (a,b) and of the lattice
(c,d) with all coefficients in Eq. (10) being non-zero. The per-
turbation parameter is ε = 0.09, the width of the localization
is σ = 4, and the amplitudes are P1 = P2 = 1.0. Spatial
profiles of NLSE and lattice solutions corresponding to the
green dash-dotted lines in panel (a-d) for (e) τ = 1.1 and (f)
τ = 2.0. Solid lines are the NLSE solutions and open symbols
denote the lattice simulation. Red solid lines and open circles:
axial component; blue solid lines and open squares: rotational
component. Here, NLSE solutions in (e-f) are scaled with ε
for comparison.

into two peaks at τ ≈ 1.5 accompanied by adjacent dips,
then into three. In general, the profile develops into a
tree-like pattern, similar to the equal amplitude initial
data case. As for the rotational component of the NLSE
shown in Fig. 6(b), in contrast to the axial component,
the amplitude first increases and reaches its highest am-
plitude at τ ≈ 0.5 while keeping the broad width of the
Gaussian initial profile. The peak forms slightly ear-
lier than in the axial component case. Similar behavior
can be observed for two peaks formed around τ ≈ 1.2.
As time proceeds, similar to axial component, the single
peak splits into two, and then three small peaks. In the
lattice solution, we can observe similar dynamics. For
instance, the axial component forms a teardrop-like peak
at τ ≈ 1.01 following the two dips that appears slightly
earlier. When these two dips appear in the axial compo-
nent, the rotational component shows a single peak at
τ ≈ 1.0. In the spatial profiles of the axial and rotational
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(a) (b)

(c) (d)

(e) (f)

FIG. 6: Numerical solutions of NLSE (a,b) and lattice (c,d)
with all coefficients in Eq. (10) being non-zero. Perturbation
parameter is ε = 0.09, width of the localization is σ = 4, and
the amplitudes are P1 = 2.0, P2 = 0.2. Spatial profiles of the
NLSE and lattice solutions corresponding to the green dashed
lines in panel (a-d) for (e) τ = 2.2 and (f) τ = 8.0. Solid lines
are the NLSE solutions and open symbols denote the lattice
simulation. Red solid lines and open circles: axial component;
blue solid lines and open squares: rotational component. Here,
NLSE solutions in (e-f) are scaled with ε for comparison.

component extracted at τ = 1.01 (Fig. 6(e-f)), we see the
lattice solution qualitatively matches with the NLSE so-
lution, with some disparities in their width. However, as
we also observe in the equal amplitude initial data case,
the spatio-temporal evolution of the lattice starts to show
large deviation from the NLSE behavior as time proceeds.
After τ ≈ 2 the pattern formation (e.g., number of peaks)
of the lattice significantly deviate from those of NLSE.

VII. ENERGY EXCHANGE

In this section, we revisit the soliton and rogue wave
solutions of the lattice simulation studied in the previ-
ous sections, and examine the energy profiles in the axial
and rotational modes as a function of time. We split
the energy into two groups, (i) axial component and (ii)

rotational components as follows:

E1 =
1

2
u̇2 +

1

2
α11u

2 +
1

6
α111u

3 +
1

24
α1111u

4 +
1

2
Ecp,

(20a)

E2 =
1

2
ϕ̇2 +

1

2
α22ϕ

2 +
1

6
α222ϕ

3 +
1

24
α2222ϕ

4 +
1

2
Ecp,

(20b)

Ecp = α12uϕ+
1

2
α112u

2ϕ+
1

2
α122uϕ

2

+
1

6
α1112u

3ϕ+
1

4
α1122u

2ϕ2 +
1

6
α1222uϕ

3. (20c)

Note that we evenly distribute the energy due to cou-
pling terms (or energy exchange terms) Ecp among E1

and E2. We investigate these two energy quantities for
the solitary, rogue, and Gaussian induced wave solutions
shown in Fig. 2, Fig. 3, and Fig. 6 respectively. Figure 7
shows the energy of the axial and rotational component
of different cases of the lattice simulation.

First, we take a closer look at the soliton solution case
shown in Fig. 7(a) and (b), which corresponds to the soli-
ton solutions shown in Fig. 2(a) and (c) respectively. In
general, both soliton solution energy profiles suggest that
the energy does not transfer from one mode to another
(i.e., E1 and E2 are constant throughout), except for the
minimal leakage seen in the inset plot of Fig. 7(a). This
energy leakage can also be seen in the spatial profile in
Fig. 2(a), where the rotational mode profile has a very
small peak at the center. The magnitude of the energy
in the rotational mode rapidly increases from zero and
then saturates, in this case around E2/Et = 2.5× 10−5,
while showing the oscillatory behavior due to the fast
time scale dynamics. Indeed, the oscillatory nature of
the solution at constant energy preserves the dynamics
essentially thereafter. As mentioned earlier, although we
set the leading order coupling term α12 = 0, the lattice
of interest is still coupled at higher orders (e.g., α112u

2 or
α111u

3). Therefore, with non-zero axial amplitude u, the
rotational mode is excited, and effectively the axial mode
plays the role of an external potential of small amplitude,
leading to practically linear dynamics in the rotational
mode. Nonetheless, the energy leakage remains minimal
in this case (the energy leakage can be suppressed by em-
ploying weaker coupling coefficients in the lattice while
maintaining the validity of the Manakov approximation;
see Supplementary Note 8). The profiles in Fig. 7(b) also
suggest the suppression of energy leakage since the energy
profiles are almost constant, with minimal energy leak-
age from the axial to rotational the component. In the
inset panel of Fig. 7(b), we see that the deviation from

the initial value E2−E2(0)
Et

is quite small (≈ 5×10−5) and

practically negligible (but still far more significant than
the numerical errors; see Supplementary Note 7).

In Fig. 7(c) we show the time evolution of the energy
component of the coupled rogue wave solution, which cor-
responds to the strain wave field in Fig. 3(g,h), but with
τ = 35. We observe a continual and gradual exchange
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10-5

10-5

(E
2
-E
2
(0
) )
/E
t

(a)

(c)

(b)

(d)

FIG. 7: Energy profiles of axial E1 and rotational E2 compo-
nent of the lattice, normalized by the total energy Et. Red
solid lines, axial component E1; blue solid lines, rotational
component E2. Each panel corresponds to the soliton so-
lutions: (a) Fig. 2(a), (b): Fig. 2(c), and rogue wave solu-
tions (c): Fig. 3(g-h), and Gaussian initial data solutions (d):
Fig. 6(c-d). The inset panels in: (a) represents a magnified
view of the rotational mode in τ ∈ [0, 10] and τ ∈ [5, 5.05]; (b)
represents the deviation from the initial energy in rotational
component, [E2 − E2(0)]/Et.

of energy between the two channels. As time progresses,
the energy distributed to the rotational component grows
and reaches its maximum, which is about 1/4 of the en-
ergy in axial component at τ ≈ 14. Then, E2 decreases
and attains a minimum at τ ≈ 32. Even in the longer
term behavior, this gradual and partial exchange of the
energy continues in a recurrent manner (see also Supple-
mentary Note 5 for the spatio-temporal evolution).

Finally, we explore the energy exchange between the
axial and rotational components of the rogue wave-like
solutions induced by Gaussian initial data, shown in
Fig. 7(d), which correspond to the strain wave field in
Fig. 6. Unlike the above three cases, we see significant
energy transfer between the two components. As ob-
served in the spatio-temporal evolution of the lattice so-
lution, the axial and rotational component exchange a
significant amount of energy quite quickly. Indeed the
rotational component of the energy E2 overtakes the ax-
ial component at τ ≈ 4.5. When the first peak forms in
the axial component of the lattice simulation (τ ≈ 1.01; a
narrow peak forms in rotational component), we see that
the two energy components become almost identical. In-
terestingly, even after the single peak formation, when
the spatio-temporal profile of the lattice shows peaks, the
difference between the two energy component becomes
small. For instance, two energy components essentially

become identical again, when four peaks become signif-
icantly high in amplitude at τ ≈ 1.8 in the rotational
component (two narrow peaks form in the axial compo-
nent). Similar behavior can also be observed at τ ≈ 2.5
and τ ≈ 3.6. (additional analysis in Supplementary Note
8.4 shows how the energy transfer between the two chan-
nels depends on the strength of the coupling terms.)

In summary, we observe three qualitatively different
types of behavior of energy transfer. For solitary wave
initial data, there is minimal transfer of energy. For Pere-
grine initial data, there is a partial transfer of energy be-
tween channels, and for Gaussian initial data, the energy
is transferred continually between the two channels in an
aperiodic and oscillatory fashion.

VIII. CONCLUSIONS AND FUTURE WORK

In conclusion, we have analytically and numerically
explored nonlinear waves in an FPUT lattice with ax-
ial and rotational modes involving up to cubic stiffness.
We first derived coupled NLSE equations via a multiple-
scale analysis. Variants of both incoherently-coupled and
coherently-coupled forms were considered and used to ap-
proximate the full lattice dynamics. The approximation
based on the solitary wave solution of the incoherently-
coupled NLSE compared favorably to the numerical sim-
ulation of the coupled FPUT lattice, both with and with-
out energy exchange terms. In the coherently-coupled
NLSE case, we also explored more complex waveforms in
addition to the simplest unimodal solitary wave (where
one component played the role of an effective potential
for the other). Furthermore, rogue wave type dynamics
were studied. First we used the exact coupled rogue wave
solution of the incoherently-coupled NLSE system (i.e.,
Manakov system), as the initial condition. Regardless
of the initial profile, the localization time of the analyt-
ical and numerical solution matched well, except for the
small but noticeable energy leakage from the axial com-
ponent to the rotational component. When initialized
with a sufficiently wide Gaussian envelope function, the
lattice showed a clear localization due to the gradient
catastrophe phenomenon, accompanied by the formation
of secondary peaks, in line with a similar phenomenology
previously analyzed in the NLSE realm. Depending on
the configuration and the initial data, coupled lattices of
the FPUT type considered herein can effectively isolate
the energy (e.g., soliton solutions) to one of the modes or
continuously exchange the energy between modes while
forming a peak (e.g., Gaussian initial data solutions).

We believe that these findings open an analytical win-
dow of investigation of a multitude of systems that have
recently been explored in various experiments at the
multi-component setting [43, 45, 46]. This allows one
to observe wave localization in a general coupled dis-
crete nonlinear system, and may, in principle, open av-
enues to explore energy control in mechanical systems.
At the same time, while here we presented the rele-
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vant multi-component technique at the one-dimensional,
two-component setting, there are various recent works
that suggest the relevance of corresponding considera-
tions for higher numbers of components [46] or higher
dimensions [74].
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pidis, M. Molerón, A. J. Mart́ınez, M. A. Porter, P. G.
Kevrekidis, and C. Daraio, New Journal of Physics 23,
043008 (2021).

[75] See Supplemental Note 1 contains further details of pro-
totypical model, which includes Ref. [76].

[76] H. Yasuda, T. Tachi, M. Lee, and J. Yang, Nature Com-
munications 8, 962 (2017).

http://dx.doi.org/10.1016/j.eml.2016.08.001
http://dx.doi.org/ 10.1115/1.4033457
http://dx.doi.org/ 10.1115/1.4033457
http://dx.doi.org/ 10.1115/1.4033457
http://dx.doi.org/ 10.1038/s41467-018-05908-9
http://dx.doi.org/10.1103/PhysRevE.100.062206
http://dx.doi.org/10.1103/PhysRevE.100.062206
http://dx.doi.org/ 10.1126/sciadv.aau2835
http://dx.doi.org/ 10.1126/sciadv.aau2835
http://dx.doi.org/ 10.1103/PhysRevLett.123.024101
http://dx.doi.org/ 10.1016/j.jsv.2017.06.004
http://dx.doi.org/ 10.1016/j.jsv.2017.06.004
http://dx.doi.org/10.1016/j.ijsolstr.2018.01.027
http://dx.doi.org/10.1016/j.ijsolstr.2018.01.027
http://dx.doi.org/10.1016/j.ijsolstr.2020.08.020
http://dx.doi.org/10.1016/j.ijsolstr.2020.08.020
http://dx.doi.org/ 10.1038/s41598-018-29816-6
http://dx.doi.org/ 10.1038/s41598-018-29816-6
http://dx.doi.org/ 10.1016/j.eml.2020.100668
http://dx.doi.org/ 10.1016/j.compscitech.2021.108740
http://dx.doi.org/10.1088/1361-665X/ab524e
http://dx.doi.org/10.1088/1361-665X/ab524e
http://dx.doi.org/10.1016/j.jmps.2018.05.012
http://dx.doi.org/10.1016/j.jmps.2018.05.012
http://dx.doi.org/10.1103/PhysRevLett.62.2755
http://dx.doi.org/10.1103/PhysRevLett.62.2755
http://dx.doi.org/10.1103/PhysRevE.47.684
http://dx.doi.org/10.1103/PhysRevE.47.684
http://dx.doi.org/10.1098/rsos.200774
http://dx.doi.org/10.1098/rsos.200774
http://dx.doi.org/ 10.1016/j.jmps.2016.06.005
http://dx.doi.org/ 10.1016/j.jmps.2016.06.005
http://dx.doi.org/10.1557/opl.2012.536
http://dx.doi.org/10.1557/opl.2012.536
http://dx.doi.org/10.1002/9781118516485
http://dx.doi.org/10.1002/9781118516485
http://dx.doi.org/10.1007/978-1-4757-3524-6
http://dx.doi.org/10.1103/PhysRevB.47.14561
http://dx.doi.org/10.1103/PhysRevB.47.14561
http://dx.doi.org/10.1364/ol.18.001406
http://dx.doi.org/10.1016/0375-9601(94)91282-3
http://dx.doi.org/10.1016/0375-9601(94)91282-3
http://dx.doi.org/10.1103/PhysRevE.49.3376
http://dx.doi.org/10.1103/PhysRevE.49.3376
http://dx.doi.org/10.1103/PhysRevLett.122.043901
http://dx.doi.org/10.1103/PhysRevLett.122.043901
http://dx.doi.org/10.1103/PhysRevE.102.042212
http://dx.doi.org/10.1103/PhysRevE.102.042212
http://dx.doi.org/10.1016/B978-0-12-410590-4.X5000-1
http://dx.doi.org/10.1016/B978-0-12-410590-4.X5000-1
http://dx.doi.org/10.1103/PhysRevLett.109.044102
http://dx.doi.org/10.1103/PhysRevLett.109.044102
http://dx.doi.org/10.1002/cpa.21445
http://dx.doi.org/10.1002/cpa.21445
http://dx.doi.org/ 10.1088/1367-2630/abdb6f
http://dx.doi.org/ 10.1088/1367-2630/abdb6f
http://dx.doi.org/ 10.1038/s41467-017-00670-w
http://dx.doi.org/ 10.1038/s41467-017-00670-w

	I Introduction
	II Physical setup and mathematical model
	III Multiple-scale expansion
	IV Soliton Initial Data
	A Manakov Special Case
	B coherently-coupled NLSE System
	C Numerical simulations of coupled solitons

	V Rogue Wave Initial Data
	VI Gaussian Initial Data
	VII Energy exchange
	VIII Conclusions and Future Work
	 Acknowledgements
	 References

