
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Deformations, relaxation, and broken symmetries in liquids,
solids, and glasses: A unified topological field theory

Matteo Baggioli, Michael Landry, and Alessio Zaccone
Phys. Rev. E 105, 024602 — Published  9 February 2022

DOI: 10.1103/PhysRevE.105.024602

https://dx.doi.org/10.1103/PhysRevE.105.024602


Deformations, relaxation and broken symmetries in liquids, solids and glasses:
a unified topological field theory

Matteo Baggioli1,2,∗ Michael Landry3,† and Alessio Zaccone4,5‡
1Wilczek Quantum Center, School of Physics and Astronomy,

Shanghai Jiao Tong University, Shanghai 200240, China
2Shanghai Research Center for Quantum Sciences, Shanghai 201315.

3Department of Physics, Center for Theoretical Physics,
Columbia University, 538W 120th Street, New York, NY, 10027, USA.

4Department of Physics “A. Pontremoli”, University of Milan, via Celoria 16, 20133 Milan, Italy. and
5Cavendish Laboratory, University of Cambridge,
JJ Thomson Avenue, CB30HE Cambridge, U.K.

We combine hydrodynamic and field theoretic methods to develop a general theory of phonons
as Goldstone bosons in crystals, glasses and liquids based on non-affine displacements and the
consequent Goldstones phase relaxation. We relate the conservation, or lack thereof, of specific
higher-form currents with properties of the underlying deformation field – non-affinity – which
dictates how molecules move under an applied stress or deformation. In particular, the single-
valuedness of the deformation field is associated with conservation of higher-form charges that
count the number of topological defects. Our formalism predicts, from first principles, the presence
of propagating shear waves above a critical wave-vector in liquids, thus giving the first formal
derivation of the phenomenon in terms of fundamental symmetries. The same picture provides
also a theoretical explanation of the corresponding “positive sound dispersion” phenomenon for
longitudinal sound. Importantly, accordingly to our theory, the main collective relaxation timescale
of a liquid or a glass (known as the α relaxation for the latter) is given by the phase relaxation
time, which is not necessarily related to the Maxwell time. Finally, we build a non-equilibrium
effective action using the in-in formalism defined on the Schwinger-Keldysh contour, that further
supports the emerging picture. In summary, our work suggests that the fundamental difference
between solids, fluids and glasses has to be identified with the associated generalized higher-from
global symmetries and their topological structure, and that the Burgers vector for the displacement
fields serves as a suitable topological order parameter distinguishing the solid (ordered) phase and
the amorphous ones (fluids, glasses).

I. INTRODUCTION

From a microscopic viewpoint, solids, liquids and
glasses are profoundly different. The short-scale dynam-
ics are strongly dependent on their structural differences,
which are revealed in several physical observables such
as the vibrational density of states g(ω) and the specific
heat cv(T ). Solids are well-described by Debye theory
[1, 2], which predicts that g(ω) ∼ ω2 and cv ∼ T 3.
Liquids on the contrary, yield g(ω) ∼ ω [3–5] and
a specific heat which decreases monotonically with
temperature [6–8]. Glasses are even more mysterious
since they display an anomalous peak (Boson peak) in
both the density of states and the specific heat [9–12],
and exhibit an unusual linear relationship cv ∼ T at
low temperature [9]. These macroscopically different
behaviors arise from the microscopic idiosyncrasies of
solids, liquids and glasses. In particular, although solids,
liquids and glasses feature propagating longitudinal
sound waves (albeit with difference velocities), the
dynamics of transverse shear waves are very different.
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Solids exhibit propagating shear waves down to arbi-
trarily low momentum and their speed is set by the
shear elastic modulus G. Liquids, on the contrary, do
not display propagating shear waves at low momenta
and their low-momentum dynamics are governed by a
shear diffusive mode, which is simply the manifestation
of momentum conservation. Nevertheless, propagating
shear waves appear above a certain critical momentum,
which has historically been called the Frenkel theory of
liquids, or more recently, the k-gap theory[13] (see Fig.1).

The existence of this feature in liquids is supported
by numerous molecular dynamic (MD) simulations [14–
24] and it might be the fundamental mechanism behind
the experimental observation of solid-like behaviours in
confined liquids [25–27]. The starting – or as we will see,
ending – point of the Frenkel or k-gap theory is the simple
equation

ω2 + i ω Γ = v2 k2 , (1)

which is known as telegraph equation, originally intro-
duced by Heaviside [28]. Here Γ is the relaxation rate, the
inverse of the relaxation time τ . This equation is simply
the Fourier transform of the following one-dimensional
manipulation of the Navier-Stokes equation developed
by Y. Frenkel [29] to accommodate viscoelasticity à la
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Figure 1. The difference between solids and liquids from the
point of view of the collective excitations in the transverse
and longitudinal sectors.

Maxwell

η ∂2
xv = ρ τ∂2

t v + ρ ∂tv,

where v is the fluid velocity component in either the y
or z direction, τ = η/G∞ is the Maxwell viscoelastic
relaxation time, G∞ is the infinite-frequency shear
modulus, η is the kinematic viscosity and ρ is the den-
sity. Contrary to the standard Navier-Stokes equation,
the above hydrodynamic equation contains a second
derivative in time, thus allowing for sound propagation
with speed cs =

√
G∞/ρ. This sound mode is a

result of implementing Maxwell’s so-called “viscoelastic
interpolation” inside the Navier-Stokes equation. As a
matter of fact, the above equation is a wave equation
with damping. Unfortunately, Maxwell’s interpolation
with Frenkel’s suggestion is not sustained by any formal
and consistent theory. It is an ad-hoc phenomenological
procedure. More precisely, it is not even clear if Frenkel’s
derivation of Eq.(1) is compatible with conservation laws
and a well-defined hydrodynamic framework1.
The same equation can be derived in the context
of generalized hydrodynamics [30, 31] but, again, a
mathematical justification of this framework from
fundamental principles (e.g. symmetries) is still absent2.

1 As we will show, the only way to achieve this dynamics for the
collective shear waves is by adding phase relaxation, which was
not present in the original framework of Maxwell and Frenkel.

2 Generalized hydrodynamics simply assume that the thermody-

See [32] for a classical textbook discussing all these issues.

This problem has produced a large amount of confu-
sion regarding the nature of the relaxation rate Γ, which
is fundamental in the phenomenological applications of
this model. In particular, the Maxwell-Frenkel idea of
taking Γ as the shear relaxation rate Γ = G∞/η is quite
disputable and not compatible with hydrodynamics. It
is indeed well-known that the shear viscosity η, com-
bined with the high-frequency shear elasticity modulus
G∞, does not induce collective dynamics for transverse
shear waves as in Eq.(1) (see Landau textbook [33] or
Chaikin and Lubensky’s book [34]). On the contrary, it
gives attenuated transverse sound waves of the form

ωT = ± v k− i ΓT
2
k2 +O(k3) , v2 =

G

ρ
, ΓT =

η

ρ
,

(2)
which are typical of viscoelastic systems [34–36], where
ρ is the mass density of the medium.

At the same time, it is obvious that the relaxation rate
Γ in Eq.(1) cannot come in any way from the explicit
breaking of spacetime symmetries, since a non-conserved
momentum would also destroy the longitudinal propa-
gating sound.

Finally, rotations play no role in the Goldstones
counting (contrary to what was suggested in [37]) since
it is well-known that they are not independent uniform
symmetries and they are always “subsumed” by transla-
tions. Indeed, in standard material media, or standard
spacetime, the Lie generators of rotations are just linear
combinations of the generators of translations, and do
not generate additional Goldstone gapless modes, a fact
that was already pointed out by Mermin [38] (and in its
modern formulation is due to the so-called inverse Higgs
constraint [39]). Different is the case in liquid crystals
and other Cosserat media [40, 41].

This entire discussion thus reduces to a fundamental
question: what is the difference between liquids and
solids at the level of fundamental symmetries ?

The purpose of this work is to provide an answer to
this question, and more precisely what is the relaxation
rate Γ appearing in Eq.(1). Importantly, this is not a
purely academic question but it plays a fundamental
role in determining the validity of the current theory of
the liquid state.

A partial answer to this question has been put
forward in [42, 43] by noticing that fluids enjoy more
symmetries than solids, and in particular they are
invariant (within the linear approximation) under

namics and transport coefficients become k, ω dependent to re-
flect the microscopic details of the molecular environment with-
out modifying the hydrodynamic equations.
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volume preserving diffeomorphisms – transformations
of the fluid world-volume that do not change the total
volume of the system. It is easy to show that invariance
under this group constrains the static (equilibrium)
shear elastic modulus G to be zero. However, con-
necting this internal symmetry with the microscopic
dynamics and physical features is very hard. Moreover,
this does not explain the appearance of propagating
phonons in liquids, and thus does not account for a
finite elastic modulus above a certain critical momentum.

A closely related question is: what is the fate of the
transverse phonons upon transitioning from liquids to
solids? In particular, what happens upon transitioning
from the liquid state, with one ungapped longitudinal
phonon and heavily gapped transverse phonons, to the
amorphous solid state (glasses), with two ungapped (or
apparently so [44]) transverse phonons, in addition to
the usual ungapped longitudinal phonon? Evidently,
these questions touch on the unsolved problem of the
glass transition [44, 45], i.e. how does a liquid turn into
a solid glass without an apparent change of microscopic
structure (aside from the apparent slow-down of the
atomic/molecular dynamics)? A deeply related question
is therefore: what changes in the underlying fundamen-
tal symmetries (e.g. at the level of Goldstone bosons)
accompany this transition?

In this work, we take a perspective based on symme-
tries, hydrodynamics and classical field theory. Although
the mathematical theory underlying the hydrodynamic
description of liquids has been studied for quite some
time, the results of these studies have not been collected
in one place to provide a clear and concise guide to both
theorists and experimentalists who might use them.

In this largely expository paper, using different
methods, the dynamics of a liquid will be explained
by considering a system that spontaneously breaks
translations along with the presence of the so-called
phase relaxation [46]. The phase relaxation, whose
meaning will be explained in the next sections, is the
key to understanding the disappearance of propagat-
ing shear waves at small momentum in liquids. It
is induced microscopically by the presence of multi-
valued, non-affine displacements in the deformation
field of liquids and it can be connected to some sort
of topological properties of the material using the
framework of generalized global symmetries [47]. The
same process happens to a quantitatively lesser ex-
tent in glasses, where weaker phase relaxation induces
a partial or apparent restoring of the transverse phonons.

In a sense, our work suggests that the fundamental
distinction between solids, liquids and glasses must be
found at the level of higher-form generalized global
symmetries and their associated topological structure.
Additionally, the Burgers vector measured in the dis-
placement field under deformation can efficiently serve

as a suitable order parameter for distinguishing the
solid (ordered) phase from the amorphous ones (fluids,
glasses). The Burgers vector is indeed zero in the
ordered solid phase (with no defects) and it acquires
finite values in the glassy or fluid phases.

In summary, from first principles, we construct a fully
consistent field theory of liquids and solids based on
symmetries, which agrees with all known experimental
observations. More specifically, it explains both the
absence of propagating shear waves at small momentum
and their presence at higher momentum in liquids, and
it connects this feature to their fundamental non-affine
dynamics of deformation. Moreover, it presents a new
understanding of the glass transition as the point at
which the phase relaxation time becomes large enough
such that the k-gap disappears and transverse waves are
again propagating at all scales. Our results are backed
up by several different methods: (I) a hydrodynamic
description, (II) a field theory formulation in terms of
higher form symmetries, (III) a differential-geometry
study based on the deformation compatibility constraint
and (IV) a formal non-equilibrium effective action
defined by using the in-in formalism on the Schwinger-
Keldysh (SK) contour.

For completeness, let us emphasize that the questions
and the phenomena described in this paper are well
known in the physics of liquids. Previous theoretical
frameworks include viscoelastic theory [48], generalized
hydrodynamics [49, 50], mode coupling theory [51], self-
consistent relaxation theory [52] and “k-gap” theory [13].
Importantly, all these frameworks are in a sense phe-
nomenological and not derived from fundamental prin-
ciples. In this aspect, our approach is different and in a
way complementary to those mentioned above.

The paper is structured as follows. In Section II we
present a description of non-affine displacements in liq-
uids and glasses and we demonstrate that they can be
described in terms of a Burgers circuit and a Burgers vec-
tor, in analogy with dislocations in crystals: this reveals
the topological multi-valuedness of the displacement field
in disordered systems; in Section III we briefly summa-
rize the main ideas behind the k-gap theory of liquids; in
IV we provide the hydrodynamic description of systems
with spontaneously broken translations and phase relax-
ation; in Section V we discuss how phase relaxation can
be understood in terms of a higher-form global symme-
try; in Section VI we connect the non-affine deformations
of liquids and glasses with phase relaxation; in Section
VIII we compare our formalism with the Maxwell-Frenkel
theory; in Section VIII we provide explicit and concise
proofs of all the main statements described in the pre-
vious parts; in Section IX we build a Schwinger-Keldysh
action principle for systems with phase relaxation and
we provide a comprehensive Goldstone bosons counting
for liquids, glasses and crystals; in Section X we briefly
discuss the implications of our theory for glasses and fi-
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nally in Section XI we conclude with some comments and
future directions.

II. NON-AFFINE DISPLACEMENT FIELD IN
LIQUIDS AND GLASSES

A. Non-affine deformations in amorphous media:
mechanism and phenomenology

i

i

(a)

(b)

Figure 2. Schematic illustration of nonaffine displacements in
amorphous media. Panel (a) shows the rearrangements or
displacements of atoms upon application of an external shear
strain. If the deformation were affine, atoms which sit exactly
on the dashed lines in the underformed frame (left) would still
sit exactly on dashed lines also in the deformed frame (right).
However, in a disordered environment this does not happen:
the atoms that were sitting on the dashed lines in the un-
deformed frame are no longer sitting on the dashed lines in
the deformed frame, but are displaced from them. The dis-
tance from the actual positions of the atoms to the dashed
line corresponds to the non-affine displacements. Panel (b)
provides a visual explanation of the origin of non-affine dis-
placements in disordered environments. Left figure shows a
perfect lattice where, upon applying a small deformation, the
nearest-neighbour forces from surrounding atoms cancel each
other out in the affine positions, so there is no need for non-
affine displacements to arise. In the right figure, instead, the
tagged atom i is not a center of inversion symmetry, which
implies that nearest-neighbour forces from surrounding atoms
do not balance in the affine position, hence a net force arises
which triggers the non-affine displacement in order to main-
tain mechanical equilibrium.

In liquids, glasses and granular-jammed systems, the
physics of deformations at the microscopic (atomic,
molecular, or particle) level is very different from that of
perfect crystals at low temperature. Under an infinites-
imal constant shear, the atoms of each of these systems
will move and settle into new equilibrium positions. For
a crystalline solid, it is natural to suppose that the new
positions of the atoms be related to the old positions by a
simple affine transformation that can be calculated from
the strain tensor; for disordered systems, however, no
such affine transformation exists. In particular, because
of the disorder, a reference atom cannot be at mechani-
cal equilibrium in the spatial position prescribed by such

Figure 3. Non-affine displacements resulting from a shear
in the x, y, plane. Notice the vortex-like pattern. Figure
reproduced with permission of the American Physical Society
from Ref.[53].

an affine transformation [54–57]. As a result, the forces
transmitted by the nearest neighbour atoms (on their
way towards their respective affine positions) to the ref-
erence atom in its affine position do not cancel. In a
perfect centrosymmetric crystal, inversion symmetry of
the lattice requires that these microscopic forces cancel
with each other, but no such symmetry exists for disor-
dered materials like liquids, glasses and granulars, or in
a crystal near defects.

Because there is a net force acting on each atom in
its affine position, an extra (non-affine) displacement
away from the affine position is required in order to
maintain the mechanical equilibrium throughout the
deformation. The non-affine displacements provide an
additional contribution to the standard displacement
field, ui, of elasticity theory. The non-affine part of the
displacement field is random (due to the microscopic
disorder) and does not possess any particular symmetry.
The mechanism of non-affine deformation is summarized
in Fig.2.

In general, we can express the displacement of a refer-
ence atom in a disordered environment (glass or liquid)
by

ui(x) = Fijxj + u′i(x) (3)

where Fij denotes the components of the deformation
gradient tensor, while u′i(x) is the non-affine displace-
ment field. As usual, the deformation gradient tensor
can be expressed as Fij = δij + γij , where δij is the
Kronecker delta. For an externally imposed uniform de-
formation, the γij are constants, i.e. independent of x,
unlike the non-affine component u′i(x), which varies in
an unconstrained manner throughout the material.

A typical snapshot of the non-affine displacement field
u′i calculated numerically in a disordered solid (from [53])
is shown in Fig.3. In spite of the evident randomness and
absence of particular symmetries of u′i(x), the correlation
functions of u′i(x) can be obtained in a semi-deterministic
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way as shown in Ref.[53]. In particular, vortex-like pat-
terns are systematically found in the numerically com-
puted u′i(x) in glasses, see also [54, 58–60]. The same
type of phenomenology is observed also for supercooled
liquids above the glass transitions, see e.g. Ref.[61].

B. Microscopic elasticity and softening due to
non-affine deformations in disordered solids

The analysis of the non-affine displacements and their
mechanism, is the starting point for the modern micro-
scopic theory of elastic and viscoelastic moduli of mate-
rials [54, 55, 62].

As shown in previous works, the equation of motion of
atom i in a disordered medium (liquid or glass) subjected
to an external strain, in mass-rescaled coordinates, can
be written for an atom labeled as α as follows[54, 62]:

d2xαi
dt2

+ ν
dxαi
dt

+Hαβ
ij x

β
j = Ξα,kli ηkl (4)

where ηij is the Green-Saint Venant strain tensor and
ν is a microscopic friction coefficient which arises from
long-range dynamical coupling between atoms mediated

by anharmonicity of the pair potential [63]. Hαβ
ij is

the Hessian matrix. Latin indices denote spatial com-
ponents, Greek indices are atoms labels and the sum-
mation convention is implied. The term on the r.h.s.
physically represents the effect of the disordered (non-
centrosymmetric) environment leading to nonaffine mo-
tions (see Fig.2). The equation of motion (4) can also be
derived from first principles, from a model particle-bath
Hamiltonian as shown in previous work [62].

Using standard manipulations (Fourier transformation
and eigenmode decomposition from time to eigenfre-
quency [54]), and applying the definition of mechanical
stress, we obtain the following expression for the vis-
coelastic (complex) elastic constants[54, 62]:

Cijkl(ω) = CBorn
ijkl −

1

V

∑
n

Ξ̂n,ijΞ̂n,kl
ω2
p,n − ω2 + iων

(5)

where CBorn
ijkl is the Born or affine part of the elastic con-

stant tensor, i.e. what survives in the high-frequency
limit. Here, ω represents the oscillation frequency of
the external strain field, whereas ωp denotes the inter-
nal eigenmode frequency of the material. Upon tak-
ing the limit ω = 0, the static (zero-frequency or zero
deformation-rate) elastic constants can be calculated.

The second negative term on the r.h.s. represents
the softening contribution from nonaffine displacements,
which reduces the elastic constants of the system, and
which also play a dominant role at the plastic yielding
transition [64]. The reduction is especially important
for the shear modulus, whereas for the bulk modulus
the non-affine correction is much smaller for geometric
reasons due to the local excluded-volume packing con-
straints [65–67].

The above formalism has been used to solve the prob-
lem of the elasticity of random sphere packings in generic
d dimensions in Ref.[55], leading to an analytical expres-
sions for the shear modulus G:

G =
1

30

N

V
κR2

0 (z − 2d) (6)

where N/V is the density of spheres in the packing, κ
is the spring constant of the particle-particle interaction,
R0 is the distance between two nearest-neighbour parti-
cles, and z is the average nearest-neighbour number in
the packing. The negative term due to non-affine dis-
placements causes the shear modulus to become zero,
G = 0 when z = 2d, thus recovering the well known
Maxwell rigidity criterion. The above Eq.(6) is in excel-
lent agreement with MD simulations of jammed sphere
packings [68], including the numerical prefactor.

The non-affine lattice dynamics framework also pro-
vides an adequate description of the low-frequency elas-
ticity of confined liquids, and it predicts the correct law
G ∼ L−3 for the dependence of the low-frequency shear
modulus of confined liquids upon the confinement length
L as shown in [69, 70], in agreement with experimental
observations [25, 71].

For bulk liquids, the non-affine deformation formal-
ism combined with equilibrium statistical mechanics (as
appropriate for equilibrium fluids), predicts G = 0 for
the zero-frequency shear modulus, as shown in Ref. [72]
using the stress-fluctuation version of the non-affine for-
malism valid for quasi-static response at zero deforma-
tion rate/frequency. In Ref. [73], it has been shown that
the stress-fluctuation version of non-affine deformations
and the non-affine response formalism discussed here do
coincide in the limit of ω → 0.

C. Burgers vector for non-affine deformations
viewed as topological invariant

Non-affinity of the displacement field arises due to
breaking of point-group inversion symmetry, as explained
in the previous sections, and is a common feature of crys-
tals with point defects (interstitials and vacancies [74–
76]), and of glasses and liquids as well. Of course, the
breaking of point-group inversion symmetry occurs also
in crystals with topological defects, and this is immedi-
ately evident upon looking at the atoms that sit of the
edge of a dislocation line in a crystal lattice. Those atoms
are obviously not centers of symmetry.

Therefore, it would be natural to think of deep analo-
gies in the mathematical description of the non-affine de-
formation field in amorphous media and that of the dis-
placement field around dislocations. It is surprising that
these analogies have not been addressed in the previ-
ous literature yet, aside from a series of studies which
addressed the issue of identifying “defects”, including
dislocations, in amorphous solids [77–80]. Those stud-
ies did not, however, consider the issue of “defects” in
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Figure 4. Geometric construction, known as the Burgers cir-
cuit [2], of the topological singularity associated with the non-
affine displacement field, leading to the Burgers vector −b,
around a reference atom in an amorphous solid. For simplic-
ity, and without loss of generality, we consider the case of the
left bottom atom being undergoing a non-affine displacement,
while the other atoms move affinely. The red circle indicates
the affine position where the left-bottom atom would have
landed, had it been displaced affinely. The red line, which
measures the non-affine displacement u′i, as defined in Eq.(3),
is the Burgers vector for the non-affine displacement field in
an amorphous lattice.

amorphous solids in relation to non-affine displacements.
From the point of view of non-affine deformations, it is
evident that each and every atom in an amorphous solid
plays, to some extent, the role of a topological defect, as
we will show below. The crucial difference with all previ-
ous studies, however, lies in the fact that the topological
defects are not (and, in fact, they hardly can be) iden-
tified in the undeformed structure of the material, but
rather in its displacement field under deformation.

We build a connection between non-affine deformations
and topological defects here for the first time, by showing
that the non-affine displacement field is indeed equiva-
lent to the displacement field around a dislocation. In
Fig.4, we present a schematic Burgers circuit around a
reference atom in an amorphous system (solid or liquid).
Any Burgers circuit around any atom, that is not a center
of symmetry, in an amorphous solid leads to a non-zero
Burgers vector bi. This, therefore, implies that∮

L

dui =

∮
L

∂ui
∂xk

dxk = −bi (7)

which can be recast in differential form using Stokes’ the-
orem, as

eilm∂l∂muk = −αik , (8)

where αik is the so-called dislocation density tensor, re-
lated to the Burgers vector via dbi = αmidAm, with Am
being the axial vector orthogonal to the area element en-
closed by the path L [33, 81] and dAm the corresponding
area element.

The above condition, in the language of elasticity the-
ory, implies that the deformation is incompatible (see fur-
ther below for more details about incompatibility). The

possibility that non-affine deformations belong to the
class of incompatible deformations has been suggested
in Ref. [82]. The above Fig.4 and the resulting analysis
demonstrate that not only the non-affine deformations
are incompatible, as expected, but also that every atom
in an amorphous solid plays the role of a topological de-
fect leading to a multi-valued displacement field. The
non-affine displacement u′i is in every point of the ma-
terial proportional to the Burgers vector, based on the
construction of Fig.4.

III. THE FRENKEL THEORY OF LIQUIDS

It is common wisdom to distinguish solids and fluids
by the presence of propagating shear waves [83]. In par-
ticular, it is often said that liquids have a vanishing low
frequency shear modulus G = 0 and therefore transverse
phonons cannot propagate, and are replaced by a dif-
fusive mode. This observation can be supported theo-
retically by stating that liquids are invariant under vol-
ume preserving diffeomorphisms, which indeed do pro-
tect the shear modulus from being finite [43, 84] (see
also [85, 86] for a holographic verification of this state-
ment). In other ways, the presence of a finite rigidity can
be interpreted as the explicit breaking of such internal
symmetry. Should we take this as the end of the story?
Recent experiments have shown the existence of propa-
gating shear waves at low frequency in confined liquids
[25] together with the associated solid-like elastic effects
[26, 27] (see also [87]). The theoretical discovery of the fi-
nite elasticity of confined liquids has been put forward us-
ing the framework of non-affine elasticity of structurally
disordered condensed matter systems [69]. The key point
is that confinement along one spatial direction effectively
cuts off low-energy eigenmodes of the system which are
responsible for the non-affine softening contribution to
the shear modulus [69, 70]. The infrared cutoff due to
confinement thus make the non-affine contribution effec-
tively smaller, and leads to a finite low-frequency shear
modulus in liquids with good wetting to the solid bound-
aries (the latter boundary condition is required to ensure
the propagation of low-frequency phonons).

A. Theoretical background

A possible theoretical explanation for the vibrational
excitations in liquids goes under the name of k-gap the-
ory [13]. In this framework, the dynamics of transverse
excitations is based on the coexistence of oscillatory solid-
like vibrations together with the diffusive rearrangements
of molecules. Defining the average time for these re-
arrangements to be τ , the dynamics of the shear modes
is modified as follows:

ω2 +
i ω

τ
− v2 k2 = 0 . (9)
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One could immediately verify that whenever these local
re-arrangements are ignored, i.e. taking the limit τ =∞,
one recovers the standard propagating nature of shear
sound waves. In the opposite limit, when ωτ � 1, the
physics is described by a single hydrodynamic diffusive
mode ω = −i v2 τ k2.

Figure 5. The clear discrepancy between the collective struc-
tural relaxation time and the single-particle Maxwell time
τ = η/G. Figure adapted from [88].

Although this simple equation seems to work pretty well
for several liquids [14–23], its derivation is purely phe-
nomenological and based only on the physical intuition
of Maxwell and Frenkel. In particular, the identification
of the timescale τ is not obvious and this is mostly due
to the absence of a theoretical and formal derivation of
the Cattaneo-type equation (9) 3. A (maybe too) simple
derivation of this relaxation time exists and it can be
obtained using the Maxwell linear viscoelastic theory. In
this scenario, τ is identified as τ = η/G∞ where η is the
shear viscosity and G∞ the instantaneous shear modulus
– the rigidity at infinite frequency. Unfortunately, this
interpretation is highly debated and there is increasing
contrary evidence from experiments [88] (see Fig.5)
and from holographic results [90–92] that contradict or
question this interpretation.

Moreover, from a hydrodynamic point of view á la
Landau, the introduction of a finite shear viscosity does
not induce dynamics described by equation (9) but it
rather provides solely a finite attenuation for the shear
sound waves without any k-gap [2]. In particular, the
relaxation scale τ appearing in Eq.(9) is the relaxation
time of the collective hydrodynamic modes and not of
the single liquid particles (atoms or molecules). A finite
shear viscosity does not induce any relaxation time for
the collective shear modes. On the contrary, the Frenkel

3 See also [89] for another phenomenological use of this equation
in the context of linearized relativistic hydrodynamics.

time seems to attain to the dynamics of the single
liquid molecule which is definitely not the character in
discussion here since hydrodynamics refers only to the
long wavelength collective dynamics. These points have
been already discussed in the literature [93–95].
Recently, Ref.[52] raised the problem that to quantify
the ”k-gap” phenomenon in liquids it is not sufficient to
know only a single critical wave number kg determining
the k-gap scale, because there is a crossover range of a
finite width in momentum space.

In this manuscript, we try to formulate a formal
and consistent hydrodynamic and effective field theory
description for shear waves in liquids giving a collective
dynamics of the form (9). As we will explain in the
following, the only hydrodynamic consistent treatment
producing k-gap dynamics for shear waves consists in
the introduction of Goldstones phase relaxation, in-
duced by the non-affine dynamics in liquids (and glasses).

Finally, let us emphasize that an equation like (9)
correctly approximates the low-energy dynamics only in
presence of a strong separation of scales for which the first
two modes, the one appearing in (9), are much “lighter”
(in the sense of longer-living) with respect to the rest
of the modes. This situation is nevertheless natural in
the sense that sending to zero the damping of the second
non-hydrodynamic mode in (9) produces a symmetry en-
hancement in the system.

B. Physical picture

Despite the derivation of the k-gap theory and Eq.(9)
might be formally inaccurate and not consistent with the
fundamental symmetries of liquids, the physical picture
proposed by Frenkel [29] and then re-iterated by Tra-
chenko and collaborators [96] is indeed correct, once the
right mechanism of relaxation is identified. The phase re-
laxation rate Ω, which is central in our theory, provides
such a mechanism and relates microscopically to non-
affine displacements in amorphous systems – surprisingly,
it has been totally ignored by previous works. Ω deter-
mines indeed the propagation length l of the Goldstone
bosons – the collective phonon modes. Phase relaxation
indicates that the Goldstone fields decay exponentially
as (this is the physical content of the relaxed Josephson
equation) :

Φ(t) ∼ e−Ω t (10)

propagating therefore up to a length:

l ≡ v

Ω
. (11)

Very importantly, and here it is where previous formula-
tions fail, the relaxation time determining the Goldstones
lifetime is not the momentum relaxation time and it is
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not an effect of the shear viscosity as in Maxwell’s theory
of viscoelasticity.

In ordered solids, non-affine deformations are prac-
tically absent, and the phase relaxation rate is zero,
meaning that collective phonons propagate up to large
distances and therefore low (theoretical zero) momen-
tum. In liquids, after a time 1/Ω, the Goldstone modes
are lost because the coherence of the phase is destroyed
by the non-affine dynamics. One can therefore think of
a liquid as a system in which the Goldstone dynamics in
confined in clusters of size l. At lengths larger than that,
the system loses completely the propagating shear waves
and the associated rigidity. In the extreme scenario,
when the relaxation time 1/Ω reaches the Debye time
τD, then all transverse collective shear waves are lost.
No collective mode can propagate whatsoever, since the
minimum wave-length allowed is the Debye length, but
at that point the propagation length is shorter than
that. See Fig.6 for an illustration of this point.

Figure 6. The correct physical picture corresponding to the
k-gap theory. The lifetime, and consequently the propagation
length, of the collective transverse phonons are determined
by the phase relaxation time 1/Ω which decreases increasing
the temperature and the amount of non-affine displacements.
Notice that within the k-gap theory the size l is determined
by the (inverse) of the k-gap scale kg in analogy with the
propagation of electromagnetic waves in matter (see Section
5 of [13]).

To conclude, there is an interesting analogy between
this behaviour and the physics of superconductors, which
has already been discussed in [97]. Consider a type-II
superconductor, above a certain critical magnetic field
BC1, it exhibits an intermediate phase of mixed ordi-
nary and superconducting properties. In that phase,
magnetic field lines start to penetrate into the super-
conductor and Abrikosov vortices, producing phase re-
laxation, start to proliferate in the medium. By increas-
ing the magnetic field, the density of vortices increases,
and with it the phase relaxation rate Ω. The equiva-
lent of the phonons propagation length is the magnetic
field penetration depth, which has to be compared with
the superconducting coherence length. The stiffness of
the superconductor is highly affected by this process and
above a second critical magnetic field BC2, the supercon-
ductivity is completely destroyed. This last point would

correspond to the energy at which the phonon propa-
gating length reaches the Debye scale. The idea is to
interpret the superfluid stiffness as the elastic rigidity
and the phonons as the superfluid Goldstones, in perfect
agreeement with P. W. Anderson’s ideas on “generalized
rigidity”. A similar scenario, where vortices are created,
are superfluids with flow [98]. It would be nice to make
this comparison more precisely and exploit it to under-
stand better the phase diagram of liquids.

IV. HYDRODYNAMICS OF SYSTEMS WITH
PHASE RELAXATION

Hydrodynamics (not to be confused with fluid-
dynamics in the sense of Navier Stokes equations [83]) is
a universal low energy effective field theory built through
a perturbative expansion in gradients. In particular, it
describes the collective dynamics of a system at small
frequencies and momenta, compared to the characteris-
tic energy scale of the system. In a thermal system at
equilibrium, the energy is given by the temperature T ,
and the hydrodynamic regime is confined to the window:

ω

T
� 1 and

k

T
� 1 , (12)

which we label as the hydrodynamic regime. In the equa-
tion above, and in the rest of the manuscript, we adopt
Planck units ~ = kB = c = 1. In a stricter sense, hydro-
dynamics governs the dynamics of conserved quantities
and it is customary to define as hydrodynamics modes
those whose dispersion relation obeys:

lim
k→ 0

ω(k) = 0 . (13)

As one can immediately see, the hydrodynamic regime is
more general than this last definition. Sometimes, modes
which do not obey (13) but do lie within the region (12)
are denoted as quasi-hydrodynamics. This is for example
the case for the instantaneous normal modes (INMs)
typical of liquids [99–102]. An immediate consequence is
that hydrodynamics, with the meaning explained above,
can apply to the most disparate systems and not only to
liquids. See for example the original work [103], whose
title is quite eloquent in this context.

Here, we consider the hydrodynamic description of sys-
tems with spontaneously broken translations but with
phase relaxation, which can be found for example in
[35] (see also the Appendices of [104] for more details).
We follow the standard Kadanoff-Martin procedure [105].
The starting point are the hydrodynamic variables, iden-
tified as the fields:

ψA : ε(t, x) , π⊥(t, x) , π‖(t, x) , λ⊥(t, x) , λ‖(t, x) , (14)

the energy density, the momentum density parallel and
transverse to the momentum; and the curl and divergence
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of the Goldstone field φI(t, x) respectively (λ⊥ = ∇ ×
φ, λ‖ = ∇ · φ). The Goldstone fields are simply the
linearized displacements and indeed the strain tensor can
be defined as εij = ∂(iφj). In this language, the free
energy of an elastic crystal is just given by:

f =
1

2
∂(iφa) C

ijab ∂(jφb) + . . . (15)

with Cijab the standard elastic tensor.
The corresponding sources for the fields above are given
by:

sB : T (t, x) , v⊥(t, x) , v‖(t, x) , Υ⊥(t, x) , Υ‖(t, x) ,
(16)

where T is the temperature, v the velocity and Υ the
sources of the Goldstone fields. The relations between
the hydrodynamic variables ψA and the sources sB are
mediated through the matrix of thermodynamic suscep-
tibilities χAB :

ψA = χAB sB . (17)

The full dynamics of the system is determined by the
conservation of energy, the conservation of momentum
and the Josephson relation for the Goldstone modes. In
particular, the conservation of the stress energy tensor of
the theory Tµν (given by the invariance under time and
spatial translations), reads:

∂t ε(t, x) + ∂i Tti(t, x) = 0 , ∂t πi(t, x) + ∂j Tij(t, x) = 0
(18)

where ε ≡ T tt and πi = T ti.
The constitutive relation for the stress tensor, at leading
order in derivatives are given by:

Tti(t, x) =χππvi(t, x)− κ̄0 ∂iT (t, x)

− T (t, x) γ2 ∂iΥ‖(t, x) +O(∂2) , (19)

and:

Tij(t, x) = δij [p(t, x)− (K +G) ∂ · φ(t, x)]

− 2G
[
∂(iφj)(t, x)− δij ∂ · φ(t, x)

]
− σij(t, x) +O(∂2) ,

(20)

with:

σij(t, x) =η
(
∂ivj(t, x) + ∂jvi(t, x)− δij∂kvk(t, x)

)
+ ζ δij∂kv

k(t, x) . (21)

Here we have made use of the following coefficients: κ̄0

the thermal conductivity, K,G the bulk and shear elas-
tic moduli, ζ, η the bulk and shear viscosities, p(t, x) the
thermodynamic pressure and γ2 a higher order dissipa-
tive coefficient. The stress tensor conservation has to be
supplemented by the so-called Josephson relations for the
Goldstones which are given by:

∂tλ⊥(t, x)− ∂ × ~v(t, x)− ξ⊥∂i∂iΥ⊥(t, x) = −Ω⊥λ⊥(t, x);

(22)

∂tλ‖(t, x)− ∂ · ~v(t, x)− γ2 ∂j∂
jT (t, x)− ξ‖ ∂k∂kΥ‖(t, x)

= −Ω‖ λ‖(t, x) . (23)

where ξ⊥, ξ‖ determine the Goldstone diffusion constants
and Ω⊥,Ω‖ the lifetime of the Goldstone modes. The
latter constant are fundamental in our scenario since
they are the phase relaxation rates of the Goldstones
which, as we will see later, phenomenologically encode
the explicit breaking of a specific two-form symmetry.

The Goldstones fields φi are defined via the commuta-
tion rule with the momentum density πj :

[φi(x), πj(y)] = i δ(x− y) [δij + ∂jφi] (24)

which is simply the statement that translations shift
the Goldstone fields [35]. Taking into account that the
Hamiltonian contains a term:

H = πi vi + . . . (25)

where vi is the velocity vector, conjugate to the momen-
tum density. Then, the time dynamics of the Goldstone
modes, at leading order in the gradients, is given by:

φ̇i = i [φi,H] = vi (26)

which corresponds to the Josephson relation for the Gold-
stones at leading order in derivatives. The name is taken
in analogy with the superfluid case, in which the Hamil-
tonian contains a term:

H = µn + . . . (27)

where µ, n are respectively the chemical potential and the
charge density. Then, in the superfluid case, the Joseph-
son relation is simply φ̇ = −µ which is equivalent to the
famous Josephson effect [106].
Physically, the Josephson relation is just the dynamical
equation for the Goldstone modes. Mathematically this
can be seen either as the breaking of the higher-form con-
servation equation or equivalently as the introduction of
an additional relaxational term in the Josepshon relation
as:

(∂t + Ω)φi + · · · = 0 (28)

Dynamically, this implies that the Goldstone mode is
now exponentially relaxing as φ ∼ e−Ωt. Physically,
this situation is usually encountered in presence of
dynamical defects. A typical example is that of elastic
defects such as dislocations and disclinations in solids.
Another is the presence of vortices in superfluids. As
we will extensively discuss, nonaffine dynamics can be a
third, and more comprehensive, scenario in which this
mechanism appears when structural order is destroyed.

To continue, equations (18), (22) and (23) determine
the full dynamics of our system. The idea is then to
expand all the hydrodynamic variables considering small
fluctuations around their equilibrium values:

ψA(t, x) = ψAeq(t, x) + δψA(t, x) + O(δ2) (29)
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and obtain the linearized equations for the fluctuation
fields δψA. Those equations, in Fourier space, take the
matricial form:

DAB(ω, k) δψA = 0 , (30)

where DAB(ω, k) is the usually called kinetic matrix. Be-
cause of the symmetries of the system, transverse and
longitudinal fluctuations decouple and correspond to two
different sets of equations of the type (30). The related
hydrodynamic modes can be easily found by solving the
eigenvalues problem:

detDAB(ω, k) = 0 . (31)

Figure 7. The dynamics of the hydrodynamics modes in the
transverse and longitudinal spectrum. The bullets indicated
the position of the modes in the complex plane (Reω, Imω)
and the arrows indicated their dynamics by increasing the
momentum k. Top panel: The dynamics without phase re-
laxation. Notice how the longitudinal sound, contrarily from
the transverse one, is not made of the corresponding longitu-
dinal Goldstone field. Bottom panel: the dynamics with
phase relaxation.

Ignoring the phase relaxation terms, and setting Ω⊥ =
Ω‖ = 0 , one recovers exactly the hydrodynamics spec-
trum of a perfect ordered crystal [2]. In particular, one
finds the following modes:

• tranverse sector: the shear sound waves with dis-
persion ω = ±v⊥k − i

2Γ⊥k
2.

• longitudinal sector: the longitudinal sound waves
with dispersion ω = ±v‖k − i

2Γ‖k
2 and a crystal

diffusive mode ω = −iDφk
2.

Here v⊥, v‖ are the sound speeds determined as
usual by the elastic moduli K,G and Γ⊥,Γ‖ the
(Akhiezer) sound attenuation constants given in terms

Ω

k

Re(ω)

Ω

k

Im(ω)

Figure 8. The dispersion relation of the collective shear waves
in a system with phase relaxation Eq.(32). The dashed line
is the result in absence of phase relaxation.

of the viscosities. Finally, Dφ is the crystal diffusion
constant, which is determined by the dissipative pa-
rameter ξ‖, and whose meaning is discussed in [107, 108].

Now, once we introduce phase relaxation, the disper-
sion relation of the transverse shear waves gets modified
as4

ω± = − i
2

Ω⊥ ±
1

2χππ
Q ,

Q ≡
√
k2 χππ [4G − 2 (ξ⊥ − η) Ω⊥] − χ2

ππ Ω2
⊥ (32)

which neglects terms of order O(k4) and which comes
by imposing the determinant of the following matrix to
vanish:

D⊥AB(ω, k) =

(
η k2

χππ
− i ω −iG k

− i k
χππ

Gk2 ξ⊥ − i ω + Ω⊥

)
.

(33)
Notice that neglecting all the dissipative terms (η = ξ⊥ =
Ω⊥ = 0), one finds immediately ω2 = G/χππ k

2, as ex-
pected for perfect non-dissipative solids.
At low momentum, expanding (32) for k � 1, we have
two modes in the transverse sector:

ω− = −iΩ⊥ + iD k2 + . . . , ω+ = −iD k2 + . . .
(34)

where the diffusion constant is given by:

D =
2G + (η − ξ⊥) Ω⊥

2χππ Ω⊥
. (35)

Instead, at large momentum, we have a pair of propagat-
ing transverse phonons:

ω = ±DΩ⊥ k −
i

2
Ω⊥ + . . . (36)

4 Notice the higher order corrections O(k4). This means that if the
k-gap happens to be located at reasonably high momenta k/T ∼
1, then, the corresponding dynamics is not exactly described by
the simple equation (9). Still, the same type of dynamics will
appear.
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The diffusive-to-propagating crossover point, which de-
termines the k-gap scale is given by:

k2
g =

Ω⊥
D

. (37)

Following the same prescription, the hydrodynamics
modes in the longitudinal sector can be found from the

eigenvalues of the longitudinal kinetic matrix D‖AB(ω, k):
κ0 k

2

cv
− i ω i k γ2 k

2 T (G+K)

i dpdε k
η k2

χPP − i ω −i k (G+K)
γ2 k

2

cv
− i k
χππ

k2 ξ‖ (G+K)− i ω + Ω‖


(38)

where G,K are the shear and bulk moduli, cv the spe-
cific heat at constant volume and for simplicity we have
neglected the effects of a finite bulk viscosity by setting
ζ = 0. The expressions for the corresponding modes are
quite lengthy and therefore not shown explicitly.

Let us know analyze the properties following from
Eq.(32) and the eigenvalues of (38). Starting from
the transverse sector, the presence of phase relaxation
(Ω⊥ 6= 0) ”kills” the transverse Goldstone modes and as
a consequence the transverse sound at small momentum.
This is shown explicitly in Fig.8 for increasing phase
relaxation rate. The dynamics is exactly of the k-gap
type [13] with a well-defined diffusive-to-propagating
crossover, whose location is determined by the phase
relaxation rate Ω⊥.

Conversely, in the longitudinal spectrum the sound
modes are not ”killed” by phase relaxation and despite
their speed gets modified they still propagate at any value
of momentum k. The reason for that is the following.
As shown in Fig.7, the longitudinal sound comes from
the mixing of energy fluctuations and longitudinal mo-
mentum fluctuations and it is independent of the fluc-
tuations of longitudinal Goldstone field (which gets re-
laxed by the phase relaxation term). At low momentum,
the longitudinal sector displays a pair of sound modes

ω = ±
√

dp
dε k and a damped mode ω = −iΩ‖. At in-

termediate momenta, at a specific scale governed by the
longitudinal phase relaxation rate Ω‖, there is a crossover
to a second linearly dispersing regime with a faster speed.
This crossover is evident from Fig.9. Assuming isotropy,
and therefore the parallel and transverse Goldstone diffu-
sion constants and relaxation rates to be the same, this
crossover is very close to the k-gap momentum in the
transverse sector.
The increase of the measured speed of sound over its hy-

drodynamic value
√

dp
dε is often labelled “fast sound” or

“positive sound dispersion” (PSD). It has been observed
in experiments and simulations [109] and discussed at
length in the literature [96]. Here, we show that the ori-
gin of this phenomenon is again to be found in the phase
relaxation mechanism induced by the liquid non-affine
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k
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Re(ω)
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k

-1.0

-0.8

-0.6

-0.4

-0.2

Im(ω)
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Figure 9. A comparison between the longitudinal modes
(blue) and the transverse ones (red) at fixed phase relaxation
rate Ω. Here for simplicity we have assumed isotropy and
therefore Ω⊥ = Ω‖. The correlation between the transverse
k-gap and the crossover to longitudinal fast sound is evident.

ω= v1 k

ω= v2 k

increasing phase

  relaxation rate

Ω

v1
2 = dp /dϵ

k

Re(ω)

Figure 10. The dispersion relation of the longitudinal sound
waves increasing the phase relaxation rate Ω and keeping all
the other parameters fixed. The empty circles indicate the
position of the crossover between slow and fast waves.

dynamics.
In particular, looking at Fig.10, we can notice how the
presence of a finite relaxation rate Ω affects the disper-
sion relation of longitudinal sound. At zero relaxation
rate, the speed of longitudinal sound is given by simple
expression:

ω = ±v2 k , v2
2 =

dp

dε
+
G+K

χππ
>

dp

dε
. (39)

At finite relaxation rate, a second linear regime appears
at small momentum, with dispersion relation:

ω = ±v1 k , v2
1 =

dp

dε
, (40)

where v1 is exactly the speed of sound in a fluid with no
elastic components. Increasing the phase relaxation rate,
this ”liquid regime” becomes wider and wider growing in
the same way as the gap in the transverse sector. The
reason why the longitudinal sound wave is not gapped is
that the full bulk modulus Ktot ≡ −V dp/dV is finite in
liquids and therefore longitudinal sound waves propagate
even in liquids (differently to transverse ones). As such,
the crossover between ”liquid”-to-”solid” behaviour is of
different nature depending of the sector we are looking



12

Figure 11. The effect of phase relaxation on the trans-
verse and longitudinal dispersion relation of the sound modes.
The transverse sound develops a gap; the longitudinal one a
crossover between a slow regime and a fast one. The scale is
controlled in both cases by the relaxation rate Ω.

at. A summary of the physical picture is provided in
Fig.11.

This is a further confirmation of the validity of our
framework which explains from first principles the low
energy dynamics of liquids both in the transverse and
longitudinal sector without relying on magical interpo-
lations á la Maxwell/Frenkel. It is interesting to observe
that the same PSD phenomenon has been predicted in
the framework of Hydro+ [110] (see Fig.2 therein) con-
sidering the effects of hydrodynamics fluctuations and
the presence of a slowly relaxing additional modes. The
similarities with our picture are striking and definitely
deserve more attention. Indeed, also in such formalism
the crossover scale is given by the lifetime of the slowly
relaxing additional modes Γπ, which in our language is
exactly Ω, once the slowly relaxing mode is identified
with the Goldstone mode.
Notice that in order to destroy the longitudinal sound,
in the same way the phase relaxation rate does with the
transverse one, we would need to introduce the explicit
breaking of translations or energy conservation. This
can be easily understood from the fact that to relax
longitudinal sound we need to relax either longitudinal
momentum fluctuations or energy fluctuations.

Before moving to the next section, let us make few
remarks.
(I) From Eq.(32), the asymptotic (instantaneous) speed
of the shear waves is given by:

v2 ≡ G∞
χππ

=
G

χππ
+

(η − ξ⊥) Ω⊥
2χππ

. (41)

where G indicates the static (zero frequency) shear mod-
ulus, sometimes labelled as G0.
In the regime η > ξ⊥

5, this implies that:

G∞ = G +
(η − ξ⊥) Ω⊥

2
> G , (42)

This equation can also be used to express the zero-
frequency shear modulus as:

G = G∞ −
(η − ξ⊥) Ω⊥

2
< G∞ , (43)

where the negative (softening) term is related to non-
affine displacements through the phase relaxation Ω⊥.
The above form of G is consistent with the microscopic
result of non-affine elasticity theory, cfr. Eq. (6) by Za-
ccone and Scossa-Romano, presented above in Sec. 2.2.
This consistency check again demonstrates that the mi-
croscopic origin of phase relaxation in fluids and glasses
coincides with the microscopic non-affine displacement
field and its topological properties.

In a perfect ordered crystal with no defects, one would
have G∞ = G, as expected. The presence of defects,
and non-affine displacements in non-centrosymmetric en-
vironments, diminish the value of the static shear mod-
ulus which could eventually vanish at marginal stability
(e.g. glass transition, jamming transition and alike):

G = 0 . (44)

It is indeed a well known fact that in liquids G = 0 but
G∞ 6= 0 and is large [30]. In our language, that implies
that phase relaxation is too strong and the Goldstones
decay too fast to sustain any rigidity in the material.

(II) The presence of a phase relaxation term modifies
the shear viscosity of the system as [35]:

η̃ ≡ lim
ω→0
k→0

Re
i ω

k2
GRπ⊥π⊥

(ω, k) =
G

Ω⊥
+ η (45)

This is interesting, because it could be compared with
the phenomenological Maxwell-Frenkel interpolation [29,
111]:

1

η̃
=

1

η

(
1 + τ

d

dt

)
(46)

5 It would be interesting to see if there is any fundamental physical
constraint behind this inequality.
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which implies:

η̃ ≈ η + i ω τ η + . . . for ωτ � 1 . (47)

The two approaches display a substantial difference.
More precisely, the inclusion of phase relaxation modifies
the shear viscosity even at zero frequency while Maxwell
interpolation only at finite (and actually large ωτ ∼ 1)
frequency.

V. A PERSPECTIVE FROM SYMMETRIES

A. A dual formulation of elasticity theory

In order to connect robustly the presence of phase re-
laxation with the symmetries of the system, it is con-
structive to consider a dual formulation of the theory of
elasticity based on a two-form global symmetry [112] (see
also [97] for similar previous ideas). The main idea is to
consider the Goldstone degrees of freedom in a solid as
a set of massless and shift symmetry scalar fields φI . At
leading order, the action for the solids is given by:

S = −
∫
d3xCµνIJ ∂µφI∂νφJ (48)

implying that the conjugate momentum is given by:

PµI = −CµνIJ ∂νφJ . (49)

The conservation of momentum is then simply:

∂µ P
µ
I ≡ d ∗ PI = 0 . (50)

Nevertheless, there is another more subtle topological
symmetry, which implies the conservation of the two-
form current:

∂µ J
µν
I = 0 with JµνI = eµνρ∂ρφI , (51)

with eijk the anti-symmetric Levi-Civita tensor.
This conservation is equivalent to the fact that the scalars
(displacements) φI are single-valued functions:

∂[µ∂ν]φI = 0 . (52)

The associated conserved charges:

QI =

∫
S1

∗ JI (53)

are the number of lattice sites in the elastic medium,
counted across the surface of a circle S1.
In this language, the conservation of momentum is the
equivalent of the conservation of magnetic flux lines in
electromagnetism and the conservation of the two-form
current is simply the conservation of electric flux lines,
the topological Bianchi identity.
Following [113], it is easy to show that the interplay of the

two-form dynamics with the transverse momentum pro-
duces the presence of propagating transverse shear waves
as expected in solids. For simplicity, let us show it in two
spatial dimensions. By considering the fluctuations of
the transverse momentum operator as:

P⊥(t, x) = Tµy(t, x) dxµ (54)

and using Eqs.(49),(51), it follows that:

J⊥(t, x) = eµνλ
(
C−1 · T

)λy
dxµ ∧ dxν . (55)

The conservation of the momentum and of the two form
J implies then:{

∂tT
ty + ∂xT

xy = 0

∂t
(
C−1 · T

)y
x
− ∂x

(
C−1 · T

)y
t

= 0
(56)

which gives rise to a propagating transverse wave – the
shear sound.

B. Phase relaxation as the explicit breaking of a
two-form symmetry

We are now in the position to study how the introduc-
tion of phase relaxation modifies the conservation equa-
tion (51).
Let us start from the phenomenological hydrodynamic
treatment, which leads to the deformed Josephson rela-
tion written in the relaxation time approximation (RTA):

∂t λ⊥ = −Ω⊥ λ⊥ + . . . (57)

in terms of:

λk⊥ = (∇× φ)
k

= eklm ∂l φm . (58)

Taking into account that JµνI = eµνρ∂ρφI , we find the
equivalence:

JµII = (∇× φ)
µ

= λµ⊥ . (59)

Now, in systems with only broken spatial translations
(i.e. solids), the Goldstone fields have finite components
only in the spatial directions. In particular, at equilib-
rium we can take 〈φI〉 = xI , with the index I running
only on the spatial directions. Therefore, the only non-
zero component of ∇ × φ is the temporal one, implying
J tII 6= 0 only.
To conclude, we can therefore write the modified Joseph-
son relation as:

∂tλ⊥ = ∂t J
tI
I = −Ω J tII (60)

where for simplicity we have considered only the trans-
verse part. By taking carefully into account all the com-
ponents and making the expressions covariant, one finally
obtains:

∂µ J
µν
I = −Ω J tνI . (61)
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The latter implies that phase relaxation is equivalent to
the explicit breaking of the two-form symmetry, as al-
ready advertised in [113].
Notice that the r.h.s. of the broken Ward identity for the
two-form Jµν assumes a very specific form. This specific
form goes under the name of relaxation time approxima-
tion, and it follows from the same assumptions made in
Eq. (57) at the level of the Josephson relation. Need-
less to say that this is not the most general symmetry
breaking pattern one can imagine. In particular, this ap-
proximation relies on the fact that (I) the relaxation rate
Ω is small and (II) that there is a well-defined separation
of scales allowing us to define a single relaxation time.
As we will see, at the level of the most general effec-
tive field theory description, it is easy to generalize these
statements.

C. Two-form symmetry breaking and compatibility
equation

The description of solids, the theory of elasticity, is
based on the displacements:

ui ≡ x′i − xi , (62)

which measure the geometrical deformations around
equilibrium xi, and by the corresponding strain tensor:

εij ≡ ∂(iuj) . (63)

In its continuum formulation, it is fundamental that the
various volume elements composing the rigid body are
connected to each other without any gaps nor overlaps
and that this condition is preserved during any mechan-
ical deformations [82]. This requirement takes the name
of compatibility and was first derived by Barre de Saint-
Venant (1864) [114], and later rigorously proven by Bel-
trami in 1886 [115]. The compatibility conditions corre-
spond to the requirement of having a single-valued dis-
placement field [82, 116]. Whenever the strain can be
assumed to be infinitesimal, these conditions are equiva-
lent to the fact that the displacements can be obtained
by integrating the strains and they can be expressed as∮

L

dui = 0 . (64)

The integral of the displacement fields around a close
loop L must vanish.
In full generality, the displacement field can be written
as:

dui = (εij + ωij) dxj (65)

where the first term – the small strain tensor – is the
symmetric part and the second the anti-symmetric one.
Then, after some algebraic manipulations, one can prove
that: ∮

ωij dxj = −
∫
xl ωij,l dxj (66)

and moreover, using standard tensorial identities, that:

ωij,l = emil empq εpj,q (67)

where e is the Levi-Civita tensor. All in all, we can now
write:∮

dui =

∮
(εij − xl emil empq εpj,q) dxj (68)

which, using Stokes theorem
∮
F ·dx =

∫ ∫
S
n · ∇×F dS,

becomes:∮
dui = −

∫ ∫
S

nr emil (ersj empq εpj,qs) xl dS . (69)

The term inside the bracket is then the curl of the curl
of the strain tensor:

ersj empq εpj,qs ≡ ∇×∇× ε . (70)

Therefore, we end up discovering that the compatibility
condition is equivalent to the requirement

∇×∇ × ε = 0 , (71)

where εij is the infinitesimal strain tensor.
Using the map in terms of the scalar fields φI , the dis-
placements are basically represented by the fluctuations
of such scalar fields around their equilibrium position
φIeq = xI . This means that the curl of the strain ten-
sor can be written as:

∇× ε = eijk∂i εmj = eijk∂i ∂k φm . (72)

The curl of the strain tensor being zero is then the same
of the single-valued conditions for the displacement fields:

[∂i, ∂j ] φk = 0 . (73)

Finally, we have already seen that this corresponds to the
conservation of the dual two-form J as:

∂µJ
µν
I = ∂µ e

µνρ ∂ρ φI = 0 (74)

and the presence of a finite Burgers vector:

∮
dui = − bi . (75)

In short summary, we have revealed a deep and funda-
mental net of dualities which can be summarized as:



15

COMPATIBILITY

Zero Burgers
vector

Two-form
symmetry

?

?

No phase
relaxation

Single-valued
displacements

In particular, the higher-form symmetry, imposing the
conservation of the dual two-form ∂µJ

µν
I = 0, is equiva-

lent to the existence of single-valued displacements and
the vanishing of the Burgers vector and it implies the van-
ishing of the phase relaxation rate Ω. As a consequence,
its explicit breaking:

∂µ J
µν
I 6= 0 (76)

corresponds to having topological defects in the system,
which directly cause phase relaxation in the Goldstones
dynamics.
The missing links, shown above as a question mark in
the red bubbles, is what this breaking has to do with the
condition of affine displacements, and how to construct
a formal effective field theory describing it. These are
the topics of the next sections.

Finally, let us mention that there are more mathemat-
ical connections which we did not intend to explore. In
particular, the previous story can be further connected
with the mathematical property of homotopy [117] and
torsion and the definition of Einstein-Cartan gravita-
tional theories [81]. For a complete discussion on these
points see [118].

VI. FROM NON-AFFINE DISPLACEMENTS TO
PHASE RELAXATION

In this section, we connect together all the properties
discussed so far and in particular we draw a direct con-
nection between the presence of non-affine displacements
and the macroscopic hydrodynamic phase relaxation of
the Goldstone modes, which is one of the main results of
our work. Let us start by considering a generic mechani-
cal deformation whose associated displacement field can
be written as [53]:

ui(x) = γij x
j︸ ︷︷ ︸

affine

+ u′i(x)︸ ︷︷ ︸
non-affine

, (77)

where γij is a a constant tensor determining the affine
component of the deformation. The second non-affine
term u′ does not obey any specific requirements.
The first quantity we want to compute is the circulation
of the displacement field, which defines the Burgers vec-
tor: ∮

L

dui = − bi . (78)

The l.h.s. can be written using the tensor field Fij ≡ ∂ui
∂xj

as: ∮
L

F · ds =

∮
L

∂ui
∂xj

· dxj , (79)

where the tensor F is simply:

Fij = γij +
∂u′i
∂xj

. (80)

The first term in the r.h.s. – the affine contribution – is
a constant term and it therefore defines a conservative
field

∮
L
γ · ds = 0. This also means that the associated

strain tensor γij is irrotational and the corresponding de-
formation compatible. Consequently, the Burgers vector
b is solely determined by the non-affine contribution of
the displacement as (recall also Fig. 4):∮

L

du′i = − bi . (81)

Now, let us define the non-affine part of the tensor Fij

as Nij ≡ ∂u′
i

∂xj . Using Stokes theorem, we can re-write the
l.h.s. of Eq.(81) as:∫ ∫

S

∇×N · n̂ dS (82)

where S is the surface enclosed by the loop L and n̂ the
normalized vector perpendicular to such surface. Notice
that this term is not zero since N is not irrotational – it
is indeed a non-compatible deformation – and in index
notations it reads:∫ ∫

S

eabj ∂bNij na dS . (83)

We can now assume that this integral is non-zero for any
surface S and vector n. This implies that:

eabj ∂b ∂j u
′
i 6= 0 (84)

which is simply the statement that the Nye tensor [119],
measuring the density of elastic defects (non-affinity), is
finite:

eabj ∂b ∂j u
′
i ≡ −αai 6= 0 . (85)

Using the definition of the two form Jµν , this last expres-
sion can be re-written as:

αai = ∂µJ
µa
i = −Ω J tai 6= 0 (86)
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which indicates the presence of phase relaxation in the
system.
Following this logic flow, we have explicitly
demonstrated that non-affinity is equivalent to the
presence of a macroscopic Goldstone phase relaxation
which closes our loop and connect directly our micro-
scopic starting point with its macroscopic collective
effect.

VII. NON-AFFINITY, PHASE RELAXATION
AND HIGHER-FORM SYMMETRY BREAKING

Before moving to the next Sections, let us review our
main claims so far along with their meaning. In the pre-
vious parts of this work, we have argued that:

1. The appearance of a macroscopic phase relaxation
Ω 6= 0 is equivalent to the non-conservation of the
two-form current ∂µJ

µν
I 6= 0.

2. The presence of a finite Burgers vector bi 6= 0 is
equivalent to the non-conservation of the two-form
current ∂µJ

µν
I 6= 0 and therefore via point (1) to a

finite phase relaxation Ω.

3. Microscopically, the fundamental reason behind all
of this is that the displacement field has a finite
non-affine part, or equivalently is a multi-valued
field.

Let us briefly give a very explicit and concrete derivation
of these main statements.

Point (1) – Let us start by defining the charges qjI as:

qji ≡
∫
d2xJ0j

i (87)

where 0 stands for the time coordinate and Jµνi is the
two-form defined in the previous Sections. For conve-
nience, let us split the charges into:

q⊥ ≡
∫
d2x δij J0j

i , (88)

q‖ ≡
1

2

∫
d2x εij J0j

i . (89)

As in the more familiar U(1) case, the higher-form sym-
metry implies the conservation of these two charges,
q̇⊥ = q̇‖ = 0.
Using the notations introduced above, we can verify that:

δij J0j
i = εij∂jui = ∇× u = λ⊥ , (90)

εij J0j
i = ∇ · u = λ‖ . (91)

Then, we have:

q̇⊥ =

∫
d2xλ̇⊥ , q̇‖ =

∫
d2xλ̇‖ . (92)

Recalling that the presence of a macroscopic phase
relaxation implies λ̇⊥, λ̇‖ 6= 0, one immediately derives
that the latter is equivalent to the non-conservation of
the charges q⊥, q‖ and therefore to the breaking of the
higher-form symmetry.

Point (2) – The second step is realizing that:

Ji = ∗ dui (93)

where ∗ is the standard 3-dimensional Hodge dual. This
implies that:

bi =

∮
C

dui =

∮
C

∗Ji =

∫
Σ

d ∗ Ji (94)

where the loop C is the boundary of the surface Σ. Fi-
nally, we notice that:

d ∗ Ji = 0 −→ ∂µJ
µν
i = 0 . (95)

This last equality implies immediately that a non
zero Burger vectors bi 6= 0 is linked 1-to-1 with the
non-conservation of the two-form current Jµνi .

Point (3) – Let us stress that by ui being non-affine
we mean that the displacement field is a multi-valued
function and therefore dui not an exact form, meaning
the Burgers vector associated is not zero. More pre-
cisely, non affinity means that there exists points in
which the infinitesimal displacements cannot be locally
approximated by an affine transformation.

This brief recap provides concrete proof of all the main
three results obtained so far.

VIII. THE MAXWELL VISCOELASTIC MODEL
REVISITED

Before moving to defining a formal field theory in terms
of the in-in formalism on the SK contour, let us try to
discuss what we have found so far, and compare it with
the original Maxwell viscoelastic model [111].
The Maxwell model is defined by the following phe-
nomenological (i.e. not based on fundamental symme-
tries) constitutive relation [29, 111]:

ds

dt
=

P

η
+

1

G

dP

dt
(96)

where P is the shear stress Txy and s the shear strain
εxy. In Fourier space, the previous expression becomes:

Txy =
− i ω η

1 − i ω τM
εxy . (97)

At small frequencies, ωτM � 1, we have a pure dissipa-
tive viscous response:

Txy = − i ω η εxy , (98)
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while at large frequencies, ωτM � 1, a purely elastic one:

Txy = Gεxy . (99)

From here, the idea that Maxwell model interpolates
between a fluid behaviour at small frequencies and a
solid one at large. In particular, we could interpret the
maxwell model as a viscoelastic fluid in which the fre-
quency dependent viscosity reads:

ηMaxwell
eff (ω) =

η

1 − i ω τM
. (100)

In a sense, the k-gap physics is imposed by hands directly
in the Maxwell constitutive relation. Notice also that
this is very different from the standard hydrodynamic
constitutive relation in presence of elasticity and viscosity
[2, 35, 36, 103] which reads:

Txy = (G − i ω η) εxy . (101)

and it is of the Kelvin-Voigt type [120, 121] – summing
linearly the various components of the stress.

Before introducing phase relaxation, let us explain in
detail the difference between the Maxwell model and the
Kelvin-Voigt model. The second model describes a ma-
terial that at zero strain rate (ω = 0) is a solid. The
Maxwell model on the contrary describes a system that
at zero strain rate (or small rate) is a viscous dissipative
fluid. By taking the equations of motion for the displace-
ments it is easy to see that the dynamics of collective
shear waves is respectively:

Kelvin-Voigt: ω2 = k2 (G − i ω η) (102)

and:

Maxwell: ω2 = k2

(
− i ω η

1 − i ω τM

)
(103)

While the Kelvin-Voigt model gives a propagating sound
waves with diffusive attenuation, the Maxwell model
gives immediately the k-gap dispersion relation.
Notice also how the first model is perfectly smooth in the
limits ω → 0, η → 0 and G→ 0, while the Maxwell mode
can become highly singular and the final result danger-
ously dependent on the order of the limits.
Finally, using a Kelvin-Voigt constitutive relation to-
gether with phase relaxation, we obtain a frequency de-
pendent viscosity of the type [35]:

ηeff(ω) =
G

Ω − i ω
+ η (104)

There are important differences between the latter and
the Maxwell result:

• This is not an ad-hoc construction where the final
result is basically imposed by hands in the initial
phenomenological constitutive relation. Contrarily,
it can be formally justified using fundamental sym-
metry principles.

• In both approaches, the frequency dependent vis-
cosity η(ω) displays a Drude peak shape. Neverthe-
less, in the Maxwell approach, the corresponding
relaxation time is forced by hands to be τM = η/G
without any profound justification. In the second
scenario, the relaxation time comes from phase re-
laxation and it is not a priori related to the shear
viscosity η.

• In the Maxwell model the effects are there only at
finite (and large) strain rate (i.e. ω 6= 0), while
in the case of phase relaxation the effects can be
effective also at low frequency.

It would be interesting to perform a more detailed com-
parison between our model and the Maxwell model and
confront it with experimental data and simulations. Still,
the probably easier way to distinguish the two models is
to check carefully whether the relaxation time coincides
or not with the Maxwell prediction τ = η/G. In this
sense, it is also important to provide a formula for the
phase relaxation rate Ω in terms of more microscopic and
structural quantities and compare it with the Maxwell
one.
It is interesting to notice that, in the case of disloca-
tions mediated phase relaxation in solids, the phase re-
laxation rate can be derived under certain assumptions
to be [122, 123]:

Ωdislocations
⊥ ≈ ndG

π r2
d

2 ηeff
(105)

where nd and rd are respectively the density of disloca-
tions and their size and ηeff is the effective shear viscosity
of the normal state. This implies that, under the assump-
tion ηeff ≈ η, we have:

Ωdislocations
⊥ ∼ τ−1

M . (106)

It would be extremely important to obtain a formula sim-
ilar to (105) for the case of non-affinity induced phase
relaxation. A possible relation of this type could poten-
tially provide a final answer to which is the correct relax-
ation time entering in the k-gap equation (9) and if that
has really to do with the microscopic Maxwell time τM .
It is fair to say that, at the moment, the experimental
indications in favour of this last interpretation are very
few [124], if not even absent.

IX. EFFECTIVE FIELD THEORY

At this point, we want to make a step further, and
extend the classical and linear hydrodynamic formula-
tion presented in Section IV to the fully non-linear and
out-of-equilibrium regime by using the modern effective
field theory methods reviewed in [125]. We start by
constructing the non-equilibrium effective action for
solids using the higher-form symmetry picture. Because
we have conservation of both lattice momentum and the
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one-form current (see Section V A for details), we can
either choose to work in the standard picture or work in
the dual, one-form picture. As a warm-up, we will begin
by constructing an effective action in the usual picture,
using Goldstone fields corresponding to spontaneously
broken lattice momentum. Then we will perform a
Legendre transform to find the action describing the
dual, one-form picture. In this second, and equivalent,
formulation, the fundamental degrees of freedom will not
be anymore the standard displacement fields (see also
[97] for a dual formulation of elasticity in terms of gauge
fields). And finally, working in the one-form picture, we
will kill the conservation of the higher-form current and
see that in the low-frequency regime, transverse waves
become diffusive as expected from the presence of phase
relaxation and discussed in the previous sections.

Solids in which crystal momentum is conserved
exhibit the phenomenon of second sound – thermal-
ized solid phonons act as a fluid through which an
independent pressure wave can propagate [126–131].
If crystal momentum is not conserved, then the fluid
of thermalized phonons cannot move independently
of the lattice and no second sound exists. To keep
matters simple, we will neglect the conservation of the
stress-energy tensor, which means that we will essen-
tially ignore the fluid degrees of freedom. As a result,
if we wish to obtain solid phonons, we must consider
theories with conserved lattice momentum. We leave
it for future work to incorporate the stress-energy tensor.

The actions in the section will be non-equilibrium ef-
fective actions defined on the Schwinger-Keldysh (SK)
contour. In this way we will be able to account
for dissipation. The price we pay is that the field
content must be doubled. We will include only the
marginal and relevant terms and will satisfy the dynam-
ical Kubo–Martin–Schwinger (KMS) symmetries [132,
133]. Readers not familiar with these methods should
consult [125, 134].

A. Solids and their duals

To begin with, we will construct the quadratic effec-
tive action for a solid. At leading-order in the derivative
expansion, the non-equilibrium effective action is non-
dissipative and can be factorized as the difference of two
ordinary actions. Thus, we will work with just one copy
of the fields. The field content is

ϕI(x) = xI + φI(x), (107)

where φI are fluctuations about the equilibrium value of
the field. Then, the leading-order quadratic action for an
isotropic solid is

S[∂µφ
I ] =

∫
d3x

1

2

(
~̇φ2−c2L(~∇· ~φ)2−c2T (~∇× ~φ)2

)
, (108)

which is just the expanded and canonically normalized
version of (48). It clearly enjoys shift invariance. The
equations of motion are then

~̈φL = c2L
~∇2~φL, ~̈φT = c2T

~∇2~φT , (109)

where we have decomposed ~φ = ~φL + ~φT such that
~∇×~φL = ~∇·~φT = 0. We see therefore that cL and cT are
longitudinal and transverse speeds of sound, respectively.

We will now perform a Legendre transform to construct
a dual action that involves the one-form fields AIµ. Begin

by replacing ∂µφ
I → V Iµ ; then define the auxiliary action

by

SAUX = S[V Iµ ]−
∫
d3x eµνλ V Iµ F

I
µν , (110)

where F I ≡ dAI . Notice that the equations of motion
for AI yield dV I = 0, V is a closed form. Thus, if the
spacetime is simply connected, there exists some scalars
φI such that V Iµ = ∂µφ

I , V is also exact. Thus, if we

integrate out AI from SAUX, we obtain the original ac-
tion (108). Suppose we instead integrate out V Iµ . Then

we find a local action that only depends on F I . In par-
ticular, we have

SDUAL =

∫
d3x

1

2

(
− ~f2 +

1

c2L
F 2
T +

1

c2T
F 2
L

)
, (111)

where

f I = eij∂iA
I
j , FT = eijF i0j , FL = F i0i . (112)

We therefore have an action with field content AI , which
are the Legendre dual fields of the ordinary phonon fields
φI . The resulting equations of motion are then the con-
straint equation ∂iF

I
0i = 0 and the dynamical equations

ÄT = c2L∇2AT , ÄL = c2T∇2AL, (113)

where AT = eijAij , AL = Aii, and we have gauged-fixed
A0 = 0. Notice that these equations are the dual version
of the longitudinal and transverse wave equations (109).

Finally, let us consider the conserved two-form currents
given by

JIµν =
∂SDUAL

∂F Iµν
. (114)

The components are

JIij = −eijf I , JI0i = δIi
FL
c2T

+ eIi
FT
c2L
. (115)

Then the equations of motion are equivalent to the con-
servation equation ∂µJ

Iµν = 0. The fact that these two-
form currents are conserved ensures that there are no de-
fects in the crystal lattice structure. The nature of this
conservation equation is topological and it relates to the
vanishing of the Burgers vector bi, implying the absence
of non-affine displacements.
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B. Amorphous systems and liquids

To extend the previous action for amorphous systems
with non-affine dynamics (liquids and glasses), we must
allow defects in the atomic structure to appear and dis-
appear, that is, the one-form charges must not be con-
served. This is necessary because of the presence of non-
affine displacement fields in these phases. To construct
the leading order action with such non-conservation re-
quires the non-equilibrium effective field theory formal-
ism. In this construction, the effective action is de-
fined using the in-in formalism on Schwinger-Keldsyh
(SK) contour and therefore has doubled field content
AIµ → {AI1µ, AI2µ} [125, 134–137] . The subscripts 1
and 2 indicate on which leg of the SK contour the fields
live. It is convenient to work in the retarded-advanced
basis defined by

AIrµ =
1

2
(AI1µ +AI2µ), AIaµ = AI1µ −AI2µ. (116)

The retarded fields act as classical fields, while the ad-
vanced fields encode information about statistical fluctu-
ations. To declutter notation, we will drop the r sub-
script on the retarded fields. Because the equilibrium
state of a glass is thermal, our effective action must be
invariant under the dynamical KMS symmetries. Sup-
pose that Θ is an anti-unitary, time-reversing symmetry
of the UV theory and that β0 is the inverse equilibrium
temperature of the system. Then, the effective action

enjoys the symmetries

AIµ → ΘAIµ, AIaµ → ΘAIaµ + iΘβ0∂tA
I
µ. (117)

Finally, there must exist at least one advanced field in
each term of the effective action such that terms with
even numbers of advanced fields are imaginary and terms
with odd numbers of advanced fields are real. The
Schwinger-Keldysh EFT version of (111) is

IDUAL[AIµ, A
I
aµ] = SDUAL[AI1µ]− SDUAL[AI2µ]

=

∫
d3x

(
− ~fa · ~f +

1

c2L
FaTFT +

1

c2T
FaLFL

)
. (118)

Until now, we have simply generalized the (dual) effec-
tive action for ordered solids at finite temperature and
out-of-equilibrium.

If we wish to destroy the conservations of the one-
form currents, we must introduce advanced fields without
derivatives [138]. It turns out that the correct procedure
is to first gauge-fix the one-form fields by working in syn-
chronous gauge, A0 = Aa0 = 0 [139]. Then the residual
gauge symmetries are

AIi → AIi + ∂iκ
I(~x), (119)

for time-independent functions κI . Because κI are time-
independent, the SK boundary condition that forces all
advanced fields to vanish in the distant future prohibits
AIai from transforming. It is therefore invariant under
the residual gauge symmetries. The leading-order action
consistent with these residual gauge symmetries and dy-
namical KMS is then

INA[AIµ, A
I
aµ] =

∫
d3x

(
− ~fa · ~f +

1

c2L
FaTFT +

1

c2T
FaLFL +

1

τLc2L
AaTFT +

1

τT c2T
AaLFL +

i

τLcLβ0
A2
aT +

i

τT c2Tβ0
A2
aL

)
.

(120)

where the label NA stands for non-affine.
Notice that because there are no µ = 0 components of
AI , we no longer have the constraint equation ∂iF

I
0i = 0.

Instead, we have only the dynamical equations of mo-
tion, obtained by varying the action with respect to the
advanced fields,

ÄT +
1

τL
ȦT = c2L∇2AT , ÄL +

1

τT
ȦL = c2T∇2AL.

(121)
These are our final equations of motion in terms of the
new degrees of freedom Aµ. The associated dynamics
has been proven above to be equivalent to the standard
formulation in terms of the displacement fields φ. The

resulting dispersion relations are then

ω2 +
1

τs
ω = c2sk

2, s = L, T. (122)

In the low-frequency limit ωτ � 1, the dispersion rela-
tions become ω = −iDsk

2 for Ds ≡ τsc
2
s. By contrast

in the high-frequency limit ωτ � 1, the dispersion rela-
tions become ω = csk. We therefore see that there are
two qualitatively different behaviors depending on the
frequency: dispersion in the IR and propagating waves
in the UV.

Finally, let us consider the one-form current (115). Un-
like in the previous example, this current is now no longer
conserved, in particular, we have

∂µJ
µ
T = − 1

τT
J tT , ∂µJ

µ
L = − 1

τL
J tL, (123)
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where JµT ≡ J iµi and JµL ≡ eijJ iµj . Now that these
currents are no longer conserved, the crystal lattices
may posses defects. Indeed, defects may arise and
disappear freely. Notice that we now have no conserved
quantities and hence no propagating waves as ω → 0.
What happened to the hydrodynamic phonon? Recall
that at the beginning, we neglected the conservation of
the stress-energy tensor for he sake of simplicity. If we
were to include its conservation, then the hydrodynamic
sound mode would be restored.
Notice that, if one would attempt from the action
(120) to go back to the original formulation in terms
of the Goldstone fields, one would get a non-local, and
therefore not tractable, action. In this sense, this dual
picture is extremely convenient to describe from the field
theory point of view the effects of phase relaxation.

Finally, let us remind the Reader that the breaking
of the conservation equations in (123) is equivalent to
the presence of a finite Burgers vector (due to non-affine
dynamics) and of a non-trivial topological structure.

X. A TOPOLOGICAL SCENARIO FOR
GLASSES

One of the biggest unsolved problems in modern
physics is clarifying the nature of the glass transition.
In particular, there is an apparent contradiction between
the impossibility to tell apart glasses and liquids at the
level of two-point correlation functions, such as the radial
distribution function g(r) – which looks identical for the
two states –, and the huge difference between liquid and
glass in terms of rigidity and mechanical properties (al-
though confined liquids have been shown to behave solid-
like under certain boundary conditions [25, 69]). Tradi-
tionally [45], two different views can be traced back to
whether a true phase transition separates liquid and glass
(i.e. the ideal glass transition, supposed to exist at some
unattainable low temperature) [140] or the two states are
merely separated by a dynamical crossover [141]. In other
words, it is an open question whether glasses and liquids
are fundamentally different (in terms of symmetries for
example) or simply the manifestation of the same kind of
physics but with a very different characteristic timescale.

The overall picture that emerges in the previous sec-
tions of this work, suggests this second option. Well-
defined topological defects in amorphous systems can be
identified, not in the static structure of liquids or glasses,
but instead in the displacement field ui of the material
under deformation. In particular, well-defined topolog-
ical defects can be associated with the non-affine dis-
placement field, as demonstrated above. The key finding
of this work, that the phase relaxation rate Ω, which
is responsible for killing the Goldstone phonons at low
frequency, correlates positively with the non-affinity of
the displacement field under small deformations, sug-
gests that the Burgers vector associated with the non-

Figure 12. The correlation between non-affine dynamics,
topological defects density, phase relaxation rate Ω, and the
gap of the collective shear waves in ordered crystals, glasses
and liquids. By topological defects we simply mean non-affine
displacements with a non-zero Burgers vector.

affine field grows upon going from glass to liquid, i.e.
upon increasing the temperature [72, 142], or in the case
of strain-induced glass-liquid transition, upon increasing
the strain magnitude [64]. In particular, growing non-
affine displacements lead to growing Ω, which in turn
broadens the k-gap of the shear phonons. Conversely,
upon decreasing the temperature T in a supercooled liq-
uid, leads to lower values of Ω, and therefore, to a lower
extent of topological two-form symmetry breaking, and
to a narrower k-gap in the transverse sector, as schemat-
ically shown in Fig. 12. This eventually results in a van-
ishingly small k-gap that remains frozen-in at the glass
transition, and provides an apparent shear rigidity, with
G > 0 down to low-frequency/rate of deformation. This
scenario of a topologically-driven crossover controlled by
the non-affine displacement field, is compatible with the
dynamical crossover view of the glass transition, and with
the substantial continuity between liquid and solid state
across the glass transition first proposed by Frenkel [143].
The “apparent” shear elasticity is also consistent with re-
cent claims about the non-existence of a true shear con-
tinuum elasticity in glasses [44]. Our analysis clarifies
also that the Goldstone modes of glasses in the transverse
sector are diffusive because of the presence of phase re-
laxation, and not because of the breaking of momentum
conservation as claimed in [144]. Clearly, the breaking
of the transverse momentum conservation would corre-
spond to an explicit breaking of translations as in the
Drude model, and it would destroy any hydrodynamic
modes in the transverse sector by introducing necessar-
ily a finite damping term.

Instead, the transition from liquid to an isotropic crys-
talline solid is a true phase transition accompanied by
the divergence of the phase relaxation time 1/Ω, since
Ω = 0 in the perfect crystalline phase (and Ω ≈ 0 when
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only very few tolopogical defects are present). In this
case, there is no gap in the dispersion relations for the
transverse phonons of the solid, which reach all the way
down to k = 0.

XI. SUMMARY

In this work, we have developed a formal and self-
consistent theory of solids, liquids and glasses based on
phonons as Goldstone bosons and phase relaxation re-
lated to topological input due to non-affine deformations.
Thanks to the interplay of these two mechanisms, this
formalism is able to encompass all three different phases
of matter and to provide a deeper understanding in terms
of fundamental symmetries and topological defects.

Using different theoretical methods, we have been able
to connect the existence of microscopic non-affine dis-
placements in liquids and glasses with the breaking of a
topological-like two-form symmetry. Moreover, we have
shown the equivalence between the latter, the compatibil-
ity equation for the strain tensor, the presence of a non-
trivial Burgers vector for non-affine deformations, and
the macroscopic mechanism of phase relaxation for the
Goldstone modes, the phonons.

As a direct application of our formalism, we have
derived the appearance of propagating shear waves in
liquids beyond a critical momentum cutoff, known as
k-gap [13]. This is a more fundamental and symmetries-
compatible derivation of the k-gap in liquids, which
improves on the phenomenological approaches of
Maxwell [111], Frenkel [29], and later Trachenko and
collaborators [96], whose physical arguments were
certainly pioneering and valid, but lacking a rigorous
formal background. As a matter of fact, the simple
Maxwell model is unable to correctly reproduce recent
atomistic simulations data of frequency-dependent
viscoelastic moduli of simple liquids [145]. Moreover,
our approach could shed new light on the problem of
the glass transition, at which the phase relaxation time
becomes very large (though not infinite as in solids),
and on the nature of the Frenkel line, at which the phase
relaxation time saturates the Debye time-scale (see also
recent conjectures [146]).

From a formal point of view, our theory demon-
strates that liquids, solids and glasses do not present
any fundamental difference at the level of spacetime
symmetries. This conclusion is a unification of the
original ideas of Leutwyler for solids [147] and of those
of Frenkel in liquids [29]. Nevertheless, we prove that
the distinction between ordered solids and amorphous
systems has to be identified with the broken (or not)
generalized higher-form global symmetries, which is the
only fundamental ingredient able to provide an accurate
phase diagram based on symmetries (see Fig. 13). In this
language, a solid is a phase where such a symmetry is
nonlinearly realized, while an amorphous system (glasses

Figure 13. The phase diagram in terms of the topological
higher-form generalized global symmetry, which corresponds
to the conservation of the two-form ∂µJ

µν
I = 0, and of the

topological order parameter – the Burgers vector bi. The
filled line indicates the explicit breaking of such a symme-
try due to the appearance of non-affine displacements. It
also distinguishes the phases with zero Burgers vector bi = 0
(solids) from the ones (glasses, fluids) with a finite value for
this topological order parameter. The dashed line between
liquids and glasses cannot be defined by any fundamental
symmetry, but only by the strength of the symmetry break-
ing, weak for glasses (corresponding to a very long relaxation
time) and strong for liquids. In this view, the difference be-
tween solids and amorphous systems (liquids and glasses) is
purely topological and not linked to any spacetime symmetry.

and fluids) is a phase of matter where the higher-form
symmetry is explicitly broken because of the underlying
non-affine dynamics. As such, the distinction between
solids and fluids is topological in nature and intrinsically
connected to the geometrical and dynamical nature of
the deformation field therein. Additionally, the Burgers
vector associated to the dynamical displacement fields
serves as a topological order parameter distinguishing
those phases. It is indeed zero in ordered solids with
no defects but inherently finite in liquids and glasses.
In a companion paper [148], we show the application of
these ideas to glasses, proving from numerical data the
existence of a finite Burgers vector associated with the
phase relaxation mechanism discussed in this paper.

Several are the ideas to pursue in the future:

• First, our results unveil the importance of topo-
logical effects in amorphous systems, by providing
a working definition of topological defects in the
displacement field of glasses and liquids. This has
recently been advocated in various directions [149–
151] and it certainly is an interesting point to ex-
pand upon further.

• It would be very helpful to use a microscopic model
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for non-affine displacements (e.g. [55]) to compute
directly the phase relaxation rate, and compare it
with (a) the Maxwell prediction and (b) the (few)
experimental data available.

• Recently, a formal duality between elasticity with
topological defects and fractons has been shown
[152]. In this picture, the dynamics of dislocations
and disclinations is viewed in terms of dynamical
fractonic degrees of freedom with reduced mobility.
It would be interesting to establish if this equiva-
lence could be useful to understand the role of frac-
tons for liquids dynamics. A first connection be-
tween higher-form symmetries, their breaking and
fractonic phase has been initiated in [153].

• From a theoretical perspective, it would be nice
to see if phase relaxation could be re-written as a
quantum anomaly of the higher-form global sym-
metry in the spirit of [122, 139].

• Recently, a field theory for amorphous solids has
been proposed in [154] based on previous works
[155]. It would be interesting to find possible con-
nections between our work and that formalism.

• The physics of phonons in liquids share several fea-
tures with the idea of electromagnetic screening
and even confinement. Some basic analogies have
been discussed in [13]. It would be exciting to con-
tinue on these lines by using the connection be-
tween higher-form symmetries, spontaneous sym-
metry breaking and Wilson loops [156].

• The same physics described in this manuscript via
the presence of phase relaxation appears in the
framework of Hydro+ [110] by considering the ef-
fects of hydrodynamic fluctuations and the pres-
ence of slowly relaxing additional modes. It would
be very interesting to draw a more explicit connec-
tion between these concepts. Can non-affinity and
phase relaxation be understood in terms of hydro-
dynamic fluctuations?

• The disappearance of the Goldstone modes at low
frequencies in glasses, especially in relation to the
sample size L, is a hot topic of discussions. Sev-
eral approaches have been proposed [157–160], but
none of them related to any fundamental symme-
try or symmetry-breaking. Here, we have pro-
vided a first-principle derivation of the appear-
ance/disappearance of transverse Goldstone modes
in glasses and liquids based on the topological char-
acter of non-affine displacements and phase re-
laxation. It would be very interesting to study

the system size dependence of the phase relax-
ation rate and see if our framework could ex-
plain the findings of [160] and complement recent
research on finite-size effects of elasticity of liq-
uids and glasses [25, 69, 70, 161]. This would be
achieved by a phase relaxation rate Ω decreasing
with the system size L. Also, are the “glassy
quasilocalized excitations” [162] perhaps related
the low frequency diffusive remnants of the trans-
verse Goldstone modes discussed in this work? In
our language, the crossover between the quasilo-
calized modes and the propagating standard Gold-
stone modes is controlled by the phase relaxation
rate and the density of non-affine displacements.
The proliferation of non-affine displacements pro-
cesses is the responsible for the appearance of these
quasilocalized modes at frequencies lower than a
certain scale controlled by the phase relaxation rate
Ω.

• In this manuscript, we have presented the idea that
the Burgers vector (or more precisely its norm)
could serve as an appropriate topological order pa-
rameter distinguishing liquids (and glasses) from
solids. It would be important to complete this pic-
ture and determining the behaviour of such order
parameter across the liquid-solid phase transition
(suggested, in the above, to be a topological tran-
sition).

• An ultimate and very ambitious goal would be to
build a symmetries-based effective field theory for
glasses able to predict and describe all their well-
known anomalous properties.

We leave these questions for the future and for the inter-
ested Reader.
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Phys. Rev. Lett. 101, 095501 (2008).

[62] V. V. Palyulin, C. Ness, R. Milkus, R. M. Elder, T. W.
Sirk, and A. Zaccone, Soft Matter 14, 8475 (2018).

[63] R. Zwanzig, Journal of Statistical Physics 9, 215 (1973).
[64] D. V. Denisov, M. T. Dang, B. Struth, A. Zaccone,

G. H. Wegdam, and P. Schall, Scientific Reports 5,
14359 (2015).

[65] W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos, and
M. van Hecke, EPL (Europhysics Letters) 87, 34004
(2009).

[66] A. Zaccone and E. M. Terentjev, Jour-
nal of Applied Physics 115, 033510 (2014),
https://doi.org/10.1063/1.4862403.

[67] M. Schlegel, J. Brujic, E. M. Terentjev, and A. Zaccone,
Scientific Reports 6, 18724 (2016).

[68] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,
Phys. Rev. E 68, 011306 (2003).

[69] A. Zaccone and K. Trachenko, Proceedings of the
National Academy of Sciences 117, 19653 (2020),
https://www.pnas.org/content/117/33/19653.full.pdf.

[70] A. E. Phillips, M. Baggioli, T. W. Sirk, K. Trachenko,
and A. Zaccone, Phys. Rev. Materials 5, 035602 (2021).

[71] L. Noirez, P. Baroni, and H. Mendil-Jakani, Polymer
International 58, 962 (2009).

[72] J. P. Wittmer, H. Xu, P. Polińska, F. Weysser,
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