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We devise reduced-dimension metrics for effectively measuring the distance between two points
(i.e., microstructures) in the microstructure space and quantifying the pathway associated with mi-
crostructural evolution, based on a recently introduced set of hierarchical n-point polytope functions
Pn. The Pn functions provide the probability of finding particular n-point configurations associated
with regular n-polytopes in the material system, and are a special sub-set of the standard n-point
correlation functions Sn that effectively decompose the structural features in the system into regular
polyhedral basis with different symmetries. The n-th order metric Ωn is defined as the L1-norm
associated with the Pn functions of two distinct microstructures. By choosing a reference initial
state (i.e., a microstructure associated with t0 = 0), the Ωn(t) metrics quantify the evolution of
distinct polyhedral symmetries and can in principle capture emerging polyhedral symmetries that
are not apparent in the initial state. To demonstrate their utility, we apply the Ωn metrics to
a 2D binary system undergoing spinodal decomposition to extract the phase separation dynamics
via the temporal scaling behavior of the corresponding Ωn(t), which reveals mechanisms governing
the evolution. Moreover, we employ Ωn(t) to analyze pattern evolution during vapor-deposition
of phase-separating alloy films with different surface contact angles, which exhibit rich evolution
dynamics including both unstable and oscillating patterns. The Ωn metrics have potential appli-
cations in establishing quantitative processing-structure-property relationships, as well as real-time
processing control and optimization of complex heterogeneous material systems.

I. INTRODUCTION

The time-dependent behaviors of materials under ex-
treme conditions (e.g., under ultra-fast cyclic thermal
loading in additive manufacturing, or under chemically
aggressive environment, or in the critical state of frac-
ture) generally depend on coupled (non-equilibrium) pro-
cesses that induce evolution of microstructural features
on multi-length and time scales. Quantifying such mi-
crostructure evolution (i.e., 4D material behavior) is a
crucial first step for understanding the physics governing
the 4D material behaviors and the design and optimiza-
tion of the material systems of interest.

One key challenge for microstructure quantification in-
volves the hierarchy of structural disorder across multiple
length scales [1]. Distinct from an crystalline or order sys-
tem, which only requires a small number of “representa-
tions” (such as the set of lattice vectors) to uniquely and
completely determine the structure, disordered systems
are typically much more complex and require the spec-
ification of all degrees of freedom (e.g., the coordinates
of all atoms in a metallic glass, or all pixel values for an
image of a disordered composite material) for a complete
description. Therefore, an alternative approach to quan-
tification of disordered materials is to derive reduced di-
mension representations that statistically capture the key
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features of the systems, e.g., those crucial to determining
the physical properties, instead of a precise description
all of structural details [2–4].

Examples of quantitative representation of disordered
systems include Gaussian random fields [5], geometric
descriptors (e.g., grain/particle size and shape distribu-
tion) [6–9], spectral density functions [10–12], and n-
point correlation functions [2, 3, 13–27], to name but
a few. The encoding process of these methods (e.g.,
extracting the representations from available structural
or imaging data) are typically manually defined with
clearly physical interpretations. However, due to the
manual definitions, these representations often have lim-
ited degrees of freedom to approach completeness for ar-
bitrary material systems [28–30]. On the other hand,
machine learning (ML) techniques have recently been
extensively applied in representation learning for com-
plex disordered material systems. Most of these ML ap-
proaches propose either complete but non-explainable,
or explainable but incomplete representations. The for-
mer include purely data-driven generative models, e.g.,
restricted Boltzmann machines [31], variational autoen-
coders (VAE) [32], and generative adversarial networks
(GAN) [33, 34], where a concise and near-complete repre-
sentation is learned through microstructure samples, yet
the encoders of which are composed of general-purpose
neural networks and are non-explainable.

Among other descriptors, the n-point correlation func-
tions Sn encode the occurrence probabilities of specific n-
point configurations in the microstructure [35]. The set of
correlation functions up to infinite orders fully character-
izes a random field [1, 35], and is therefore asymptotically
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complete. While it is empirically shown that some mate-
rial systems can be represented by concise sets of lower-
order correlation functions, e.g., metallic alloys, ceramic
matrix composites, and certain porous systems [36–43],
there is currently a lack of systematic tools for choosing
a concise and nearly complete set of correlations for any
particular material system [44]. In the case when stan-
dard lower-order functions, such as the two-point cor-
relation functions S2, are not sufficient to characterize
the system of interest, one can either incorporate non-
standard lower-order functions encoding, e.g., clustering
or surface information [4]; or employ higher-order func-
tions (e.g., S3) [27]. However, the complexity involved in
computing higher-order functions Sn with n ≥ 4 strongly
limits their applications in material modeling.

Recently, we have introduced a set of hierarchical n-
point polytope functions Pn [45, 46]. The Pn functions
provide the probability of finding particular n-point con-
figurations associated with regular n-polytopes in the
material system, and a special sub-set of the standard
n-point correlation functions Sn that effectively decom-
poses the structural features in the systems into regu-
lar polyhedral basis with different symmetry, and thus,
encode partial higher-order correlation information. We
have successfully employed time-dependent Pn functions
to quantify evolving patterns during thin film deposition
[47], inspired by the work on time-dependent two-point
correlation functions [36, 39, 48, 49].

Here, we further devise reduced-dimension metrics for
effectively measuring the distance between two points
(i.e., microstructures) in the microstructure space and
quantifying the pathway associated with microstructural
evolution, based on the Pn functions. In particular, the
n-th order metric Ωn is defined as the L1 norm associated
with the Pn functions of two distinct microstructures. By
choosing a reference initial state (i.e., a microstructure
associated with t0 = 0), the Ωn(t) set quantifies the evo-
lution of distinct polyhedral symmetries and can in prin-
ciple capture emerging polyhedral symmetries that are
not apparent in the initial state. To demonstrate their
utility, we apply the Ωn metrics to a 2D binary system
undergoing spinodal decomposition to extract the phase
separation dynamics via the temporal scaling behavior
of the corresponding Ωn(t). Moreover, we employ Ωn(t)
to analyze pattern evolution during vapor-deposition of
phase-separating alloy films with different surface contact
angles, which exhibit rich evolution dynamics including
both unstable and oscillating patterns.

We note that the two-point correlation functions S2

have been employed to analyze the dynamical scaling of
evolving systems by extracting a growing length scale
`(t) [36, 50]. In particular, it has been shown that
S2(r; t) ∼ f(r/`(t)), where the functional form of f de-
pends on the microstructure and spatial correlations, and
`(t) ∼ (t− t0)α, where α is a universal constant only de-
pending on the growth mechanisms and not on the mi-
croscopic details of the system [50]. While the length
scale analysis directly provides information on growth

mechanisms, here our Ωn(t) metrics also emphasize mi-
crostructure information, and reflects the dynamic path
of the evolution of system in the microstructure space.

The rest of the paper is organized as follows: In Sec.
II, we describe in detail the definition of the polytope
functions Pn, the associated metric Ωn, as well as the
phase field models for generating microstructural evolu-
tion data. In particular, we derive the temporal scaling
of Ωn(t) and its connection to the temporal scaling of the
volume fraction of the evolving system that typically en-
codes the dynamics signature of the underlying physics.
In Sec. III, we present the analysis of a 2D binary sys-
tem undergoing spinodal decomposition and pattern evo-
lution during vapor-deposition of phase-separating alloy
films, using the Ωn(t) metrics. In Sec. IV, we provide
concluding remarks and discuss potential applications of
Ωn(t) in establishing quantitative processing-structure-
property relationships, as well as in real-time processing
control and optimization of complex heterogeneous ma-
terial systems.

II. METHODS

A. n-Point polytope functions

Without loss of generality, consider a heterogeneous
material system in d-dimensional Euclidean space Rd
with an evolving binary microstructure in a constant vol-
ume V. The snapshot of the microstructure at specific
time point t is completely determined by the associated
indicator function L(i)(x; t), i.e.,

L(i)(x; t) =

{
1, x ∈ Vi
0, x ∈ Vi,

(1)

where x is a position vector in Rd, i = 1, 2 is the
phase indicator and Vi indicates regions assocaited with
phase i. The standard n-point correlation function

S
(i)
n (x1,x2, . . . ,xn; t) is defined as [1, 35]

S(i)
n (x1,x2, . . . ,xn; t) = 〈L(i)(x1; t)·L(i)(x2; t) . . .L(i)(xn; t)〉

(2)

where 〈.〉 denotes ensemble average. S
(i)
n (Xn; t), where

Xn = {x1,x2, . . . ,xn} provides the probability of find-
ing a specific n-point configuration defined by Xn in the
phase of interest (i.e., phase i) at time t. In the subse-
quent discussions, we will drop the phase indicator i for
convenience and Sn(Xn; t) is always associated with the
phase of interest.

In Refs. [45, 46], we introduced a special subset of the
standard Sn, which we referred to as the n-point polytope
functions Pn(r; t), i.e.,

Pn(r; t) = Sn(Xn | Xn ∈ P(n; r); t) (3)

where P(n; r) is the set of vertices of a d-dimensional reg-
ular polytope with n vertices and edge length r. Pn(r; t)
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FIG. 1: Schematic illustration of the n-point polytope func-
tions Pn.

provides the probability that all of the vertices of a reg-
ular n-polytope with edge length r fall into the phase
of interest when the polytope is randomly placed (both
transitionally and rotationally) in the material system at
time t. For a statistically homogeneous and isotropic sys-
tem without long-range orders, Pn(r = 0; t) = φ(t) and
Pn(r →∞; t) = φn(t), where φ(t) is the volume fraction
(i.e., probability of a finding a randomly placed point
falling into the phase of interest) at time t (see Fig. 1
for illustration). These behaviors allow us to introduce a
normalized form of Pn(r; t), i.e.,

fn(r; t) =
Pn(r; t)− φn(t)

φ(t)− φn(t)
(4)

It is clear from Eq. (4) that fn(r = 0; t) = 1 and fn(r →
∞; t) = 0.

We note that in R2, n can take any integer number
greater than d = 2; while in R3, there are only five
regular polyhedra (i.e., the Platonic solids, with n =
4, 6, 8, 12, 20) and thirteen semi-regular polyhedra (i.e.,
the Archimedean solids) that possess uniform lengths for
all edges. It has been shown [45–47] that the Pn func-
tions can successively include higher-order n-point statis-
tics of the features of interest in the microstructure in a
concise, explainable and computationally feasible man-
ner, and can be efficiently computed from given imaging
data of the material systems. In addition, the Pn func-
tions effectively “decompose” the structural features of
interest into a set of “polytope basis”, allowing one to
easily detect any underlying symmetry or emerging fea-
tures during the structural evolution. Their information
content is also investigated via inverse microstructure re-
constructions [46].

B. Pn-based distance metrics Ωn for microstructure
space

The polytope functions Pn allow us to compute cor-
responding scalar metrics Ωn that effectively measure
the “distance” between to points (i.e., two distinct mi-
crostructures) in the microstructure space. Without loss
of generality, consider an evolving microstructure M(t)
that is driven by some external stimuli. We define the
distance metric Ωn between the microstructure M(t1)
and M(t2) as

Ωn(t) =
1

N(L)

L∑
r=0

|Pn(r; t2)− Pn(r; t1)|, (5)

where | · | is the L1 norm, t = t2− t1, L is the edge length
of the largest polytope considered and N(L) is the num-
ber of different sized polytopes. We note that Ωn defined
in Eq. (5) quantifies the distinctions betweenM(t1) and
M(t2) with respect to specific n-point correlations cor-
responding to the n-polytope configurations. L1 norm
is used here so that the temporal scaling in the volume
fraction can be preserved. Similar metrics based on L1

norm have been recently employed by Lavrukhin et al.
to probe the homogeneity conditions implicitly assumed
in the study of heterogeneous materials [51].

In the analysis of an evolving microstructure, it is con-
venient to select a global reference point, e.g., the initial
microstructure M(t = 0). In this case, Ωn(t) measures
the “distance” from the microstructure M(t) at time t
to the initial microstructure in the microstructure space,
i.e.,

Ωn(t) =
1

N(L)

L∑
r=0

|Pn(r; t)− Pn(r; t = 0)|, (6)

In the subsequent analysis, we will show that although
the actual value of the Ωn metrics depend on the choice
of the global reference point, their temporal scaling be-
haviors encoding dynamics of the evolving microstructure
are independent of the choice of the reference, when the
dynamics governing the evolution is temporally homoge-
neous.

It is also useful to consider the “distance” between two
successive snapshots of microstructuresM(t) andM(t−
δt) during the entire evolution process. This allows us to
introduce the metric δΩn(t), i.e.,

δΩn(t) =
1

N(L)

L∑
r=0

|Pn(r; t)− Pn(r; t− δt)|, (7)

We note that δΩn(t) is generally different from the dif-
ferential of Ωn(t), i.e.,

δΩn(t) 6= dΩn(t) = Ωn(t)− Ωn(t− δt), (8)

unless Pn(r; t) is a monotonic increasing function of t for
all r.
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Although the Ωn metrics are introduced based on Pn
functions in this work, they can be readily generalized to
incorporate the widest class of known spatial correlation
functions for the evolving microstructure, e.g., including
the lineal-path function L [52], surface correlation func-
tions Fss and Fsv [53], cluster functions C2(r) [54], and
the pore-size distribution function P (r) [55]. Specifically,
one only needs to replace the function Pn in Eqs. (6) and
(7) with the corresponding correlation function of inter-
est. The meaning of such defined Ω metric corresponds
to the distance between two microstructures as measured
with respect to the corresponding correlation function.
In addition, although our main focus here is binary mi-
crostructures, the Ωn metrics can be readily generalized
for multi-phase systems. For example, we can separately

compute Ω
(i)
n for each phase i and compute the cross-

phase Ω
(ij)
n based on the proper cross-correlation func-

tions.

C. Time-dependent Ωn(t) and temporal scaling of
volume fraction

The time-dependent Ωn(t) metrics defined in Sec. II.B
encode information of the evolution dynamics of the ma-
terial system, which can be assessed from the temporal
scaling analysis of these metrics. Here we show how the
temporal scaling of the volume fraction for the phase of
interest is encoded and can be extracted from the scal-
ing behavior of Ωn(t), under certain conditions. We note
that Eq. (4) allows us to express Pn explicitly in forms of
fn and φ. For simplicity, we first assume that temporal
evolution of Pn(r; t) is solely due to φ(t) [36], i.e.,

Pn(r; t) = [φ(t)− φn(t)]fn(r) + φn(t) (9)

Physically, this corresponds to the situation where the
“correlations” between the material phases are preserved
while the phase volume fractions of the system evolve,
e.g., during the early stage of growth following site-
saturation nucleation.

Combine Eq. (9) with Eq. (6), we have

Ωn(t) =
1

N(L)

L∑
r=0

|fn(r)γ(t) + [1− fn(r)]γn(t)|, (10)

where

γ(t) = φ(t)− φ(0) (11)

characterizes the temporal scaling of volume fraction and

γn(t) = φn(t)− φn(0) (12)

Since the volume fraction φ ∈ (0, 1), we have φn << φ
for higher-order n. Similarly, it is clear from the above
two equations that for higher-order n, |γn(t)| << |γ(t)|,
and thus the temporal scaling of Ωn(t) is mainly domi-
nated by |γ(t)| (i.e., the scaling of volume fraction)

Ωn(t) ∼ Hn|γ(t)| (13)

where

Hn =
1

N(L)

L∑
r=0

|fn(r)| (14)

We note that when the scaled function fn is also time-
dependent, we have Hn(t) and the scaling behavior of
Ωn(t) will depends on both Hn(t) and γ(t).

Following the same analysis, we can obtain the tempo-
ral scaling behavior for δΩn(t), i.e.,

δΩn(t) =
1

N(L)

L∑
r=0

|fn(r)ω(t) + [1− fn(r)]ωn(t)|, (15)

where

ω(t) = φ(t)− φ(t− δt) = δφ(t) (16)

and

ωn(t) = φn(t)− φn(t− δt). (17)

Similar, for higher-order n, the scaling behavior of δΩn(t)
is mainly determined by δφ(t), i.e.,

δΩn(t) ∼ Hn|δφ(t)|. (18)

where Hn is given by Eq. (14).

D. Phase-field models for microstructrue evolution

To demonstrate the utility of the Ωn(t) for quantifying
microstructure evolution, we will employ phase field mod-
els to generate 4D data for a variety of evolving material
systems. Specifically, we will consider a binary Cahn-
Hilliard model with a double-well potential, which has
been widely used to simulate phase separate in a simple
binary system. First, we will simulate the microstruc-
tural evolution of 2D system using the binary model.
Next, we will employ a recently developed ternary Cahn-
Hilliard model [47] to simulate the temporal evolution of
a deposition process of a binary thin film exposed to a
vapor phase.

We note that in this subsection, the symbol φ is used as
the order parameter for the phase field models, following
the convention in literature, which explicitly depends on
the position vectors, i.e., φ(x). It should not be confused
with the phase volume fraction discussed in the previous
subsections.

1. Binary Cahn-Hilliard Model

Phase-separations in a 2-phase bulk system are gov-
erned by minimizing the total free energy of the system,
represented by the equation

F =

∫
V

[f(φ) +
1

2
κ|∇φ|2]dV (19)
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where φ is a conserved order parameter, representing the
composition of the phases, κ is the gradient free energy
coefficient of the concentration fields and the chemical
free energy density is defined by a double-well poten-

tial, f(φ) =
1

4
Wφ2(1− φ)

2
. W is the well height which

penalizes all states other than 0 and 1. The kinetics
of phase-separation are simulated by solving the Cahn-
Hilliard equation [56], given by

∂φ

∂t
= ∇.(M∇µ) (20)

where µ denotes the chemical potential, and is given by
the variational derivative of the free energy functional
with respect to the order parameter, ∂F/∂φ. M denotes
the mobility term, which is independent of composition
in our study. The temporal evolution of φ is obtained
by incorporating the variational derivative of the free en-
ergy functional in the Cahn-Hilliard equation, with the
expression,

∂φ

∂t
= M∇2

(
1

2
W (2φ3 − 3φ2 + φ)− κ∇2φ

)
(21)

Eq. 21 is made dimensionless by using reduced variables
[57] which are given by: x∗ = x/∆x, M∗ = M/(M0kBT ),
∇∗ = (∆x)2∇, W ∗ = W/(kBT ), κ∗ = κ/((∆x)2kBT ),
and t∗ = M0t/(∆x)2, where ∆x is the grid spacing, M0

is an arbitrarily defined temperature-dependent bulk mo-
bility, and kB is the Boltzmann constant.

2. Ternary Cahn-Hilliard Model

In order to simulate temporal evolution of a binary
film exposed to a vapor phase, we adapt a ternary Cahn-
Hilliard model for vapor deposition [47, 56, 58, 59], by
assigning field variables to the A-rich and B-rich phases
within the film, and the vapor phase within a film-vapor
model framework. The evolution is governed by a phe-
nomenological minimization of the free energy functional,
given by

F =
∫
V
Nv

[
f(φA, φB , φv) + κA(∇φA)2+

κB(∇φB)2 + κv(∇φv)2
]
dV,

(22)

where, Nv is the number of molecules per unit volume
(assumed independent of composition and position) and
κi (i = A,B and ν) are the gradient energy coefficients.
We maintain mass conservation by imposing φA + φB +
φv = 1. The chemical free energy expression is based on
a regular solution, and written as

1

kBT
f(φA, φB , φv) =

∑
i6=j

χijφiφj +
∑
i

φilog φi, (23)

where, χij (i, j =A, B, v; i 6= j) are the pairwise interac-
tion energies between the components, kB is the Boltz-
mann constant, and T, the absolute temperature.

The kinetics of phase-separation are obtained via a
continuity equation, given by

∂φi
∂t

= −∇ · Ji′ (i = A,B, v) (24)

where Ji
′ is the total flux of each component in the sys-

tem. We adopt a formulation that incorporates the net
vacancy flux coupled with a Gibbs-Duhem relation as
elaborated by Raghavan et al. [47] and others [60–63] to
derive the temporal evolution of the A and B-rich phases,

∂φA
∂t

= MAA∇2
[
(∂f/∂φA)− 2κAA∇2φA − 2κAB∇2φB

]
+MAB∇2

[
(∂f/∂φB)− 2κBA∇2φA − 2κBB∇2φB

]
(25)

and

∂φB
∂t

= MBB∇2[(∂f/∂φB)− 2κBB∇2φB − 2κBA∇2φB ]

+MAB∇2[(∂f/∂φA)− 2κAB∇2φB − 2κAA∇2φA],
(26)

where, κAA = κA + κv, κBB = κB + κv, and κAB =
κBA = κv are the gradient parameters. MAA and MBB

are the atomic mobilities of A and B atoms in non-A-
rich and non-B-rich phases, respectively, while MAB and
MBA are mobilities of A atoms in B-rich phase and B
atoms in A-rich phase, respectively [61, 62]. These are
related to the diffusion coefficients of the alloying com-
ponents, Di, via a Nernst-Einstein relation [47, 64],

Mii =
1

kBT
Diφi(1− φi) (i, j = A,B, v) (27)

and

Mij =
1

kBT
Diφiφj (i, j = A,B, v, i 6= j) (28)

Eq. 25 and 26 are first made dimensionless by using the
relation l∗ = (κi/2kBT )1/2∆x and t∗ = (kBT/M

∗
iil
∗2)

where l∗ and t∗ are the characteristic length and time,
respectively, and M∗ii is the dimensional value of mobility
for phases i = A,B. The dimensionless form of these
equations are then solved via an explicit finite difference
scheme for temporal and spatial derivatives.

The evolution of hillocks on the film surface are gov-
erned by the interplay of the energies at the interface
between A-rich and B-rich phases, and the surface en-
ergy of the film. This relationship is encapsulated within
Young’s equation as

θ = 2 cos−1
(
σAB
2σfv

)
(29)

where θ is the contact angle at the surface, σAB is
the interfacial energy between the phase-separated A-rich
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and B-rich domains and σfv is the energy of the film sur-
face in contact with the vapor phase. f denotes the phase
(A-rich or B-rich) at the film surface which is in contact
with the vapor phase. The surface energies of both A-
rich and B-rich phases in contact with the vapor phase
are assumed to be equal. The methodology employed
to calculate the contact angles and other model-specific
information is available in [47].

III. RESULTS

A. Analysis of binary double-well system in 2D

To demonstrate the utility of the Ωn and δΩn metrics,
we first apply them to quantify the evolution of a 2D
binary system driven by a Cahn-Hilliard model with a
double-well potential (see Sec.II.D for details). It is well
know that such a system undergoes a rapid phase sepa-
ration via spinodal decomposition. For this system, it is
natural to choose the initial configuration as the reference
state to compute Ωn(t) via Eq. (6).

Fig. 2 upper panels show the selected snapshots of the
evolving system, from which one can clearly see the rapid
development of the dark phase during the initial stages of
the phase separation, which asymptotically slows down.
Fig. 2 lower panels shows the Pn (with n = 2, 3, 4, 6, 8)
for each of these snapshots. A growing length scale can
be clearly identified from all of the Pn functions, mani-
fested as slower decay of the functions associated with the
snapshots corresponding to the later stages of the phase
separation. We note that an estimate of this growing
length scale can be obtained by finding the distance cor-
responding to the first local minimum in P2 [36], which
clearly shifts to larger distance as the phase separation
proceeds. The microstructures of this binary system at
all time points are composed of disordered interpenetrat-
ing morphology typically seen in a spinodal decomposi-
tion, without special symmetry emerging. Therefore, all
Pn functions rapidly decay to their corresponding long-
range asymptotic values with several oscillations at small
r. This is distinctly different from the patterns asso-
ciated with the hillock growth process analyzed in the
subsequent section, where patterns with significant 4-fold
symmetry emerge during the evolution.

Fig. 3 shows the Ωn metrics in both linear scale (a)
and log scale (b). It can be seen form Fig. 3(a) that all
Ωn(t) rapidly converge to their corresponding long-time
asymptotic values. We note that Ω2(t) for the system is
significantly lower in values compared to Ω3(t) and Ω4(t).
This can be understood from Eq. (10): the coefficient
H2 defined by (14) is small since P2(r) (i.e., f2(r)) is
an oscillating function of r with alternative positive and
negative values, leading to a small sum

∑
r f2(r) and

thus, small H2. Therefore, the scaling of Ω2(t) is mainly
dominated by its higher order term, i.e., Ω2(t) ∼ γ2(t),
leading to smaller values compared to Ω3(t) and Ω4(t).
Material systems with H2 = 0 are called hyperuniform,

which is a recently discovered exotic disordered state in
condensed matter systems [41, 65]. The log plot in Fig.
3b shows the similar time scaling behaviors for all Ωn(t),
confirming the approximation (13). Based on (13) we
obtain Ωn(t) ∼ tα where α ≈ 0.645.

Fig. 3(c) shows δΩn(t) for the system, which reflect
the differential change of the system as quantified by
different Pn functions as time increases. Based on Eq.
(18), δΩn(t) are mainly determined by the differential
change of the volume fraction δφ(t), which approaches 0
towards the later stages of the phase separation (i.e., as
volume fraction does not significantly change anymore).
This is consistent with the trend for Ωn(t) as well, which
converge to the long-time asymptotic values towards the
later stages of the evolution.

B. Analysis of pattern evolution in thin film
deposition

With the utilities of Ωn(t) and δΩn(t) illustrated
and verified in the simple binary system discussed in
Sec.III.A, we now employ them to analyze the pattern
evolution in hillock formation during vapor-deposition of
phase-separating alloy films [57, 66, 67]. The evolution of
the alloy films has been investigated in detail in Ref. [47],
which was simulated via the phase-field model briefly de-
scribed in Sec.II.D. Figure 4 shows representative snap-
shots of the growing film containing hillocks with contact
angle θ = 32o at film-vapor interface (see Ref. [47] for
details). Here we will focus on the dynamics of the top
slices of the systems at different times during the film
growth. This is motivated by the fact that experimen-
tally the (nano-structured) top surface could be imaged
via in situ characterizations (such as SEM or TEM). We
note this is equivalent to take the x− y slices of the thin
film configurations associated with different height along
z axis starting from the bottom with z = 0. Without
loss of generality, we only focus on characterizing one
of the alloy phases (e.g., the blue phase). We also note
that characteristic length scale of the alloy films analyzed
here is a few hundred nanometers, and thus, should be
referred to as nano-structures. In the following, we will
still refer to them as “microstructure” with the under-
standing that such microstructures contain features on
nano-scales.

1. Pattern evolution with surface contact angle θ = 32o

Figure 5 (upper panels) shows representative snapshots
of the top surface patterns associated with the blue phase
at different time points during the film growth. It can be
clearly seen that the evolving patterns exhibit a four-fold
symmetry, which is inherited from the initial configura-
tion [47]. In Ref. [47], we have shown that after an
initial “transition” period, the surface patterns for both
alloy phases start to oscillate as time proceeds, e.g., one
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FIG. 2: Upper panels: Snapshots of the evolving 2D binary system with the double-well potential at selected time points.
Lower panels: The associated n-point polytope functions Pn at the corresponding time points (indicated by the same color
code). The unit of distance r is in pixels.

FIG. 3: Ωn metrics for the 2D binary system in both linear scale (a) and log scale (b) with least-square linear fits indicated by
dashed lines. δΩn(t) for the system is shown in (c).

FIG. 4: Representative snapshots of the growing film contain-
ing hillocks with contact angle θ = 32o at film-vapor interface
(see Ref. [47] for details).

of phases starts to grow from smaller seeds and domi-
nate the pattern which is then gradually taken over by
the other phase. Fig. 5 (lower panels) shows the corre-
sponding Pn functions for the snapshots. Different from
the simple binary system analyzed in Sec.III.A, the 4-
fold symmetry of the patterns is clearly manifested as
the strong peaks in both P2 and P4, associated with the

same distance r. The 4-fold symmetry and the resulting
periodicity of the structures also lead to the strong peaks
observed in P3, P6 and P6, albeit the distances associated
with these peaks are different from those in P2 and P4.

Figure 6 shows the Ωn metrics in both linear scale (a)
and log scale (b), with the reference pattern chosen at
t = 0. It can be seen form Fig. 6(a) that all Ωn(t) ex-
hibit almost periodic oscillations for the entire evolution,
while the peak values of the oscillations fluctuate during
the early stages of the evolution and subsequently con-
verge to a steady value. These features are consistent
with the observed dynamics of the top surface pattern
of the system: the initial fluctuations of the peaks val-
ues correspond to the “transition” period of the pattern
evolution. On the other hand, the steady peak values
correspond to steady oscillations of the top surface pat-
terns resulted from alternating dominant red and blue
phases as described above. In addition, the magnitude
of Ωn(t) at a fixed t decreases as n increases, due to the
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FIG. 5: Upper panels: Representative snapshots of the top surface patterns associated with the blue phase at different time
points during the film growth with contact angle θ = 32o. Lower panels: The associated n-point polytope functions Pn at the
corresponding time points (indicated by the same color code). The unit of distance r is in pixels.

FIG. 6: Ωn metrics for the evolving surface patterns during the film growth with contact angle θ = 32o in both linear scale (a)
and log scale (b) with least-square linear fit shown as dashed line. δΩn(t) for the system is shown in (c).

smaller magnitude of Pn(r) (for r > 0) as n increases.
All Ωn(t) exhibit similar time scaling behaviors, as can
be seem from the log plot shown in Fig. 6(b). We note
that since Ωn(t) are oscillating functions of t, we only
focus on the temporal scaling of the peak values with
respect to the corresponding long-time asymptotic limit
Ωn(∞), i.e., |Ωn(t)− Ωn(∞)| ∼ tα where α ≈ 0.557.

Fig. 6(c) shows δΩn(t) for the system, which exhibits
very similar trend as seen in Ωn(t). In particular, all
δΩn(t) exhibit almost periodic oscillations; the peak val-
ues of these oscillations fluctuate during the early tran-
sition stages of the evolution and subsequently converge
to a steady value. A closer inspection reveals the peak
positions of δΩn(t) correspond to valleys of Ωn(t), where
the largest rate of change of Ωn(t) occurs. These features
indicate that the fastest structural dynamics are associ-
ated with the valleys of Ωn(t), corresponding to patterns
reminiscent of the initial configuration at t = 0.

For an oscillating system, the choice of initial refer-

ence state is not unique. Fig. 7 shows the Ω∗n(t) metrics
for the system with a different reference state, which is
chosen to be the one corresponding to the highest peak
of Ω2(t) for all t, denoted by M∗0. Based on the physi-
cal interpretation of Ωn, which is an effective measure of
the distance between two microstructures in the material
microstructure space, M∗0 represents the microstructure
that has the largest distance, or in other words, distinct
most from, all the other microstructures (patterns) dur-
ing the evolution. We note that the effective distance
between two microstructures can be different based on
different Pn measures. These features are all reflected
in Fig. 7(a). In particular, one can clearly see that
all Ω∗n(t) exhibit coherent converging behavior as t in-
creases, and each Ω∗n(t) converges to a set of distinct
asymptotic lower and upper bounds for their steady os-
cillations, indicating different distances to M∗0 as mea-
sured via different Pn. Fig. 7(b) show the log plot of
Ω∗n(t), from which we extract the temporal scaling be-
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FIG. 7: The Ω∗n(t) metrics for the the evolving surface patterns during the film growth with contact angle θ = 32o with a
different reference state. (a) respectively shows the original reference (upper panel) and the new reference (lower panel). (b)
shows Ω∗n(t) in linear scale and (c) shows Ω∗n(t) log scale with linear fitting shown as dash line.

havior |Ω∗n(t)−Ω
∗
n(∞)| ∼ tα∗

where α∗ ≈ 0.594, which is

consistent with α ≈ 0.557 estimated above, and Ω
∗
n(∞)

is the long-time asymptotic limit of Ω∗n(t). These results
indicate that the key behaviors of the system encoded in
Ωn metrics do not depend on the choice of the reference
states.

2. Pattern evolution with surface contact angle θ = 51o

Following the same procedure, we now employ Ωn(t)
to characterize the pattern evolution during the thin film
growth with contact angle θ = 51o. Figure 8 (upper
panels) shows representative snapshots of the top sur-
face patterns associated with the blue phase at different
time points during the film growth; and Fig. 8 (lower
panels) shows the corresponding Pn functions at selected
time points. Similar to the system with θ = 32o, the pat-
terns exhibit significant 4-fold symmetry inherited from
the initial pattern, which leads to the significant peaks
in Pn functions. Fig. 9 shows the Ωn(t) in both linear
(a) and log scales (b). It can be seen that all Ωn(t) ex-
hibit a shorter transition zone and rapidly converge to
the steady oscillation stage. We extract the temporal
scaling behavior |Ωn(t)− Ωn(∞)| ∼ tα where α ≈ 0.689,
which is larger than the corresponding scaling parameter
for the system with θ = 32o, indicating faster converging
behaviors. The δΩn(t) metrics are shown in Fig. 9(c),
which again exhibits very similar trend as seen in Ωn(t).
The peak positions of δΩn(t) also correspond to valleys of
Ωn(t), indicating the largest rate of change of Ωn(t) and
the fastest structural dynamics occur at these patterns.

IV. CONCLUSIONS AND DISCUSSION

In summary, we have introduced a set of novel reduced-
dimension metrics, referred to Ωn which are based on the
set of hierarchical n-point polytope functions Pn, for ef-

fectively measuring the distance between two points (i.e.,
microstructures) in the microstructure space and quan-
tifying the pathway associated with microstructural evo-
lution. By choosing a reference initial state (i.e., a mi-
crostructure associated with t0 = 0), the Ωn(t) set quan-
tifies the evolution of distinct polyhedral symmetries and
can in principle capture emerging polyhedral symmetries
that are not apparent in the initial state [45]. We have
also investigated the temporal scaling behaviors of Ωn(t)
and showed that the evolution dynamics revealing the
physical mechanics of the systems can be extract from
the scaling behaviors of Ωn(t). To demonstrate their util-
ity, we have applied the Ωn metrics to characterize a 2D
binary system undergoing spinodal decomposition and
extract the evolution dynamics via the temporal scaling
behavior of the corresponding Ωn(t). We have also em-
ployed Ωn(t) to quantify pattern evolution during vapor-
deposition of phase-separating alloy films with different
surface contact angles, which exhibit rich evolution dy-
namics including both unstable and oscillating patterns.

We note that the Ωn metrics are merely a special ex-
ample of correlation function based distance measures of
microstructure space. Similar metrics can be defined for
special lower-order functions [4] such as two-point cluster
function C2(r), the surface-surface correlation function
Fss(r), the lineal-path function L(r), and the pore-size
distribution function P (r), to name but a few. The cor-
responding Ω metric quantifies the effective “distance”
between two microstructures, mainly resulted from the
distinction of the structural features quantified by the
specific correlation functions. For example, the metric
ΩC based on the cluster function C2 distinguishes two mi-
crostructures based on their degrees of clustering, while
these two microstructures may possess identical P2 and
Ω2 = 0 [29, 30].

The Ωn metrics, when combined with in situ mi-
crostructural characterization tools (such as x-ray tomo-
graphic microscopy), allow one to quantitatively monitor
the structural evolution in real time. During a manu-
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FIG. 8: Upper panels: Representative snapshots of the top surface patterns associated with the blue phase at different time
points during the film growth with contact angle θ = 51o. Lower panels: The associated n-point polytope functions Pn at the
corresponding time points (indicated by the same color code). The unit of distance r is in pixels.

FIG. 9: Ωn metrics for the evolving surface patterns during the film growth with contact angle θ = 51o in both linear scale (a)
and log scale (b) with least square linear fitting shown as dashed line. δΩn(t) for the system is shown in (c).

facturing process, this will enable us to apply real-time
control of the processing conditions in order to control
the microstructure evolution pathway, which is highly de-
sirable for material optimization. In this work, we have
used L1 norm in the definition of Ωn, which allowed us to
extract temporal scaling that characterizes the dynamics
of the structural evolution. This can also be generalized
to use more sophisticated weighted norms that approx-
imately connect the Pn functions to the physical prop-
erties of the material system [45]. We will explore these
directions in our future work.
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