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Abstract
We develop a theory for the surface ripples produced by near-normal-incidence ion bombardment

of a (001) GaAs surface with a small miscut along the [110] direction. We restrict our attention

to the case in which the energy of the incident ions is below the sputter yield threshold and the

sample temperature is just above the recrystallization temperature. Highly ordered, faceted ripples

with their wave vector aligned with the [110] direction form when the ion beam is normally incident

and there is no miscut. Two additional terms appear in the equation of motion when the beam is

obliquely incident and/or there is a miscut: a linearly dispersive term and a nonlinearly dispersive

term. The coefficients of these terms can become large as the threshold temperature for pattern

formation is approached from above. In the absence of strong nonlinear dispersion, strong linear

dispersion leads to ripples with a dramatically increased degree of order. These ripples are nearly

sinusoidal even though they are on the surface of a single crystal. The exceptionally high degree of

order is disrupted by nonlinear dispersion if the coefficient of that term is sufficiently large. However,

by choosing the angle of ion incidence appropriately, the coefficient of the nonlinearly dispersive

term can be made small. Ion bombardment will then produce highly ordered ripples. For a different

range of parameter values, nucleation and growth of facets and spinodal decomposition can occur.
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I. INTRODUCTION

Bombarding a solid surface with a broad ion beam can produce a variety of self-assembled

nanoscale patterns, including surface ripples and hexagonal arrays of mounds [1–6]. The

spontaneous formation of these patterns is not just fascinating in its own right: ion bom-

bardment has the potential to become a cost-effective method to rapidly fabricate large-area

nanostructures with features smaller than those that can be produced by conventional op-

tical lithography. The patterns that form, however, are typically rife with defects, and this

has been a longstanding issue in this field. This problem has been the primary obstacle

that has prevented the widespread use of ion bombardment as a nanofabrication tool, and

a great deal of work has been done with the goal of producing defect free patterns [7–21].

In 2015, Ou et al. reported a dramatic breakthrough in this quest: ripples with a re-

markably high degree of order emerged when a GaAs (001) surface was bombarded with a

normally-incident 1 keV argon ion beam and the sample was maintained at a temperature T

above its recrystallization temperature TR [14, 22]. Ripples of this kind have subsequently

been employed in a maskless, high-throughput method to fabricate multilayer blazed diffrac-

tion gratings with periods in the sub-50 nm range [23].

Ou et al. also introduced a phenomenological theory that is able to at least partially

account for the pattern formation they observed [14]. In their theory, the role of the incident

ions is simply to produce vacancies in the crystal surface. These vacancies diffuse on the

crystal terraces until they attach to a step edge. Ou et al. assumed that the slope dependence

of the sputter yield can be neglected [14]. They also assumed that the ratio of gallium atoms

to arsenic atoms remains one-to-one even though one of the two atomic species would have

been preferentially sputtered. These assumptions are unnecessary, however, if the energy

of the incident ions is on the order of a few tens of electron volts since in this low-energy

regime, sputtering is negligible. Experiments in this regime have already been carried out by

Chowdhury and Ghose, who bombarded a GaAs (001) surface with a normally-incident 30 eV

argon ion beam while the sample was held at a temperature T > TR [24]. The formation

of well ordered ripples was observed, although the order was not as strong as in the higher

energy experiments of Ou et al. [14]. Chowdhury and Ghose also found that ripples formed

for temperatures T above a critical temperature Tc,0, whereas the surface remained flat for

T < Tc,0 [24].
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In this paper, a theory for the pattern formation that occurs when the surface of a GaAs

single crystal is bombarded with a near-normally-incident, low-energy noble gas ion beam is

developed. We consider both (001) surfaces and (001) surfaces with a small miscut along the

[110] direction and focus on temperatures T close to the threshold temperature for pattern

formation Tc,0.

The equation that is found to govern the surface dynamics of a (001) surface is identical

to the one Ou et al. arrived at using phenomenological arguments. In this case, ion bom-

bardment produces highly ordered, faceted ripples with their wave vector aligned with the

[110] direction. These ripples are not perfectly ordered, however, since their wavelength can

vary along the [110] direction.

Our motivation for studying the effect of a miscut is that there are a priori reasons to

believe that ion bombardment of a miscut surface could produce an even higher degree

of order than bombarding a surface without a miscut. Two additional terms appear in

the equation of motion (EOM) when there is a miscut. One of these is a linearly dispersive

term, and strong linear dispersion has been shown to engender a high degree of order in other

contexts [18, 20, 25]. Consistent with this, we find that when the coefficient of this term

(γ) is large, ripples develop with a higher degree of order than for γ = 0. Our simulations

and analytical work establish that these ripples are not faceted but instead have a nearly

sinusoidal profile. The second additional term that appears in the EOM when there is

a miscut can be thought of as a source of nonlinear dispersion. When its coefficient (κ)

is sufficiently large, this term can disrupt the order produced by strong linear dispersion.

However, by adjusting the angle of incidence θ, the ratio κ/γ can be made small. Ion

bombardment will then produce highly ordered ripples with a nearly sinusoidal profile on

the GaAs surface.

This paper is organized as follows: We present a derivation of the EOM in Sec. II. In

Sec. III, we recast the EOM in dimensionless form and consider the behavior of its solutions

at early times, before the effect of the nonlinear terms becomes appreciable. Previous results

on the behavior of the surface when the ion beam is normally incident and there is no miscut

are briefly summarized in Sec. IV. For a certain special case, the EOM is equivalent to a

generalization of the one-dimensional Cahn-Hillard equation to two dimensions, as we show

in Sec. V. As a consequence, the surface can exhibit nucleation and growth of facets as well

as spinodal decomposition. The case of strong linear dispersion is studied in Sec. VI using
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an expansion in powers of γ−1 and simulations. We place our results in context in Sec. VII

and conclude in Sec. VIII.

II. EQUATION OF MOTION

Consider the planar surface of a single crystal of GaAs. We take the surface to be the

(001) plane or the (001) plane with a small miscut along the [110] direction. We place the

origin on the surface of the sample and orient the z axis so that the sample occupies the

region z ≤ 0. In addition, we orient the x axis so that it is parallel to the surface projection

of the [110] direction. The normal to the (001) crystal planes is −x̂ sinψ+ ẑ cosψ, where ψ

is the miscut angle.

We now perturb the sample surface slightly and bombard it with a broad noble gas ion

beam. The energy of the incident ions will be taken to be below the sputtering threshold so

that sputtering is negligible. The incident ion flux is J = −J ê, where ê ≡ −x̂ sin θ+ ẑ cos θ

and θ is the the angle of incidence, i.e., the angle between the global vertical and the incident

beam. The projected ion direction lies along the x direction. We will take θ to be either

zero or small.

We will employ a continuum description of the surface dynamics in which the position

of an arbitrary point r on the film’s surface is given by r = xx̂ + yŷ + u(x, y, t)ẑ, where

u(x, y, t) is the height of the point above the x− y plane at time t. The surface height u is

obtained by coarse-graining the detailed microscopic surface configuration and is assumed

to be a smoothly varying function of its arguments x, y and t. We assume that no overhangs

are initially present and that none form as the film grows, so that u(x, y, t) is a single-valued

function of x and y for all times t.

Well above the recrystallization temperature, the damage done to the crystal structure

by the ion impacts is rapidly annealed away, and the sample remains essentially crystalline.

Pattern formation on the surface of materials that remain crystalline during ion bombard-

ment is strongly influenced by the Ehrlich-Schwoebel (ES) barrier [26–29]. The ES barrier

makes the attachment of a surface vacancy more likely at a descending step on a crystal

surface than at an ascending step. It therefore produces an effective uphill atomic current

on the crystal’s surface and tends to destabilize an initially flat surface. This current is

typically anisotropic, which is a manifestation of the anisotropy of the underlying crystal
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lattice. For T well below TR, on the other hand, the damage quickly accumulates as time

passes and an amorphous layer develops at the surface of the solid. Momentum transfer from

the incident ions to atoms near the surface of the solid leads to mass redistribution (MR)

which has a stabilizing influence for normal-incidence ion bombardment [30–32]. Between

the low and high temperature extremes, the subsurface damage varies continuously with

temperature, and therefore so does the surface atomic current. The stabilizing effect of MR

is stronger than the destabilizing influence of the ES barrier for T < Tc,0 and θ = ψ = 0

and, as a consequence, the surface remains flat. Conversely, for T > Tc,0 and θ = ψ = 0,

the ES effect dominates MR, the surface is unstable, and ripples with their wave vector

along the x axis form on the surface. The surface becomes unstable for T greater than the

critical temperature Tc(θ, ψ) when θ and ψ are nonzero. Clearly, Tc(−θ,−ψ) = Tc(θ, ψ) and

Tc(0, 0) = Tc,0.

Ions are implanted in the low-energy regime. However, the noble gas ions penetrate only

a few nanometers into the solid, are highly mobile, and usually desorb when they reach the

solid surface [33]. Ion implantation can therefore be safely neglected.

When sputtering and implantation are neglected, the mass of the solid is conserved.

This makes the low-energy limit fundamentally different than the higher energy regime in

which sputtering is significant. In addition, while curvature-dependent sputtering and ion

implantation can contribute to the surface instability in the higher energy regime [34–36],

they do not do so in the low-energy regime.

The ratio of gallium atoms to arsenic atoms remains one-to-one during the irradiation

because there is no sputtering. In principle, MR could affect the gallium and arsenic atoms

differently and so change the composition locally [4, 5]. However, differential mass redis-

tribution has been found to be negligible for bombardment of GaSb with 250 eV Ar ions

[37, 38]. Because the mass difference between Ga and As is considerably smaller than the

mass difference between Ga and Sb, we will assume that differential mass redistribution is

also negligible for GaAs. Furthermore, in the absence of any information to the contrary,

we will take the difference between the surface currents of Ga and As due to the ES effect

to be small enough that it can be neglected. The composition then remains stoichiometric

throughout the sample, which minimizes the chemical free energy of the solid. Similarly,

Ou et al. [14] assumed that the composition remains stoichiometric throughout the solid in

developing their phenomenological theory.
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Let j = jxx̂+ jyŷ + jzẑ be the atomic current on the surface of the solid. The current j,

which is everywhere tangent to the solid surface, includes contributions from the ES effect

and thermally activated surface diffusion in the high-temperature regime, while in the low-

temperature regime, MR and ion-induced surface viscous flow [39] could contribute to j.

Because mass is conserved, the equation of motion for the surface is the continuity equation

ut = −Ω(∂xjx + ∂yjy), (1)

where Ω is the atomic volume. The surface current j depends on the angle of ion incidence

θ and the miscut angle ψ. Its value at time t also depends in principle on the form of the

entire surface at that time. In other words, for i = x and y,

ji = ji(θ, ψ, ux, uy, uxx, uxy, uyy, . . .) (2)

where the subscripts on u denote partial derivatives. Hence

Ω−1ut = −∂xjx(θ, ψ, ux, uy, . . .)− ∂yjy(θ, ψ, ux, uy, . . .). (3)

j also depends on the sample temperature T , as we have already noted. However, we have

not included T in the list of arguments of j for the sake of notational simplicity.

Equation (3) completely specifies the dynamics of the surface but, in general, it is exceed-

ingly complicated nonlinear partial differential equation. In addition, how jx and jy depend

on the temperature T , the angle of incidence θ, the miscut angle ψ and all of the surface

derivatives ux, uy, uxx, uxy, uyy, etc. is not known for any noble gas ion species or energy.

Fortunately, the surface dynamics become much simpler close to the critical temperature

Tc,0 and for small values of θ and ψ. We set ε ≡ |T − Tc,0|1/2, where ε is small and positive.

Because we wish to consider small angles of incidence θ and miscut angles ψ, we take θ and

ψ to be of order ε and put

θ = ρθε (4)

and

ψ = ρψε, (5)

where ρθ and ρψ are constants of proportionality. (The special case in which the ion beam

is normally incident and there is no miscut is obtained by setting ρθ = ρψ = 0.) We seek

solutions to Eq. (3) of the form

u(x, y, t) = U(X, Y, τ), (6)
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where

X ≡ εx, Y ≡ ε2y and τ ≡ ε4t. (7)

X, Y and τ are the so-called “slow” variables and x, y and t are the corresponding “fast”

variables. Heuristically speaking, Eqs. (6) and (7) say that for T close to the threshold

temperature Tc,0 and for small θ and ψ, the height of the surface disturbance varies slowly in

space and time. In addition, the spatial variation in the y direction is more gradual than in

the x direction because ripples with their wave vector pointing in the x direction develop for

T > Tc(θ, ψ). An a posteriori justification for adopting the scaling ansatz given by Eqs. (4),

(5), (6) and (7) will be obtained once we have arrived at an EOM that is well-behaved in

the ε→ 0 limit.

Using the scaling given by Eqs. (6) and (7) in Eq. (3), we obtain

−Ω−1ε4Uτ = ε∂Xjx(θ, ψ, εUX , ε
2UY , ε

2UXX , ε
3UXY , ε

4UY Y , . . .)

+ε2∂Y jy(θ, ψ, εUX , ε
2UY , ε

2UXX , ε
3UXY , ε

4UY Y , . . .). (8)

Let jx,n denote the derivative of jx(θ, ψ, ux, uy, uxx, uxy, uyy, . . .) with respect to its nth ar-

gument evaluated for θ = ψ = ux = uy = uxx = uxy = uyy = . . . = 0. We define jy,n in an

analogous fashion. The definition of quantities like jx,n,m and jy,n,m should now be apparent.

We expand Eq. (8) in powers of ε and retain terms up to fourth order in ε. The EOM must

be invariant under the transformation Y → −Y and so the coefficients of terms that do not

have this invariance must have coefficients equal to zero. In addition, the EOM must be

invariant under the transformation X → −X, θ → −θ and ψ → −ψ. We obtain

−Ω−1ε4Uτ = ε2
(
jx,3 +

1

2
jx,1,1,3θ

2 + jx,1,2,3θψ +
1

2
jx,2,2,3ψ

2

)
UXX + ε4jx,8UXXXX + ε4jy,4UY Y

+
1

6
ε4jx,3,3,3∂XU

3
X +

1

2
ε4jx,3,5∂

2
XU

2
X

+ε3(jx,1,5θ + jx,2,5ψ)UXXX +
1

2
ε3(jx,1,3,3θ + jx,2,3,3ψ)∂XU

2
X . (9)

For normal-incidence bombardment of a surface with no miscut, the surface is stable for

T < Tc,0 and is unstable for T > Tc,0. This means that jx,3 is negative for T < Tc,0 and is

positive for T > Tc,0. For small enough values of T − Tc,0, we can make the approximation

jx,3 = A1(T −Tc,0), where A1 is a positive constant. Hence, close to the critical temperature,
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jx,3 = sA1ε
2, where s is the sign of T − Tc,0. Recalling that we set θ = ρθε and ψ = ρψε,

Eq. (9) becomes

−Ω−1Uτ =

(
sA1 +

1

2
jx,1,1,3ρ

2
θ + jx,1,2,3ρθρψ +

1

2
jx,2,2,3ρ

2
ψ

)
UXX + jx,8UXXXX + jy,4UY Y

+
1

6
jx,3,3,3∂XU

3
X +

1

2
jx,3,5∂

2
XU

2
X

+(jx,1,5ρθ + jx,2,5ρψ)UXXX +
1

2
(jx,1,3,3ρθ + jx,2,3,3ρψ)∂XU

2
X . (10)

Notice that ε does not appear in Eq. (10), and so the scaling we adopted does indeed result

in an EOM that is well defined in the ε → 0 limit. Equation (10) is invariant under the

transformation Y → −Y . In addition, for normal-incidence bombardment of a surface

with no miscut, ρθ = ρψ = 0 and then Eq. (10) is also invariant under the transformation

X → −X.

We must have jx,8 > 0, since otherwise arbitrarily short wavelengths are linearly unstable

and the continuum description breaks down. In addition, jx,3,3,3 cannot be positive since if

it were, the slope of the surface would grow without bound. Finally, jy,4 must be negative

because the flat surface is stable for T < Tc,0 and θ = ψ = 0. Equation (10) becomes

Uτ = −AUXX −BUXXXX +DUY Y + α∂XU
3
X + β∂2XU

2
X + µUXXX + ν∂XU

2
X , (11)

where

A ≡ Ω

(
sA1 +

1

2
jx,1,1,3ρ

2
θ + jx,1,2,3ρθρψ +

1

2
jx,2,2,3ρ

2
ψ

)
, (12)

B ≡ Ωjx,8, D ≡ Ω|jy,4|, α ≡ Ω|jx,3,3,3|/6, β ≡ −Ωjx,3,5/2,

µ ≡ −Ω(jx,1,5ρθ + jx,2,5ρψ), (13)

and

ν ≡ −1

2
Ω(jx,1,3,3ρθ + jx,2,3,3ρψ). (14)

The coefficients B and D in Eq. (11) are positive whereas α is nonnegative. (As we shall see

shortly, α must in fact be positive.) In addition, by replacing U by −U if necessary, we can

arrange for β to be nonnegative. We can also arrange for µ to be nonnegative by replacing

X by −X if necessary.

When there is no miscut and the ion beam is normally incident, µ = ν = 0 and Eq. (11)

with s = +1 reduces to the EOM that Ou et al. used to model the dynamics of the (001)

surface of GaAs when it is subjected to normal-incidence bombardment at temperatures
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T > Tc,0 [14]. Ou and coworkers arrived at this EOM using phenomenological arguments,

but we have shown rigorously that it is valid close to the critical temperature.

Thermally activated surface diffusion and/or ion-induced surface viscous flow lead to the

presence of the term −BUXXXX in Eq. (11) [39, 40]. The terms proportional to UXX , UY Y ,

∂XU
2
X and ∂XU

3
X all result from the dependence of the surface current j on the surface

gradient ∇u. This dependence stems from the ES effect and ion-induced MR. The term

α∂XU
3
X in particular is familiar from the theory of the mounding instability that can occur

during molecular beam epitaxy and can lead to the formation of a faceted surface [29].

Because the GaAs surface facets for T > Tc,0 and θ = ψ = 0, the coefficient α cannot be

zero. The term β∂2Xu
2
X , on the other hand, is the so-called conserved Kuramoto-Sivashinsky

(CKS) nonlinearity. Although it was first encountered in the theory of molecular beam

epitaxy [29, 41], this term is also believed to play a role in the dynamics of ion-bombarded

surfaces [42, 43]. The CKS nonlinearity tends to produce coarsening of the surface patterns,

i.e., the characteristic lateral and vertical length scales tend to increase with time. If there

is no miscut, the beam is normally incident and β is nonzero, this term breaks the U → −U

symmetry that would otherwise be present. Since there is vacuum above the surface and

solid below, there is no reason that such a symmetry should exist.

The final two terms on the right-hand side of Eq. (11) break the X → −X symmetry and

appear only when θ and/or ψ is nonzero. The term proportional to UXXX arises because the

surface current due to MR depends on the curvature of the surface, as shown by molecular

dynamics simulations of bombardment of silicon with a 1 keV argon ion beam [33]. This term

produces linear dispersion, i.e., the propagation velocity of low amplitude surface ripples

depends on their wavelength. A term proportional to UXXX also appears in the EOM that

describes the step bunching instability of a vicinal surface [44] and so its appearance in

Eq. (11) when there is a miscut is perhaps not surprising. The term proportional to ∂XU2
X

appears in Eq. (11) because the angles that the facets make with the X − Y plane depend

on the angle of incidence θ and the miscut angle ψ [14, 45]. This term can change the

ripple velocity as its amplitude grows [46] and will therefore be referred to as nonlinearly

dispersive.

How slowly must the height of the surface disturbance u vary with x for Eq. (11) to be

valid? Let a0 be the characteristic size of a collision cascade, or, equivalently, the character-

istic lateral length scale of the crater that the impact of a single ion produces on the GaAs
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surface. The characteristic lateral length scale (or length scales) of the surface ripple must

be large compared to a0 for Eq. (11) to be a good approximation. If the surface disturbance

is sinusoidal, it has a single characteristic lateral length scale — its wavelength. On the

other hand, if the surface disturbance is periodic but the characteristic lateral length scale

of the crests l+ differs from the characteristic lateral length scale of the troughs l−, then

both l+ and l− must be large compared to a0 for Eq. (11) to apply. This possibility is not

academic — in general, l+ and l− differ [47].

Equation (11) is

ut = ∂x(aux + bu2x + αu3x)−Buxxxx +Duyy + β∂2xu
2
x + cuxxx (15)

when written in terms of the original variables. Here

a ≡ −Ω

[
A1(T − Tc,0) +

1

2
jx,1,1,3θ

2 + jx,1,2,3θψ +
1

2
jx,2,2,3ψ

2

]
, (16)

b ≡ −Ω(jx,1,3,3θ + jx,2,3,3ψ)/2 (17)

and

c ≡ −Ω(jx,1,5θ + jx,2,5ψ). (18)

Recall that the surface is stable for T < Tc(θ, ψ) and is unstable for T > Tc(θ, ψ). Therefore,

a is positive for T < Tc(θ, ψ) and is negative for T > Tc(θ, ψ). It follows that

Tc(θ, ψ) = Tc,0 −
1

2A1

(
jx,1,1,3θ

2 + 2jx,1,2,3θψ + jx,2,2,3ψ
2
)
. (19)

Tc(−θ,−ψ) = Tc(θ, ψ) and Tc(0, 0) = Tc,0, as we have already observed. In addition, com-

bining Eqs. (16) and (19), we obtain

a = −ΩA1[T − Tc(θ, φ)]. (20)

III. PRELIMINARY CONSIDERATIONS

Consider the behavior of solutions to the EOM (11) for T > Tc, so that A > 0 and the

surface is unstable. We introduce the dimensionless quantities

x̃ ≡
(
A

B

)1/2

X, ỹ ≡ A

(DB)1/2
Y, t̃ ≡ A2

B
τ and ũ ≡

(α
B

)1/2
U. (21)
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Making these substitutions in Eq. (11) and dropping the tildes yields

ut = −uxx + uyy − uxxxx + ∂xu
3
x + r∂2xu

2
x + γuxxx + κ∂xu

2
x, (22)

where r ≡ β(αB)−1/2 ≥ 0, γ ≡ µ(AB)−1/2 ≥ 0 and κ ≡ ν(AB)−1/2 are dimensionless

parameters. If the surface height u does not depend on the transverse coordinate y, Eq. (22)

reduces to

ut = −uxx − uxxxx + ∂xu
3
x + r∂2xu

2
x + γuxxx + κ∂xu

2
x, (23)

which we will refer to as the 1D EOM.

Because the surface is nominally flat at time t = 0, Eq. (22) can be linearized at early

times. The linearized EOM has sinusoidal solutions of the form

u(x, y, t) = Re [u0 exp(ik · x + σt)], (24)

where u0 is an arbitrary complex constant, x ≡ xx̂+ yŷ, k ≡ kxx̂+ kyŷ is the wave vector,

and

σ = σ(k) = k2x − k4x − k2y − iγk3x. (25)

The amplitude of this sinusoidal ripple grows exponentially in time with the rate Reσ(k) =

k2x − k4x − k2y. [The amplitude decays exponentially if Reσ(k) is negative.] In addition, the

ripple propagates with the velocity −Imσ(k)/k = γk3x/k in the direction of its wave vector.

If γ is nonzero, the propagation is dispersive because the velocity of propagation depends

on the wavelength. Reσ(k) is maximized for kx = 1/
√

2 and ky = 0. It follows that ripples

with wavelength 2
√

2π and with their wave vector along the x direction emerge shortly after

the irradiation begins. These ripples propagate in the x direction with velocity γ/2.

The full nonlinear EOM (22) depends on three dimensionless parameters, r, γ and κ.

The parameters r, γ and κ are measures of the strength of the CKS nonlinearity, linear

dispersion and nonlinear dispersion, respectively. For the sake of simplicity, we will begin by

studying the behavior of Eq. (22) for the special cases in which only r is nonzero (Sec. IV)

and in which only κ is nonzero (Sec. V). We will then move on to study the case in which

γ is nonzero in Sec. VI. In that section, we will also study cases in which either r or κ is

nonzero. The distinctive features of the dynamics will be highlighted in each these of three

sections.
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IV. NORMAL-INCIDENCE BOMBARDMENT OF A SAMPLE WITH NO MIS-

CUT

If there is no miscut and the ion beam is normally incident on the sample surface, γ =

κ = 0 in the EOM (22) but r is in general nonzero. This is the partial differential equation

(PDE) Ou et al. used to model normal-incidence bombardment of the (001) surface of GaAs

above the recrystallization temperature [14]. It is also the EOM for the surface of a growing

thin amorphous film that is deposited by two diametrically opposed atomic beams that are

obliquely incident on a planar substrate and has been studied extensively in that context

[47]. Here we will simply summarize the results of that investigation, rephrasing them in

the context of the current problem.

At early times, the ripples that form on the surface are rounded and roughly sinusoidal in

form, but as time passes, they coarsen and become more faceted. At long times, the ripples

become highly ordered in the transverse direction and few dislocations remain. The ripple

wavelength and amplitude vary in the longitudinal direction, however, and so the ripples are

not perfectly ordered.

The selected gradients are ∇u = ±x̂. Thus, surprisingly, the selected slope does not

depend on the coefficient r of the CKS nonlinearity. The ripple crests and troughs are both

rounded, but for r > 0, the troughs are more rounded than the crests. The surface ripples

therefore display vertical asymmetry, i.e., the appearance of the ripples changes if they are

reflected about the x−y plane. As r is increased, the rounding of the troughs becomes more

pronounced, while the crests become progressively sharper. At the same time, the facets

become smaller. All of these aspects of the dynamics are discussed in detail in Ref. 47 and

are illustrated there by quite a number of simulations.

V. NUCLEATION AND GROWTH OF FACETS AND SPINODAL DECOMPOSI-

TION

We now move on to the case in which κ is nonzero and the linearly dispersive and CKS

terms do not appear in Eq. (22), i.e., γ and r both vanish. In this case, it is best to study

the EOM written in terms of the original, unscaled variables, Eq. (15). The reason for this is

that we will want to study the behavior of the surface for both positive and negative values

of A, but we limited ourselves to the case in which A > 0 in deriving Eq. (22). In the special
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case we are currently considering, β = c = 0 in Eq. (15), and we are interested in the effect

of varying the parameter b. This parameter is nonzero only if there is a miscut.

Differentiating Eq. (15) with respect to x, setting β = c = 0 and defining φ ≡ ux, we

obtain

φt = ∂2x(aφ+ bφ2 + αφ3 −Bφxx) +Dφyy. (26)

If the surface height u does not depend on the transverse coordinate y, then φy = 0 and

Eq. (26) reduces to the one-dimensional Cahn-Hilliard (CH) equation. Equation (26) is

therefore an anisotropic generalization of the one-dimensional CH equation to two dimen-

sions (2D). Variations of the surface height in the transverse direction tend to be smoothed

out in the course of time as a result of presence of the term Dφyy in Eq. (26), and so the

solutions of this equation increasingly resemble solutions to the one-dimensional (1D) CH

equation as time passes. Because the behavior of solutions to the 1D CH equation is well

known [48], our discussion of the behavior of Eq. (15) with β = c = 0 will be brief.

We study the behavior of the solutions to Eq. (15) with β = c = 0 in the domain in

which 0 ≤ x ≤ L and 0 ≤ y ≤ L and apply periodic boundary conditions. We introduce the

effective free energy

F ≡
∫ L

0

∫ L

0

[
1

2
Bu2xx + f(ux, uy)

]
dxdy, (27)

where

f(ux, uy) ≡
a2

4α
+

1

2
au2x +

1

3
bu3x +

1

4
αu4x +

1

2
Du2y (28)

will be referred to as the effective potential. Equation (15) with β = c = 0 can be written

ut = −δF
δu
, (29)

where δF/δu denotes the variational derivative of F with respect to the surface height u.

Equation (29) implies that dF/dt ≤ 0, i.e., the effective free energy can never increase. The

dynamics therefore tends to minimize the value of F . This greatly facilitates the analysis.

When θ = ψ = 0 and T > Tc,0, a is negative and b = 0. In this case, the behavior

is analogous to the behavior of the 1D CH equation for a critical quench and the surface

undergoes spinodal decomposition [48]. The effective potential f has minima at (ux, uy) =

(±(|a|/α)1/2, 0). Therefore, the surface will tend toward a state in which most of the surface

has a gradient ∇u nearly equal to ±(|a|/α)1/2x̂, i.e., the surface will facet. The facets have

an effective free energy equal to zero. Adjacent facets are separated by “edges” which have a
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positive free energy per unit length. ∇u changes rapidly but not discontinuously as an edge

is traversed. As some facets contract and disappear and others grow, the pattern coarsens,

the total length of the edges declines, and the effective free energy decreases.

The facet slope that is selected is (|a|/α)1/2 = (ΩA1/α)1/2(T−Tc,0)1/2 and will be referred

to as the selected slope for the sake of brevity. It increases with the temperature and

decreases with the coefficient α of the cubic ES nonlinearity.

When θ and/or ψ is nonzero, b is nonzero and the effective potential f(ux, uy) is asymmet-

ric, i.e., it is not invariant under the transformation ux → −ux. In this case, the behavior

is analogous to the behavior of the 1D CH equation for an off-critical quench [48]. For

a > ac = 2b2/(9α), the state ux = uy = 0 is stable. Thus, for temperatures T sufficiently

far below Tc, the surface smooths. In the co-existence region 0 < a < ac, on the other hand,

there is a local minimum in the potential f(ux, uy) at ux = uy = 0. The global minimum

in the potential is at ux = φ∗ ≡ −(b +
√
b2 − 4aα)/2α < 0 and uy = 0. The flat state

ux = uy = 0 is therefore metastable. Noise in the initial condition or shot noise in the

ion beam could lead to nucleation and growth of regions with ux values φ1 and φ2 which

satisfy φ∗ < φ1 < 0 and φ2 > 0. The value of uy in these regions is zero. The surface

slope varies smoothly in interfacial regions between adjacent regions in which the slope is

very nearly constant. The width of these interfacial regions depends on B. The precise

values of the slopes φ1 and φ2 can be determined using the requirement that the line joining

the points (φ1, f(φ1)) and (φ2, f(φ2)) must be tangent to the curve f = f(φ) at these two

points. Finally, for a ≤ 0, the flat state ux = uy = 0 is unstable and spinodal decomposition

occurs. Once again, regions in which uy = 0 and ux is nearly equal to one of two selected

values develop at long times and are separated by interfacial regions in which the slope varies

smoothly.

The behavior for a case in which 0 < a < ac and b is nonzero is illustrated by Fig. 1. In

this simulation, a small nucleation site was introduced at time t = 0. In order to create this

nucleus, we first introduced a small region with the selected slopes on a surface. This region

had discontinuities in height at its edges, and so the surface was smoothed by averaging the

height at each grid point with its nearest neighbors, giving us the initial condition seen in

Fig. 1 (a). As time progressed, the area of the region in which ux is nearly equal to one

of the selected values φ1 and φ2 increased, as shown in Fig. 1 (b) and (c). Ultimately, this

region expanded to fill the entire domain (not shown).
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(a) (b) (c)

(d) (e) (f)

FIG. 1: Top row: Plots of the surface height u at (a) t = 0, (b) t = 50 and (c) t = 500,

obtained from integration of Eq. (15) with the following parameter values: a = 0.1, α = 1,

B = 1, D = 1, β = 0, c = 0, and b = 2. Bottom row: Cuts of the surface along the

horizontal axis at y = 75, (d), (e) and (f), at the corresponding times. The domain size is

150×150.

VI. HIGHLY ORDERED, NEARLY SINUSOIDAL RIPPLES

It would be natural at this point to study the special case of Eq. (22) in which r = κ = 0

and the coefficient of the linearly dispersive term γ is nonzero. (Note that for γ to be nonzero,

θ and ψ cannot both be zero.) As we shall see, in this case, highly ordered, nearly sinusoidal

ripples form if γ is sufficiently large. In fact, even if r or κ is nonzero, highly ordered, nearly

sinusoidal ripples emerge if γ is large enough. We will therefore also consider cases in which

r or κ are nonzero in this section.

It is important to note that it is possible to make γ large relative to r and κ in an

experiment. To see this, we begin by noting that

γ = − Ω(jx,1,5θ + jx,2,5ψ)

{ΩA1B[T − Tc(θ, ψ)]}1/2
. (30)

γ can therefore be made as large as desired by choosing T to be close to Tc(θ, ψ) but greater
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than it. In addition,

2
κ

γ
=
jx,1,3,3θ + jx,2,3,3ψ

jx,1,5θ + jx,2,5ψ
. (31)

Suppose the miscut angle ψ is fixed. Equation (31) shows that it is possible to arrange for

κ/γ to be zero by an appropriate choice of the angle of incidence θ. In an actual experiment,

κ/γ could not be made equal to zero precisely but it certainly could be made small, and so

the requirement κ� γ can be satisfied by adjusting the angle of incidence. Finally, r does

not depend on θ or ψ and depends only weakly on the temperature T . This means that we

can also arrange to have γ � r by choosing T − Tc(θ, ψ) to be small and positive.

Because we are especially interested in finding means to produce highly ordered ripples,

the emphasis in this section will be on the behavior for large γ. As we shall see, it is possible

to make analytical progress on Eq. (22) in that limit.

A. Perturbation Expansion

To gain insight into the form that the surface takes at long times when γ is large, we will

find approximate solutions to the 2D EOM (22) by carrying out a perturbation expansion

in powers of the small parameter ε ≡ 1/γ. (ε is not to be confused with ε ≡ |T − Tc,0|1/2.)

In particular, we seek solutions of the form u = u(ξ), where ξ ≡ x − vt. These traveling

wave solutions are independent of time in the frame of reference that propagates in the x

direction with the wave velocity v. We obtain

−vuξ = −uξξ − uξξξξ + ∂ξu
3
ξ + γuξξξ + r∂2ξu

2
ξ + κ∂ξu

2
ξ . (32)

We integrate this equation once with respect to ξ and eliminate the resulting constant of

integration C by setting ũ = u−C/v and then dropping the tildes. Equation (32) becomes

uξξ + ωu+ ε(−uξ − uξξξ + u3ξ + r∂ξu
2
ξ + κu2ξ) = 0, (33)

where ω ≡ εv.

We now set u = u0 + u1 + . . . and ω = ω0 + ω1 + . . ., where un and ωn are of order εn.

Working to order ε0, we obtain

u0ξξ + k2u0 = 0, (34)

where k ≡
√
ω0. This equation has the solution

u0 = A0 cos(kξ), (35)
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where we have chosen a phase and the amplitude A0 is a constant. The equation we obtain

by retaining terms up to order ε1 is

Lu1 = q, (36)

where L ≡ ∂2ξ + k2 is a differential operator and

q ≡ −ω1u0 + ε(u0ξ + u0ξξξ − u30ξ − r∂ξu20ξ − κu20ξ). (37)

Inserting our result Eq. (35) into Eq. (37), we find that

q =−ω1A0 cos(kξ) + εkA0

(
−1 + k2 +

3

4
k2A2

0

)
sin(kξ)

−1

2
εκk2A2

0 +
1

2
εκk2A2

0 cos(2kξ)− εrk3A2
0 sin(2kξ)

−1

4
εk3A3

0 sin(3kξ). (38)

The operator L is self-adjoint, and so according to the Fredholm alternative, Eq. (36) has a

solution if and only if q is orthogonal to the kernel of L. sin(kξ) and cos(kξ) are in the kernel

of L, and so the coefficients of sin(kξ) and cos(kξ) in q must be zero. As a consequence,

k =

(
1 +

3

4
A2

0

)−1/2

(39)

and

ω1 = 0. (40)

Recalling that ω = εv = ω0 + ω1 + . . . and ω0 = k2, we obtain

v = γ

(
1 +

3

4
A2

0

)−1

+O(ε). (41)

Making use of Eqs. (39) and (40), we see that Eq. (36) reduces to

Lu1 = −1

2
εκk2A2

0 +
1

2
εκk2A2

0 cos(2kξ)− εrk3A2
0 sin(2kξ)− 1

4
εk3A3

0 sin(3kξ). (42)

We set

u1 = B0 +B1 cos(2kξ) +B2 sin(2kξ) +B3 sin(3kξ) (43)

in Eq. (42) solve for the values of the constants B0, B1, B2 and B3. This leads us to the

conclusion that

u =A0 cos(kξ)

+ε

[
−1

6
κA2

0 cos(2kξ) +
1

3
rkA2

0 sin(2kξ) +
1

32
kA3

0 sin(3kξ)

]
+O(ε2), (44)
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where the irrelevant constant term εB0 has been dropped from the right-hand side. Equation

(44) shows that for large γ, the steady-state solution is a sinusoid plus a small correction

term. The wave number is k, and it is related to the amplitude of the steady-state solution

A0 by Eq. (39).

Combining Eqs. (39) and (41), we see that the propagation velocity v can be written

v = γk2 +O(ε). (45)

The dispersion relation for the linearized EOM is given by v = γk2 for sinusoidal waves with

wave vector k = kx̂. Equation (45) therefore shows that the nonlinear terms in the full

EOM (22) make higher order contributions to the dispersion relation.

There is a solution to the EOM (22) of the form (44) for arbitrary amplitudes A0. The

wave number and velocity of the propagating wave are related to A0 by Eqs. (39) and (41),

respectively.

Although we have found approximately sinusoidal traveling wave solutions to the EOM

(22) when γ is large for all amplitudes A0, there is no guarantee that a solution to Eq. (22)

with a low amplitude spatial white noise initial condition will converge to a sinusoidal trav-

eling wave solution at long times. Moreover, even if this does happen, we do not know a

priori which value of A0 will be selected. To address these issues, we carried out simulations

of the EOM (22).

B. Simulations in One Dimension

To begin, we will study the 1D EOM (23). We integrated this PDE numerically using

the fourth-order Runge-Kutta exponential time-differencing method described by Cox and

Matthews [49] on the domain 0 ≤ x ≤ L and employed periodic boundary conditions. An

initial condition of spatial white noise with amplitude 0.001 was used. The linear terms

were computed in Fourier space, and the nonlinear terms in real space. A central finite

differencing scheme accurate to fourth order in the grid spacing was used to compute the

nonlinear terms.

Figure 2 shows plots of the surface at time t = 1500 for several representative choices

of γ, r and κ. This figure strongly suggests that cases in which γ is much larger than r

and κ produce surfaces with a much higher degree of order than cases in which γ is zero or
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comparable in magnitude to the other two parameters. This observation is confirmed by a

quantitative analysis, as we will see momentarily.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2: Plots of the surface height u vs x at t = 1500 obtained from integration of Eq. (23)

with the following parameter values. Top: r = κ = 0 and (a) γ = 0, (b) γ = 1, (c) γ = 10.

Middle: r = 1, κ = 0 and (d) γ = 0, (e) γ = 1, (f) γ = 10. Bottom: r = 0, κ = 1 and (g)

γ = 0, (h) γ = 1, (i) γ = 10. The domain size is 250 for all cases.

For a given set of parameters γ, r and κ, we carried out multiple simulations. We

computed the distances between pairs of adjacent peaks and between pairs of adjacent

troughs in each simulation. The average inter-extremum distance in the simulations is
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an estimate of the mean wavelength Λ. We also computed the standard deviation of the

inter-extremum distances and divided it by Λ to give the relative standard deviation of the

wavelength (RSDW). The RSDW is a measure of the degree of order in the ripple pattern;

it is small if the pattern is highly ordered and large if it is not.

The RSDW was computed at time t = 1000 and was averaged over 100 runs for each set

of parameters we studied. The results are plotted vs γ for three choices of r and κ in Fig. 3.

In each case, the distribution of inter-extremum distances becomes narrow and the ripples

become highly ordered as γ becomes large. Interestingly, for the cases in which r 6= 0 or

κ 6= 0, the degree of order initially deteriorates as γ is increased from zero, but then steadily

improves.

(a) (b) (c)

FIG. 3: Plots of the RSDW vs γ at t = 1000 obtained from simulations of Eq. (23) with (a)

r = 0 and κ = 0, (b) r = 1 and κ = 0 and (c) r = 0 and κ = 1. The domain size was 250.

Our analysis of the steady states of Eq. (23) given in Sec. VIA suggests that if γ is

sufficiently large, the surface is approximately sinusoidal at long times. The power spectral

densities (PSDs) shown in Fig. 4 confirm this: sharp peaks appear in the PSDs at a certain

wave number k for relatively large γ but not for γ = 0. For the case with γ = 10, r = 1 and

κ = 0, a small peak can be discerned at a value of k approximately equal to 2k, in accord

with Eq. (44).

Addition evidence that the surface is approximately sinusoidal at long times if γ is suf-

ficiently large is given in Fig. 5. This figure shows the slope distributions of the simulated

surfaces at t = 1000, averaged over 100 runs. Each distribution has been normalized so

that the area under the histogram is equal to unity, which converts them into probability

distribution functions (PDFs). For each of the three cases with γ = 10, the PDF is close to

the slope distribution of a sinusoid with a wavelength and amplitude equal to the average

values of these quantities in the corresponding simulations.
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(a) (b) (c)

(d) (e) (f)

FIG. 4: PSDs for single simulations of Eq. (23) at t = 1500. Top: γ = 0 and (a) r = κ = 0,

(b) r = 1 and κ = 0, and (c) r = 0 and κ = 1. Bottom: γ = 10 and (d) r = κ = 0, (e)

r = 1 and κ = 0, and (f) r = 0 and κ = 1. The black crosses are the actual data points,

and the blue dashed curves are guides to the eye. The domain size was 250.

As we saw in Sec. V, most of the surface has a slope close to one of two selected values for

γ = r = 0. This is in accord with the slope distributions in panels (a) and (g) of Fig. 5, both

of which display sharp peaks at two values of the slope. These peaks broaden considerably

as γ is increased and the surface approaches a sinusoidal form.

According to the perturbation expansion, the wave number k and the amplitude A0 are

related by Eq. (39) in the steady state. To test this prediction, we took k to be the wave

number of the Fourier mode with the largest amplitude and A0 to be the amplitude of this

mode. Different spatial white noise initial conditions lead to different values of k and A0, and

so the values of these quantities were recorded separately for each simulation we carried out.

(1 + 3
4
A2

0)
−1/2 is plotted against k at time t = 1000 for r = κ = 0 and three different values

of γ in Fig. 6. Each data point represents a single simulation. The vertical lines correspond

to values of k that are allowed by the periodic boundary conditions — specifically, the lines

show the values k = 2πn/L, where n is the number of wavelengths present on the surface,

and L is the domain size. The dashed red line shows the expected linear relationship.

The agreement improves as γ increases and is quite impressive for γ = 100. This is to be

expected, since the perturbation expansion is an expansion in powers of ε ≡ 1/γ.

The perturbation expansion also predicts how the propagation velocity v depends on the

21



wave number k in the steady state — see Eq. (45). The value of k in our simulations was

determined as described in the preceding paragraph. We computed the velocity of the ripples

by measuring the rate of change of the phase of the Fourier transform of u(x, t) for the wave

number k. Figure 7 shows v plotted against γk2, with each data point representing a single

simulation. v and k were measured at t = 1500. The dashed red line is v = γk2, the leading

order term in the perturbation expansion for the velocity. The agreement is excellent, even

for values of γ that are not large.

As we have seen, for γ = r = κ = 0, the EOM (23) is equivalent to the 1D CH equation.

In this case, surface ripples coarsen indefinitely, i.e., the surface width w and the mean

wavelength Λ increase for all times. (The coarsening does, however, become logarithmically

slow at long times [50].) As Figs. 8 and 9 show, for nonzero γ, dispersion slows or even

arrests the coarsening that would otherwise occur. This remains true if r or κ is nonzero

provided that γ is sufficiently large. Once again, this is consistent with the perturbation

expansion, since for large γ and at long times, the surface approaches an approximately

sinusoidal form that propagates without significantly changing its shape.

Although the surface evolves into a highly ordered sinusoidal form when γ is large relative

to r and κ, its behavior is decidedly different if κ is comparable in magnitude to γ. As

illustrated by Fig. 10, in this case the term κ∂xu
2
x destroys the high degree of order that

would exist in its absence.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5: Slope distributions obtained from simulations of Eq. (23) at time t = 1000. Top

row: r = 0, κ = 0 and (a) γ = 0, (b) γ = 1 and (c) γ = 10. Middle row: r = 1, κ = 0 and

(d) γ = 0, (e) γ = 1 and (f) γ = 10. Bottom row: r = 0, κ = 1 and (g) γ = 0, (h) γ = 1

and (i) γ = 10. The domain size was 250. For each of the three cases with γ = 10, the

PDF is close to the slope distribution of a sinusoid with a wavelength and amplitude equal

to the average values of these quantities in the corresponding simulations. The latter

distribution is shown in orange.

23



(a) (b) (c)

FIG. 6: Plots of the quantity (1 + 3
4
A2

0)
−1/2 vs k with values of k and A obtained at

t = 1000 from simulations of Eq. (23) with (a) γ = 10, (b) γ = 50, and (c) γ = 100.

r = κ = 0 in all cases. The domain size was 250, and 100 simulations were carried out in

each case. Each black cross represents the measurements of a single simulation.

FIG. 7: Plot of v vs γk2 at time t = 1500 for simulations of Eq. (23) with r = κ = 0. The

domain size was 250. The dashed red line is v = γk2.
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(a) (b) (c)

FIG. 8: Plots of the RMS surface width w vs t obtained from simulations of Eq. (23) with

(a) r = 0 and κ = 0, (b) r = 1 and κ = 0 and (c) r = 0 and κ = 1. The domain size was

250 and an average over 100 simulations was taken.

(a) (b) (c)

FIG. 9: Plots of the wavelength Λ vs t obtained from simulations of Eq. (23) with (a)

r = 0 and κ = 0, (b) r = 1 and κ = 0 and (b) r = 0 and κ = 1. The domain size was 250

and an average over 100 simulations was taken.

(a) (b) (c)

FIG. 10: Plots of the surface height u vs x at t = 750 obtained from integration of Eq. (23)

with r = 0 and (a) κ = γ = 1, (b) κ = γ = 3, and (c) κ = γ = 5. The domain size is 250

for all cases.
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C. Simulations in Two Dimensions

Because the term uyy in the 2D EOM (22) tends to smooth out any variations of u in

the y direction, the behavior of the 2D EOM is in most respects quite similar to that of the

1D EOM (23). We will therefore only briefly discuss the behavior of the solutions to the 2D

EOM.

In Figure 11, plots of the surface at time t = 1500 for several representative choices of γ,

r and κ are shown. As in 1D, cases in which γ is significantly larger than r and κ produce

surfaces with a much higher degree of order than cases in which γ is zero or comparable in

magnitude to the other two parameters. Further evidence that supports this conclusion is

provided by plots of the RSDW versus γ. These plots are not reproduced here since they

look very much like the corresponding plots in 1D (Fig. 3).

The PSDs at time t = 1000 in Fig. 12 have sharp peaks for relatively large γ, confirming

that just as in 1D, in 2D the surface is approximately sinusoidal at long times if γ is

sufficiently large. As before, sharp peaks do not appear for γ = 0. Distributions of the slope

ux for simulations in 2D are similar to those shown in Fig. 5 for 1D and are not included

for the sake of brevity. They provide additional support for the conclusion that the surface

is approximately sinusoidal at long times if γ is sufficiently large. As in 1D, plots of w and

Λ versus time (not shown) demonstrate that dispersion slows or stops coarsening.

Although the dynamics are in many ways similar in one and two dimensions, there is

an aspect of the dynamics in 2D that occurs for relatively large γ that does not have a 1D

analog. In 2D, as time passes, multiple band-shaped regions develop in which the ripples are

highly ordered, as shown in Fig. 13 (a), for example. These bands are roughly aligned with

the x direction. Each pair of adjacent bands is separated by a unique type of defect that we

will refer to as a “seam.” Typically, the number of wavelengths on either side of a seam differ

by one. A seam can therefore be thought of as a dislocation that is spread out along the x

direction. Analogous defects occur in the anisotropic Kuramoto-Sivashinsky equation with

an added strongly dispersive term [18]. Clearly, seams are a feature of the 2D dynamics that

have no 1D counterpart.

Seams travel either parallel or anti-parallel to the y direction, toward the region with the

shorter wavelength, as illustrated by Fig. 13. When two seams meet, they either combine to

form a new seam or, as in Fig. 13, annihilate. Ultimately, no seams remain and a defect-free,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 11: Plots of the surface height u at t = 1500 obtained from integration of Eq. (22).

Top row: r = κ = 0 and (a) γ = 0, (b) γ = 5, (c) γ = 10. Middle row: r = 1, κ = 0 and (d)

γ = 0, (e) γ = 5, (f) γ = 10. Bottom row: r = 0, κ = 1 and (g) γ = 0, (h) γ = 5, (i)

γ = 10. The domain size was 150× 150 for all cases.

highly ordered ripple pattern remains.

To compare the results of our simulations in 2D with the predictions of the perturbation

expansion, we made 1D cuts of the surface along the x direction at several equally spaced

values of y. These cuts are shown on the surfaces in Fig. 14. We calculated the quantities

A0, kx and v for each cut in precisely the same way that we found these quantities for our

simulations in 1D.
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(a) (b) (c)

(d) (e) (f)

FIG. 12: PSDs of the surface for single simulations of Eq. (22) at t = 1000. Top row:

γ = 0 and (a) r = 0 and κ = 0, (b) r = 1 and κ = 0, and (c) r = 0 and κ = 1. Bottom row:

γ = 10 and (d) r = 0 and κ = 0, (e) r = 1 and κ = 0, and (f) r = 0 and κ = 1. The

domain size was 150× 150 in all six cases.

(a) (b) (c)

FIG. 13: Plot of the surface height u at (a) t = 400, (b) t = 755, and (c) t = 800 for the

case with γ = 50, r = 0, and κ = 0.

The surfaces in the top row of Fig. 14 come from a simulation of Eq. (22) with γ = 50

and r = κ = 0 and are at times t = 100, 250 and 1,000. In the second row of the figure, the

quantity (1 + 3
4
A2

0)
−1/2 is plotted versus the wave number kx for the surface above it. One
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point was plotted for each cut. Because one or more points could lie atop one another, we

made the darkness of the crosses proportional to the number of points that exactly coincided.

At time t = 100, some of the points in Fig. 14 (d) do not agree with the perturbation theory

prediction, which is shown with a blue line. These points come from cuts that happen to

run through or near a seam. Because the ripple amplitude is reduced in magnitude within

a seam, these points lie above the perturbation theory prediction. At time t = 250, the

agreement between the data and the prediction is better, as seen in Fig. 14 (e). Finally, at

time t = 1000, no seams remain and the agreement is excellent. A steady state has very

nearly been achieved at this time, and so the agreement with the approximate steady-state

solution found using perturbation theory is to be expected.

There is an interesting sidelight to Fig. 14, Parts (d) - (f). At times t = 100 and 250,

there are two different values of kx in which the agreement between the perturbation theory

prediction and the simulation is very good. The reason for this is that there are two bands of

y values with different values of kx where the ripple amplitude is close to the value predicted

by perturbation theory.

The velocity v is plotted versus γk2x for the surface above it in Fig. 14 (g) - (i). Even

at times t = 100 and 250, when defects still remain in the patterns and there are bands

of ripples with different wave numbers, the agreement between the simulations and the

perturbation theory prediction is very good. The defects have all disappeared by t = 1000,

and the points from all of the cuts very nearly coincide with each other and the perturbation

theory prediction.

To test the perturbation theory prediction for the dependence of the ripple velocity on

γ, we simulated Eq. (22) until time t = 1000 for r = κ = 0 and a selection of γ values.

Five simulations were carried out for each choice of parameters. The results are shown in

Fig. 15. In this figure, points were plotted for each 1D cut and each simulation, but this is

not apparent because the points for each choice of parameters very nearly lie on top of one

another. The agreement with the leading order prediction of perturbation theory, v = γk2x,

is excellent even for γ as small as two.

As in 1D, when κ is comparable in magnitude to γ, nonlinear dispersion disrupts the high

degree of order that would prevail if it were not present. This is illustrated by Fig. 16.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 14: Top row: Plots of the surface height u for simulations of Eq. (22) with r = κ = 0

and γ = 50 at (a) t = 100, (b) t = 250, and (c) t = 1000. The domain size was 150× 150,

and horizontal lines are drawn to show where cuts were made. Each cut yields one point in

each of the corresponding plots. Middle row: Plots of the quantity (1 + 3
4
A2

0)
−1/2 vs kx at

(d) t = 100, (e) t = 250, and (f) t = 1000. Bottom row: Plots of v vs γk2x at (g) t = 100,

(h) t = 250, and (i) t = 1000. In both the middle and bottom rows, the blue lines show the

perturbation theory predictions.
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FIG. 15: v plotted versus γk2x at time t = 1000 for simulations of Eq. (22) with the

parameter values r = 0, κ = 0, and γ as indicated. Five simulations were carried out for

each value of γ. Each data point represents a cut from a single simulation, but the points

for each choice of parameters very nearly lie on top of one another. The dashed red line

shows v = γk2x, the leading order term in the perturbation expansion for the velocity. The

domain size was 150× 150.
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(a) (b)

FIG. 16: Simulations of Eq. (22) at t = 500 with the parameter values (a) r = 0 and

κ = γ = 3, and (b) r = κ = 0 and γ = 3. The domain size was 150× 150.
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VII. DISCUSSION

Suppose a solid surface is sputtered by an obliquely incident noble gas ion beam and

that a layer at the surface of the solid is amorphized by the bombardment. It was shown

in recent work that for angles of ion incidence θ just above the threshold angle for pattern

formation θc, linear dispersion strongly affects the dynamics and highly ordered ripples form

[20]. That work suggests that in the problem studied in the current paper, linear dispersion

could lead to highly ordered ripples close to the the critical temperature Tc when there is

a nonzero miscut angle ψ. This is because the coefficient γ of the linearly dispersive term

in Eq. (22) becomes large as T approaches Tc from above. However, for highly ordered,

nearly sinusoidal ripples to develop, γ must be large compared to r, 1 and the coefficient of

the nonlinearly dispersive term κ. To insure that γ is much larger than κ, the angle of ion

incidence θ must be chosen appropriately. Once this has been done, ion bombardment will

produce highly ordered, nearly sinusoidal ripples.

To identify the angle θ that leads to highly ordered ripples in an experiment, a shortcut

could be employed. In particular, the (001) surface of GaAs with a given miscut angle

ψ could be bombarded with a broadly divergent ion beam at nominal normal incidence.

In this way, by imaging the surface at different points, the effect of bombarding with a

range of angles of incidence could be determined. Once the appropriate value of θ has

been determined, highly ordered ripples could be produced in future experiments using a

collimated ion beam with this angle of incidence.

From a mathematical point of view, in earlier work it was shown that if a sufficiently

strong linearly dispersive term is added to the 1D Kuramoto-Sivashinsky equation, then

ripples with a high degree of order will develop [25]. In the present paper, we have shown

that if a sufficiently strong linearly dispersive term is appended to the 1D CH equation for a

critical quench, then a highly ordered pattern will emerge. However, a pattern with a high

degree of order does not necessarily result when a strong linearly dispersive term is added

to the 1D CH equation for a off-critical quench,

φt = ∂2x(aφ+ bφ2 + αφ3 −Bφxx). (46)

This is due to the presence of the term b∂2xφ
2.

A natural question to ask is whether our theory could be applied to other surfaces besides

the (001) surface of GaAs. At the present time, highly ordered ripples are known to form on
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only one other surface that remains crystalline when it is bombarded at normal incidence:

the (001) surface of InAs [14]. However, it is not known whether InAs is amorphized by

ion bombardment below a temperature TR. If there is such a temperature TR, it is below

room temperature [45]. In addition, it has not yet been determined whether highly ordered

ripples form on InAs if the incident ions have an energy below the sputtering threshold. If it

turns out that there is recrystallization temperature TR and highly ordered ripples form on

InAs when it is bombarded with low energy ions at a temperature T > TR, then our theory

will apply.

In the past, an imprecise analogy has often been made between nanoscale surface ripples

produced by oblique-incidence ion bombardment of solid surfaces and aeolian sand dunes

(see Ref. [51], for example). For ion bombardment of solids in the high energy regime,

however, the analogy is actually rather poor: incident ions move ballistically until they

reach the surface of the solid but air flows hydrodynamically over a dune. In addition, the

sputtering produced by the impinging ions leads to nonlinear terms in the EOM that do not

conserve mass. In contrast, the mass is conserved in the dynamics of aeolian sand dunes

and therefore terms of this kind do not appear in the EOM.

The analogy becomes much stronger when a crystalline solid is bombarded in the low-

energy regime in which sputtering does not occur because then mass is conserved. In the

case of a miscut GaAs target, we have shown that the EOM is Eq. (22) for temperatures

T just above the critical temperature Tc,0 and for small miscut angles. Precisely this EOM

has been studied as a model of the dynamics of aeolian sand dunes [52, 53]. In that model,

u is the height of the sand surface, the x axis points in the direction of the wind, and the y

direction is the transverse horizontal direction.

The EOM (22) studied in this paper is actually quite generic. In addition to being used

as a model of aeolian sand dunes, the version that has γ = κ = 0 has been employed as a

model of surface ripple formation during thin film deposition with diametrically opposed,

obliquely incident broad atomic beams [47] and as a model of pattern formation on solid

surfaces bombarded by two broad ion beams in the regime in which sputtering is negligible

[54].
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VIII. CONCLUSIONS

When the (001) surface of a GaAs single crystal is bombarded with a normally-incident,

low-energy noble gas ion beam and the sample temperatures T is close to the threshold

temperature for pattern formation Tc,0, highly ordered, faceted ripples with their wave vector

aligned with the [110] direction form. Because the wavelength can vary along the [110]

direction, these ripples are not perfectly ordered.

Two additional terms appear in the equation of motion when there is a miscut along the

[110] direction, a linearly dispersive term and a nonlinear dispersion term. The coefficients of

both of these terms can become large as the threshold temperature is approached from above.

In the absence of strong nonlinear dispersion, strong linear dispersion leads to very highly

ordered ripples. These ripples are not faceted, but instead have a nearly sinusoidal profile

even though they are on the surface of a single crystal. In general, this order is disrupted

by nonlinear dispersion. However, the effect of nonlinear dispersion can be made negligibly

small by choosing the angle of incidence appropriately. If that is done, ion bombardment

will lead to the formation of highly ordered ripples with a nearly sinusoidal profile.

We also found an interesting special case in which the linearly dispersive and the con-

served Kuramoto-Sivashinsky terms do not appear in the equation of motion. In this case,

depending on the values of the parameters, either nucleation and growth of facets or spinodal

decomposition can occur.

As mentioned in the Introduction, Chowdhury and Ghose have bombarded the (001)

surface of GaAs with a normally-incident, low-energy noble gas ion beam [24]. The sam-

ple temperature T was not close to the threshold temperature for pattern formation Tc,0,

however, and so a comparison between the results of these experiments and our theoretical

predictions for the case θ = ψ = 0 cannot be made.

To date, no systematic studies of the ion bombardment of the (001) surface of GaAs with a

miscut have appeared in print. Because a rich variety of phenomena could result — including

the formation of highly ordered, nearly sinusoidal ripples, nucleation and growth of facets,

and spinodal decomposition — experiments of this kind would likely lead to fascinating

results as well as providing a test of the theory presented in this paper.
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