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In networks of nonlinear oscillators, symmetries place hard constraints on the system that can
be exploited to predict universal dynamical features and steady states, providing a rare generic
organizing principle for far-from-equilibrium systems. However, the robustness of this class of theo-
ries to symmetry-disrupting imperfections is untested in free-running (i.e. non-computer-controlled)
systems. Here, we develop a model experimental reaction-diffusion network of chemical oscillators
to test applications of the H/K theorem in the context of self-organizing systems relevant to biology
and soft robotics. The network is a ring of 4 microreactors containing the oscillatory Belousov-
Zhabotinsky reaction coupled to nearest neighbors via diffusion. Assuming homogeneity across the
oscillators, theory predicts 4 categories of stable spatiotemporal phase-locked periodic states and 4
categories of invariant manifolds that guide and structure transitions between phase-locked states.
In our experiments, we observed that three of the four phase-locked states were displaced from
their idealized positions and, in the ensemble of measurements, appeared as clusters of different
shapes and sizes, and that one of the predicted states was absent. We also observed the predicted
symmetry-derived synchronous clustered transients that occur when the dynamical trajectories co-
incide with invariant manifolds. Quantitative agreement between experiment and numerical simu-
lations is found by accounting for the small amount of experimentally determined heterogeneity in
intrinsic frequency. We further elucidate how different patterns of heterogeneity impact each attrac-
tor differently through a bifurcation analysis. We show that examining bifurcations along invariant
manifolds provides a general framework for developing intuition about how chemical-specific dynam-
ics interact with topology in the presence of heterogeneity that can be applied to other oscillators
in other topologies.

I. INTRODUCTION

Network science unifies the study of disparate physi-
cal systems that can be cast as discrete sets of interact-
ing dynamical units [1]. Here, we focus on networks of
self-driven chemical oscillators, which use chemical fuel
to exhibit far-from-equilibrium dynamics. This simple
framework provides profound insights into systems rang-
ing from electrical power grids to biological neural net-
works known as central pattern generators responsible
for coordinating autonomous animal locomotion [2–7].

The design of networks that generate desired spa-
tiotemporal patterns is a great challenge because univer-
sal organizing principles for far-from-equilibrium systems
are exceedingly rare. Exploiting network symmetry is
one way to meet this challenge. Symmetries place hard
constraints on the network dynamics of self-driven os-
cillators by dictating that certain transient features and
steady state patterns must exist.

A class of results use group theory to predict spa-
tiotemporal patterns required by the spatial symmetry

∗ These two authors contributed equally
† To whom correspondence should be ad-
dressed:fraden@brandeis.edu

of the network [8–10]. One such result, the H/K the-
orem, enumerates all symmetry derived patterns by in-
cluding the temporal periodicity of the oscillators [3, 11–
15]. Significantly, these patterns are universal. They
depend only on the coupling topology and are indepen-
dent of all system specific details regarding the nature of
the nonlinear oscillators themselves and even whether or
not the coupling is nonlinear. This class of theories has
important implications for biology, leading to the ansatz
that central pattern generators exploit symmetry [3], or
in other words that “form follows function.” However,
these striking results derive from the strong assumption
that nodes in the network and their interconnections are
strictly identical [11, 15]. Since the framework is pow-
erful, knowing how to apply it to specific systems that
are not strictly homogeneous is beneficial for understand-
ing naturally occurring biological and chemical systems,
developing control strategies [16] and designing new ma-
terials.

In this work we experimentally and theoretically
explore the effect of frequency heterogeneity on the
symmetry-required dynamics of a ring of four chemi-
cal oscillators. Experimental studies exploring hetero-
geneity in networks of any kind are rare, but are nec-
essary to assess the relevancy of symmetry-based theo-
ries to real-world networks. Here, we present the first
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study of heterogeneity in a chemical reaction-diffusion
network. These chemical networks play an important
role in elucidating significant biological phenomena, such
as morphogenesis[17] and central pattern generators in
neural networks[2].

The influence of heterogeneity on synchronization dy-
namics is integral to the study of oscillator networks.
Kuramoto was first to explore the collective behavior of
oscillators through the lens of a dynamical phase tran-
sition controlled by the dimensionless ratio of the oscil-
lators’ frequency spread to their coupling strength[18].
This mean-field theory, which ignores network topology,
predicts that at a critical coupling strength a subset of
oscillators in a large system of attractively coupled os-
cillators will overcome differences in their intrinsic fre-
quencies to oscillate with a common frequency and phase
as a single, synchronized group or “cluster.” The chem-
ical reaction-diffusion networks in our study have differ-
ences and similarities with the Kuramoto model. One
difference is that reaction-diffusion networks have short
range coupling instead of the all-to-all coupling of the
Kuramoto model. Consequently, network topology influ-
ences their dynamics leading to spatiotemporal patterns,
which are absent in the Kuramoto model. A similarity
between the systems is that phase-locking is destabilized
when heterogeneity exceeds a critical value.

We experimentally study an oscillatory chemical
reaction-diffusion network and examine its dynamics
within the framework of symmetry-based network the-
ories [11, 19]. We use the well-characterized Belousov-
Zhabotinsky reaction as the oscillatory medium, and
embed it in a PDMS network patterned using soft
lithography[20, 21]. One significance of studying a self-
contained reaction-diffusion system lies in the potential
for fabrication of autonomous devices that organize their
spatiotemporal dynamics through processes analogous to
living systems. This experimental system oscillates sta-
bly in a single attractor state for up to 70 periods[21],
which is an order of magnitude longer than reported in
previous studies of living networks [5, 22, 23]. This pro-
vides confidence that observed steady states correspond
to fixed points of the idealized system that we model
theoretically, which assumes a steady supply of reactants
and removal of byproducts. The enhanced longevity of
our experiments over prior work is especially important
given that the experimental system is closed and exis-
tence of a truly stationary state, in the sense that the
state lasts infinitely long, represents an idealization. We
restrict our examination to a 4-ring network that is pre-
dominantly coupled through inhibitory interactions. We
find that this network is robustly multistable and exhibits
dynamics that are captured by a phase model faithful to
the BZ chemistry [24, 25] that can be quantitatively fit to
data with few, physically interpretable parameters. This
network therefore serves as a minimal but rich model sys-
tem for exploring the predictions of the H/K theorem and
does so in a reaction-diffusion context that is important
for biological phenomena[2, 17].

By observing the dynamics of hundreds of instances of
the 4-ring network, which is an order of magnitude more
experiments than done previously in reaction-diffusion
networks [5, 22, 23], we are able for the first time to
quantitatively compare spatiotemporal patterns in exper-
iment to theory with and without heterogeneity. The BZ
reaction exhibits dramatic changes in color due to the
oxidation and reduction of the primary catalyst, Ferroin.
By tracking the color change, we identify the phase of
each oscillator, which we then map to phase-difference.
This change of variables maps the periodic orbits of the
system to fixed points in phase space. Theory predicts
stability of all H/K predicted fixed points for the ho-
mogeneous case of identical oscillators. This stability is
attributed to features of the nonlinear function governing
interactions between connected oscillators. By contrast,
one H/K-predicted fixed point is absent in experimental
observations and the remaining attractors are displaced
and emerge as distributions in the ensemble. To quantify
the degree of heterogeneity in our experiments, we fit the
phase model to this data using the intrinsic frequency dif-
ference between oscillators and coupling strength as fit-
ting parameters. It is our measurements on ensembles of
hundreds of networks that allows, for the first time, the
accumulation of sufficient statistics to classify observed
attractors as belonging to idealized symmetric states, or
as arising from heterogeneity.

By including the measured heterogeneity in our model
we reproduce the experimentally observed distributions.
We make sense of these distributions through a bifurca-
tion analysis that shows that each attractor is destroyed
at a different threshold of heterogeneity. Critically, this
threshold depends on the spatial distribution of that het-
erogeneity, in distinction to the Kuramoto model. De-
spite this complexity, we find that this behavior can be
understood semi-analytically in a manner analogous to
the Kuramoto model by examining dynamics and bifur-
cations along a few invariant manifolds provided by the
H/K theorem. For the first time, we show that hypothe-
ses generated by idealized symmetry-based theories are
relevant to experimental self-organized networks in which
both the oscillators and coupling are fully chemical. We
conclude that symmetry-based theories provide an essen-
tial scaffold for systematically building qualitative intu-
ition and guiding quantitative analysis, even in a highly
nonlinear and heterogeneous system.

II. METHODS

A. Experiment

We designed a reaction-diffusion network consisting
of a ring of four diffusively coupled nanoliter volume
batch reactors laid out in a square 2x2 lattice with near-
est neighbor coupling [Fig. 1]. Previously, we employed
emulsions containing the BZ oscillating reaction to study
reaction-diffusion networks [24–31]. However, the dif-
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FIG. 1. (a) Schematic of a network of a ring of 4 inhibitory
coupled oscillators. Indexing of nodes is indicated as either
a number (1,2,3,4), or leg of a quadruped (LF, RF, RH, LH)
with L left, R right, F front and H hind. (b) Schematic of the
experimental system. The reactors are divots in the PDMS,
filled with BZ and sealed between 2 glass plates. (c) Pho-
tograph of BZ filled 4-ring network. Light illuminates BZ
in a channel surrounding the network, activating the pho-
tosensitive catalyst to provide a constant-chemical boundary
condition. (d) Two adjacent reactors (red and blue traces)
in the network oscillating 180◦ out-of-phase with each other.
Top: Measured transmitted intensity versus time. Bottom:
Simulated oxidized catalyst concentration [mM] versus time.
In both, T0, is the period at steady-state of ∼ 300[s] in ex-
periment and ∼ 250[s] in theory and is indicated by the two
arrows.

fusive coupling between surfactant stabilized emulsion
drops was difficult to characterize, and flow rate fluc-
tuations introduced compositional and geometric hetero-
geneity. Both contributed to a large degree of variabil-
ity between experiments and precluded performing ex-
periments on ensembles of hundreds of networks. Here,
we improved reproducibility by manufacturing these re-
actors to high precision from elastomeric PDMS using
soft lithography techniques adapted from semiconductor
manufacturing and filled the reactors with the oscilla-
tory BZ reaction as described previously[20, 21], illus-
trated in Fig. 1 and in Appendix A. We have previ-
ously shown that PDMS reacts with the BZ-produced
Bromine, which leads to a number of deleterious ef-
fects, such as a reduction in the number of cycles of
oscillation before oscillations cease and an increase in
the variation of oscillation period in an ensemble of os-
cillators [21, 32]. These undesirable effects increased
with increasing amounts of PDMS thus, a key techni-
cal advance was reducing the amount of excess PDMS
underneath each reactor to layers under 2 µm thick-
ness [Supplementary Material [33] Fig. S1(a)]. To ob-
tain a large statistical sample of trajectories we made
devices that combined 9 or 16 copies of the 2x2 net-
work (Appendix A)[20]. To maximize homogeneity in
the chemical concentrations of each of the reactors, we si-
multaneously filled the entire set of networks by pipetting

a drop of BZ that floods all the reactors before sealing
the sets of reactors by clamping the PDMS between two
glass plates [Supplementary Material [33] Fig. S1-S2, SI
videos in [20]].

The chemical coupling between adjacent reactors arises
from the permeation of chemical species through the in-
tervening PDMS wall and mainly consists of bromine-
induced inhibition, with a weaker activator coupling, per-
haps by bromous acid and the bromine dioxide radical
[20, 24–28, 30, 31, 34–38]. As PDMS reacts with bromine,
it is important for the reactors to be separated by thin
walls of PDMS to maintain chemical coupling. After mix-
ing the BZ reagents, pipetting them onto the PDMS net-
works, sealing the networks, and placing the sample in
the dark for an induction period of 20 minutes, it was
observed that all reactors began to oscillate and collec-
tively form spatiotemporal patterns [Fig. 1(d)] [20]. We
visualize the oxidation-reduction dynamics of the BZ re-
actors using a custom microscope described in the sup-
plement [33]. To maximize contrast, we illuminate the
wells with blue-green 515[nm] light. In its reduced state,
the Ferroin catalyst is red and blocks the transmission
of the light. Upon oxidation, the wells turn blue, which
increases their transmission, allowing more light to reach
a detector.

The reactors form a closed system and consequently
the oscillators have a finite lifetime as the reactants are
consumed and waste products accumulate. However, al-
though the amplitude of the chemical oscillations de-
creases over time, the oscillators maintain a nearly con-
stant period for a duration of order 70 oscillations[21].
Further, the response to light perturbations in this study
remained predictable over this time period, suggesting
that the phase-response-curve of the chemistry was suf-
ficiently steady. Based on this long term stability, we
assume that the underlying phase dynamics of the indi-
vidual BZ oscillators remains constant during the dura-
tion of the experiment, thus allowing us to study phase
relationships between reactors as they evolve over time,
(see Movies S1-S4). Each 4-ring network is isolated from
the environment because the reactors are surrounded by
a zone of photosensitive BZ that is held at constant chem-
ical conditions by the application of actinic light[20]. We
designed the wells to be small compared to the diffusive
length scale so that we could assume the reactors to be
well-mixed in our model, e.g. w <

√
Dτ with w the width

of each square reactor (w = 62 µm), D, the diffusion con-
stant of each BZ chemical (D ∼ 10−9m2s−1) and τ , the
duration of a BZ oscillation (τ ∼ 300s).

B. Reaction Diffusion Model

We model the dynamics of our oscillator network as
a discrete reaction diffusion system. The following de-
scribes the evolution of the chemical composition c =
(x, y, z, u) of each node i due to intranodal reactions
R (c; K) = (Rx, Ry, Rz, Ru) and internodal diffusive cou-
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pling ∝ µ:

ċi = R(ci; K0) + ∇KR|K0
δKi +

4∑
j=1

Aijµ(cj − ci) (1)

Aij =

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , µ =

kek 0 0 0
0 0 0 0
0 0 0 0
0 0 0 k

 .
Dynamics within each node are governed the Vanag-

Epstein(VE) model [34] of the Belousov-Zhabotinsky
reaction, a four species model where x =[HBrO2],
y =[Br– ], z =[Oxidized catalyst], u =[Br2].

Rx(x, y, z) = k2y − k1xy − 2k3x
2 +

k4x(co − z)
(co − z + cmin)

Ry(x, y, z) = −2k2y + k7u+ k9z − 3k1xy − k3x
2

Rz(x, z) = −(k9 + k10)z + 2
k4x(co − z)

(co − z + cmin)

Ru(x, y, u) = k2y − k7u+ 2k1xy + k3x
2 (2)

A set of parameters and reaction rates K = (k1, k2, · · · )
control the model, with K0 representing the average reac-
tor composition, Table V shows the values used through-
out. We allow for slight heterogeneity by expanding the
reaction dynamics R about this mean composition; in
Eqn. 1 ∇KR is the sensitivity or Jacobian of the reac-
tion dynamics with respect the parameters and δK is a
vector of small deviations from the mean composition.
The assumption of small deviations allow us to readily
incorporate heterogeneity into a phase model of the oscil-
lator network that we will introduce in Sec.II C. Previous
works on BZ networks have found it necessary to intro-
duce small amounts of chemical heterogeneity in order to
bring theory into agreement with experiment [25, 28] and
a recent study of single BZ oscillators in PDMS has fur-
ther quantified variations in oscillator frequency [21]. In
principle, our analysis could have included heterogene-
ity in coupling strength as well. However, in previous
work, we found that relatively large volume disparities
are needed to substantially shift the location of fixed
points [25].

The matrix A is the adjacency matrix and encodes the
4-ring topology. This matrix assumes no diagonal cou-
pling between wells. We explored this possible contribu-
tion but found the quality of fit to be insensitive to the
ratio of diagonal coupling to nearest-neighbor coupling
over a plausible range of values (i.e. diagonal < nearest-
neighbor coupling). Connected reactors exchange species
at a rate proportional to the difference in concentrations.
The diagonal matrix µ dictates the species-dependent
rates of this diffusive coupling. Our model therefore as-
sumes that no reactions are present within the PDMS
barriers. This is not the case and it has been shown that
bromine reacts with PDMS in a complex manner [32].
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FIG. 2. The interaction functions of coupled BZ oscillators
as a function of phase difference χ = φj − φi. The sign indi-
cates whether the interaction is phase advancing (H > 0)
or phase delaying (H < 0). Hu (blue) is the interaction
function due to Br2 diffusion between reactors and Hx (red)
is from HBrO2. The total H (purple) is a weighted mix
H(χ) = Hu(χ) + keHx(χ), where ke = 0.05 was determined
by fitting time series data to Eqn. 4. Since Hx is largely 0
except for χ between 0 and π/2, keHx adds a bump of phase
advancing dynamics near 0, without affecting the otherwise
phase delaying behavior of Br2.

We account for the removal of bromine due to reaction
with PDMS by introducing fitting parameters ke and k
describing the chemical coupling between oscillators. We
can neglect storage within the membrane due to the short
separations between reactors O(10µm) (quasi-steady as-
sumption) [25, 26]. As described in Sec.II A, PDMS is
selectively permeable to apolar Br2 (variable u in the
VE model). Br2 is therefore the dominant communica-
ble species with coupling rate k. We additionally con-
sider weak coupling through HBrO2; the ratio between
the two is governed by ke < 1 and is determined by fit-
ting to data. We examine the implications of these two
different modes of coupling in Sec.II C.

C. Phase Model

Since we are interested in studying phase-locking phe-
nomena in the 4-ring network, we now simplify our model
through the method of phase reduction. We do so by pa-
rameterizing the time dependent concentrations through
the phase φ of the limit cycle oscillations exhibited by
each reactor, as proposed by Winfree [39] and widely
used in various studies of chemical and biological oscilla-
tors [18, 25, 40–43]. We assume that all oscillators share
a common limit cycle with angular frequency ω0, which
is determined by the free-running (uncoupled) dynam-
ics of R (c,K0). The phase variable therefore naturally
progresses linearly from 0 to 2π when oscillators are un-
coupled such that φ̇ = ω0.
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In this framework, the phases of each oscillator are
mutually perturbed by diffusive coupling. The sensitivity
of phase to the addition or removal of chemical species
is determined by the infinitesimal phase response curve
(PRC), which we derive numerically from the VE model,
Eqn. 2 [44]. The PRC is subsequently used to calculate
an interaction function H that encodes the impact on
phase of one oscillator by another as a function of the
relative phase between them. It is created by convolving
the PRC with the diffusive flux between those connected
oscillators. In the creation of H, we assume that the
phase difference evolves slowly compared to the phase of
each oscillator and that the oscillators return rapidly to
their limit cycles after perturbations. Additional details
are shown in the appendix C and ref. [41, 42, 44].

For BZ-in-PDMS networks, we find through fitting to
data that H has two contributions, each arising from the
two communicable species such that H = keHx + Hu.
Fig. 2 shows both functions and their combination with
a best-fit ratio ke. The interaction functions are signed
differently because HBrO2 (x) serves an excitatory role
in the BZ chemistry and when added to an oscillator,
advances its phase. By contrast, Br2 is rapidly converted
to the inhibitor Br– and delays the phase of oscillation.
The phase dynamics of each oscillator are now given by

φ̇i = ω0 +

δωi + k

4∑
j=1

AijH(φj − φi)

 . (3)

Following [41], this framework also permits the influ-
ence of small deviations from the average composition of
the oscillators, δKi in Eqn. 1, to show up as shifts in in-
trinsic frequency δωi. Similar to the computation of H,
each δωi is the period averaged convolution of the PRC
with ∇KRδKi as the forcing function instead of the dif-
fusive flux. Since there are many possible δK that could
lead to shifts in intrinsic frequency, we instead measure
differences in intrinsic frequency between oscillators ∆ω
by fitting to data; however, we note that the phase re-
duction formalism makes clear the connection between
δω and the original reaction-diffusion model.

In order to more readily analyze phase-locking behav-
ior of the model and noting that the right hand side of
Eqn. 3 depends only on the phase difference of connected
wells, we change variables from phase to phase differ-
ence. We arbitrarily choose the three phase differences
θ = (θ21, θ32, θ43) as the new system variables, where
θij = φi − φj , and rewrite the dynamics accordingly,
where the heterogeneity of oscillators is similarly defined,
∆ωij ≡ δωi − δωj and ∆ω ≡ (∆ω21,∆ω32,∆ω43),

θ̇21 = ∆ω21 + k [H (θ32) +H (−θ21)−H (θ21)−H (θ43 + θ32 + θ21)]

θ̇32 = ∆ω32 + k [H (θ43) +H (−θ32)−H (θ32)−H (−θ21)] (4)

θ̇43 = ∆ω43 + k [H (− (θ43 + θ32 + θ21)) +H (−θ43)−H (θ43)−H (−θ32)]

For compactness, we refer to the system of equations
Eqn. 4 as θ̇ = Ψ (θ; ∆ω). As each of the phase dif-
ferences is periodic on (0, 2π], the new state-space is a
3-torus. Although the 3-torus cannot be drawn in three
dimensions, it is equivalent to a Cartesian cube with pe-
riodic boundaries, allowing visualization of the full dy-
namics [Fig. 3(a),5(a)].

In summary, the reduced model Eqn. 4 predicts the
evolution of phase difference between oscillators as a
function of the parameters: a) diffusive mass transfer
coefficient k [s−1], which scales the interaction function
H[rad], b) coupling strength ratio ke[-], which determines
the shape of the H function Fig. 2(a), and c) differences
in intrinsic frequency between oscillators ∆ω[rad s−1].

D. H/K theorem

Symmetries place constraints on the behavior of dy-
namical systems. The impact of symmetries, once iden-
tified, are best understood through the concept of equiv-

ariance. A system is said to be γ-equivariant under the
symmetry operation γ when its dynamics f commute un-
der the action of γ, such that f (γx) = γf (x). This
implies that if a system trajectory x′ exists, so will γx′.

For a given symmetry, there will also naturally exist
a set of points in phase space that remain unchanged,
γx = x. The equivariance property then tells us that
their dynamics must also remain the same, requiring that
they be either trivially zero or tangent to the set of un-
changed points. These special regions in phase space are
known as invariant manifolds (IMs) because they are pre-
served by system dynamics (i.e. all trajectories that be-
gin on IMs will remain so for all time). We will later
show how analyzing the stability of these manifolds pro-
vides an organizing template for understanding the flows
of the system in phase space.

In general, identifying all the symmetries of a large
dynamical system is difficult. However, in dynamical
networks composed of identical nodes, the system in-
herits spatial symmetries from the underlying network.
Analysing the network topology therefore readily yields
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a group of symmetries K that apply to the dynamics
[7, 11, 12]. In the special case of oscillators, the tempo-
ral periodicity gives rise to an additional group H cor-
responding to phase shifts in the trajectory [11, 15]. A
group-theoretic result in this field called the H/K (or
H mod K) theorem rigorously proves the existence of
ODE systems that possess spatiotemporal patterns aris-
ing from the pair (H,K) [3, 12, 15]. The theorem does
not guarantee a given ODE system will possess all pat-
terns satisfying the theorem, but does provide a “cat-
alog” of spatiotemporal patterns for which the system
can be searched. For weakly-coupled limit cycle oscil-
lators, however, we are guaranteed an ODE system that
possesses the necessary temporal symmetries because the
interaction functions are time-periodic by construction.
This restricts us to patterns for which the oscillators pos-
sess identical periods, which is the focus of this work;
however, there can be other spatiotemporal patterns for
which periods are not identical [12].

The simplest example is a pair of identical oscillators,
which is symmetric under the action of the group Z2

that exchanges the nodes. The first solution guaran-
teed by the H/K theorem is inphase synchrony, denoted
(Z2, Z2). In this state both nodes are equal and can be in-
terchanged by K=Z2 with no change to the solution. The
other solution is when the two oscillators are antiphase
one another, denoted (Z2, 1). The state of the nodes in
this solution are never equal due to K= 1. However, the
solution is unchanged by interchange of the nodes com-
bined with a half period shift in time by H=Z2.

The required spatiotemporal and spatial symmetry so-
lutions of the 4-ring, or D4 symmetric, system are pe-
riodic invariant manifolds, subspaces in which the dy-
namics remain confined. Although the theory is more
general, we restrict ourselves to the case in which all the
nodes are on the same limit cycle, as this corresponds to
the phase-locked attractors observed in the experiment.
With this assumption the H/K theorem guarantees that
any system of 4 oscillators with square symmetry will
possess 8 categories of invariant manifolds with varying
dimensionality [12]. These states are readily described in
terms of their phase relationships between pairs, defined
as the fraction of a period they are shifted from each
other on their common limit cycle, see Table I. Of the 8
categories, 4 are phase-locked, with fixed phase relation-
ships among the nodes, 3 possess one degree of freedom,
and 1 possesses two degrees of freedom in their phase
relationships, as enumerated in Table I.

The varying dimensionality of the invariant mani-
folds becomes transparent when representing them in the
phase difference space of our model Eqn. 4. In this co-
ordinate system, the invariant manifolds are simple, geo-
metric objects: points, lines, and planes, enumerated in
Table II. This transformation enables the consequences
of the H/K theorem on the dynamics in state-space to be
visualized in a way that would be impossible in the full
chemical model, Eqn. 1.

The 4 categories of point invariant manifolds find 6

representations in phase space. Each can be identified
with gaits of quadrupeds and are enumerated in Table
I, and visualized in Fig. 3(b). The first two categories
are Pronk in which all the legs advance simultaneously
and Trot for which diagonal legs are in phase, and the
two diagonal pairs of legs are half a period out of phase.
Pace and Bound form one category. In Pace, legs on each
side are in phase and opposite sides out-of-phase, while
for Bound, legs on opposite sides are in phase and the
front legs out-of-phase with the hind legs. We give them
distinct names in order to make contact with quadruped
gaits but because they are essentially identical (related
through a 90◦ rotation), we refer to them interchange-
ably in the remainder of the text. Clockwise (Counter
Clockwise) Gallop is another category in which the legs
advance in a clockwise (counter clockwise) manner with
each leg advancing a quarter of a period later than the
preceding leg.

The remaining 4 categories are higher dimensional in-
variant manifolds (lines or planes) containing trajecto-
ries that maintain a subset of the H/K-predicted sym-
metries. Along 1-dimensional invariant manifolds, the
network can be split into two pairs of reactors, such
that within pairs the reactors are in phase or antiphase,
while between pairs reactors have an arbitrary phase-
shift. Along 2-dimensional manifolds, two nodes must
oscillate in phase while the other two nodes are at ar-
bitrary phase-shifts. These invariant manifolds intersect
throughout phase space. For example, the 2-dimensional
manifolds intersect the 1-dimensional manifolds, and the
1D manifolds intersect the phase-locked 0-dimensional
manifolds [Fig. 3(a)].

The H/K theorem predicts the existence of these in-
variants; however, it neither prescribes their stability nor
precludes the existence of others. To address questions
of stability, we use our specific model of the oscillators
and their interactions.

III. RESULTS

A. H/K and Homogeneous Phase Model
Predictions

Using the H/K theorem’s predictions as a jumping
off point, we first examine the stability of D4’s invari-
ant manifolds in the phase model, Eqn. 4. As discussed
above, in phase-difference space, the invariant manifolds
with no degrees of freedom: Pronk, Bound, Trot, Gal-
lop, are steady states rather than high-dimensional limit
cycles. Linear stability analysis reveals that the system
Eqn. 4 is multistable, with each one of the point H/K
manifolds forming a competing attractor.

We briefly demonstrate the analysis here, further de-
tails are in Appendix E. We first compute the Jacobian
of the system J(θ) = ∇θΨ(θ). The steady states that
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TABLE I. Symmetry required invariant manifolds for an oscil-
lator network possessing square or Dihedral 4 (D4) symmetry.
D4, all symmetries of a square; Dp

n, reflection across n diago-
nals; Ds

n, reflection across n, vertical or horizontal, axes; Z4,
90◦ rotation; Z2, 180◦ rotation; 1, no operation. The first
4 classes of manifolds are phase-locked states. The column
marked “Phase” graphically indicates the spatiotemporal pat-
tern with symbols representing the phase in percentage of a
full cycle, white circle - 0%; white/black - 25%; black circle
- 50%; black/white - 75%. The second 4 classes of manifolds
are symmetrically clustered states, related by arbitrary phase
shifts η1, η2 ∈ (0, 2π]. The graphical representation of nodes
in the column “Phase” have solid, striped, or dot motifs. Dif-
ferent motifs are related by an arbitrary phase shift. Similar
motifs with opposite background colors are antiphase with
each other.

Point invariant manifolds:
Name

(H,K)

Phase c1 c2 c3 c4

Pronk

(D4,D4)
c(φ) c(φ) c(φ) c(φ)

Trot

(D4,D
p
2 )

c(φ) c(φ+ π) c(φ) c(φ+ π)

Pace

(Ds
2,D

s
1)A

c(φ) c(φ+ π) c(φ+ π) c(φ)

Bound

(Ds
2,D

s
1)B

c(φ) c(φ) c(φ+ π) c(φ+ π)

CW Gallop

(Z4,1)A

c(φ) c(φ+ π
2

) c(φ+ π) c(φ+ 3π
2

)

CCW Gallop

(Z4,1)B

c(φ) c(φ+ 3π
2

) c(φ+ π) c(φ+ π
2

)

Linear invariant manifolds:

(Ds
1,D

s
1)A c(φ) c(φ+ η1) c(φ+ η1) c(φ)

(Ds
1,D

s
1)B c(φ) c(φ) c(φ+ η1) c(φ+ η1)

(Ds
1,1)A c(φ) c(φ+ π) c(φ+ η1) c(φ+ η1 + π)

(Ds
1,1)B c(φ)c(φ+ η1 + π) c(φ+ η1) c(φ+ π)

(Z2,1) c(φ) c(φ+ η1) c(φ+ π) c(φ+ η1 + π)

Planar invariant manifolds:

(D
p
1 ,D

p
1 )A c(φ) c(φ+ η1) c(φ) c(φ+ η2)

(D
p
1 ,D

p
1 )B c(φ) c(φ+ η1) c(φ+ η2) c(φ+ η1)

satisfy Ψ
(
θ†
)

= 0 are then linearly stable provided the

real components of the eigenvalues λ of J(θ†) are neg-
ative. Conveniently, multiple attractors lie on the line
so we consider θη = (η, η, η). This line includes Pronk
(η = 0), Gallop (η = π/2) and Trot (η = π). The eigen-
values for these three cases are then λ = {−2(H ′(η) +
H ′(−η)),−(H ′(η) +H ′(−η))± i(H ′(η)−H ′(−η))}. The
stability of each is therefore governed by the sign of a
single quantity H ′(η) +H ′(−η). From the plot of the H
function in Fig. 2, we see that H ′ (η) > 0 for η = 0, π/2,
and π, so the eigenvalues are negative. Similarly, the con-
ditions for the stability of Bound/Pace rely on H having
positive slope at both 0 and π, which it does. Conse-
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1)A
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1,1)A

FIG. 3. (a) The 8 categories of invariant manifolds for a
network of 4 nodes with square symmetry predicted by the
H/K theorem presented in the state-space of phase differences
is a periodic 3D cube, θij ∈ (0, 2π]. There are 4 categories
of phase-locked periodic states (points), 3 categories of lines
and 1 category of planes; each are colored according to their
category in TableII. All linear and planar invariant are pe-
riodic; blue lines correspond to the edges of the planes. (b)
(First row) The 4 point manifolds predicted by theory, Pronk,
Pace/Bound, Trot and Gallop, are represented as space-time
plots, (second row) as networks with synchronized clusters
indicated by color and (third row) as a triplet of phase differ-
ences, θ, with units of fraction of a period.

quently, the system will converge to at least these four
states depending upon initial condition. By contrast, in
the Kuramoto case H ∼ sin(), Trot would be an attrac-
tor, Pronk a repeller, Pace/Bound a saddle, and Gallop
a neutrally stable fixed point [45].

Simulations initiated from an exhaustive set of ∼ 105

initial conditions further show that each initial con-
dition flows to one of these phase-locked attractors
[Fig. 5(a)(b)], indicating that there are no other attrac-
tors besides the point invariant manifolds predicted by
the H/K theorem. We numerically determined the basins
of attraction of each attractor by dividing the 3-torus into
a fine grid and identifying each initial point with the at-
tractor to which it flowed, as shown in Fig. 5(a)(b). The
Pronk, Bound and Gallop basins are smooth, closed vol-
umes while the Trot basin fills the rest of the state-space
[Fig. 5(b)]. The state with largest basin of attraction is
Trot, followed by Gallop, Bound and Pronk. The attrac-
tion basin of the Bound state is anisotropic and aligned
with the (Ds

1, D
s
1) invariant manifolds [Fig. 5(a),6(a)].

Fig. 5(a) and 6(b) reveal that trajectories remain near
the (Dp

1 , D
p
1) invariant manifolds as they flow to Trot.

We find the convergence time to these attractors, approx-
imated as the reciprocal of the maximum real eigenvalue
of the attractor, are within experimentally relevant time
frames. The convergence times, as measured in oscil-
lation periods, for each attractor are: 2.8 for Trot, 6.0
for Gallop, and 19. for both Bound and Pronk. In ad-
dition to these attractors, a direct numerical search for
all roots of Eqn. 4, Ψ

(
θ†
)

= 0, revealed many addi-
tional steady states (158 saddle points and 4 repellers)



8

TABLE II. Symmetry required invariant manifolds parame-
terized by relative phases η1, η2, which vary from 0 to 2π. All
representations, modulo 2π, are shown.

Point invariant manifolds:
Name Phase (θ21, θ32, θ43)

Pronk (0, 0, 0)

Trot (π, π, π)

Pace

Bound

(π, 0,−π)
(0, π, 0)

CW Gallop

(
π
2
, π
2
, π
2

)
CCW Gallop

(
−π

2
,−π

2
,−π

2

)
Linear invariant manifolds:

(Ds
1,D

s
1)A (η1, 0,−η1)

(Ds
1,D

s
1)B (0, η1, 0)

(Ds
1,1)A (π, η1, π)

(Ds
1,1)B (η1, π,−η1)

(Z2,1) (η1, π − η1, η1)

Planar invariant manifolds:

(D
p
1 ,D

p
1 )A (−η1, η1, η2)

(D
p
1 ,D

p
1 )B (η1, η2,−η2)

that give further structure to the state-space. All states
are enumerated in Table SI and plotted in Fig. S6 of the
Supplementary Material [33] .

Theory predicts that the network’s trajectories flow-
ing towards its attractors are constrained and shaped
by higher order invariant manifolds [Fig. 6(a)]. To fur-
ther quantify how the 1D and 2D manifolds guide and
structure dynamics, we calculate their transverse sta-
bility. We do so by leveraging the simple geometric
forms of the invariant manifolds and the phase model
Eqn. 4 to perform a coordinate transformation that de-
composes the dynamics into components tangent and
normal to the manifolds. Details of this linear stability
analysis are shown in Appendix E and Table SII in the
Supplementary Material [33] . We find that the major-
ity of the (Ds

1, D
s
1) and (Dp

1 , D
p
1) manifolds are attracting;

this causes nearby trajectories to collapse and remain on
them [Fig. 6]. The manifolds also exhibit small regions of
repulsion that contain saddle nodes and demarcate sepa-
ratrices. In this way, the theory combines the restrictions
of symmetry and the unique system dynamics to predict
both the basins of attraction of the attractors and the
symmetric, clustered transient transitions along the lin-
ear and planar invariant manifolds that connect the at-
tractors. We note that H/K theorem does not preclude
the existence of other invariant manifolds. In fact, near
the Gallop attractor, we observe trajectories coalescing
onto a 2D surface, Fig. 5(a).

Pronk
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Other

Trot
Pace

N

Sp
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pa
tte

rn

(b) 

15
00

s

24 12 146

(a)

Pace TrotPronk

0
0
0

0.45
0.00
0.45

0.50
0.50
0.50

0.50
0.35
0.45

FIG. 4. (a) Experimental phase-locked states plotted within
state-space. There are three characteristic distributions, as-
sociated with the Pronk, Pace/Bound, and Trot states. They
are colored to reflect which H/K state they are affiliated with
as in Fig. 3, using a state specific cutoff determined by simula-
tions detailed later in Appendix G. (b) (First row) Example
space-time plots of steady states in (a). Due to the wide dis-
persion of the Trot distribution, different states within the
Trot distribution can appear qualitatively different; the last
column shows one such example. (Second row) The number
of times a state is observed and (Third row) Measured phase
difference. Videos of experiments shown in Movies S1-S4.

B. Experimental Observations of Dynamics

To compare H/K and phase model predictions with
experiment, we mapped the transmitted light intensity
shown in Fig. 1(d) to phase by attributing the time of a
reactor’s peak oxidation to φ = 2π and linearly interpo-
lating between these peaks. We subsequently calculated
the three phase differences (θ21, θ32, θ43). We conducted
318 experiments of which 186, or 58%, phase-locked fol-
lowing criteria defined in Appendix B. The complex,
non-phase-locking trajectories were not analyzed beyond
plotting a histogram of their phase differences over time
in Fig. S5; the following examines the dynamics of the
phase-locked cases.

We first compare the phase-locked steady states ob-
served in experiment to theory. We do so by plotting the
phase differences at steady state in the 3D state-space
of the system [Fig. 4(a)]. We find clusters of steady
states around three of the four attractors predicted by
theory: Pronk (blue), Bound/Pace (purple), and Trot
(red) [Fig. 4(a)]. The distributions around Pronk and
Bound/Pace are tightly centered. Consequently, space-
time plots of their spatiotemporal dynamics [Fig. 4(b)]
are visually indistinguishable from the Bound and Pronk
states in theory [Fig. 3(b)].

In contrast, the Trot-centered distribution is more dif-
fuse. At its furthest extent, the spatiotemporal dynamics
no longer qualitatively resemble the symmetry-predicted
dynamics, as exemplified in Fig. 4(b), which presented a
challenge in classifying the observed phase-locked states.
To classify these states, it was necessary to perform hun-
dreds of trials to accumulate enough statistics to recog-
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(b)(a) (c) 

CW
GallopPace

Pronk

Bound Trot

TrotBoundGallop
0

100

Pronk
ΩI

P(
Ω

F|Ω
I)

N 2 26 10 148

Gallop Pace/BoundPronk

Trot 

ΩTrot

ΩPace

ΩGallop

ΩBound

ΩPronk

(d) 

FIG. 5. Basins of attraction. States are labeled as in Fig. 3. (a) Simulations of Eqn. 4 show that all trajectories converge to
the H/K-predicted attractors (point invariant manifolds), Pronk/Bound, Gallop or Trot, depending on initial condition. Video
of different perspectives in 3D are shown in movie S5. The corresponding plot of all experiment is shown in movie S6. (b)
Basins of attraction of homogeneous model. The phase space is divided into regions Ω colored by the attractor to which all
initial conditions in that set of points converges. (c) A dense, uniform sampling of initial conditions show 89.9% go to Trot,
6.56% to Rotary Gallop, 3.33% to Bound/Pace, and 0.231% to Pronk. (d) The probability P (ΩF |ΩI) that an experiment,
which began in a theoretical basin ΩI , converges to an attractor in region ΩF . We list the number of observations N in the row
above the chart. The plot shows that initial conditions for gallop were rarely accessible experimentally and did not converge to
gallop. In contrast, of the 148 states initially in the theoretical Trot basin, 95.3% converged to that attractor. Of the remaining
4.7%, 1.35% went to Pronk, 1.35% to Bound/Pace, and 2.03% went to Other.

nize that attractors formed clouds of points distributed
around the symmetry predicted states. To help with the
classification, we also performed simulations to be dis-
cussed more fully in Sec. III C. Briefly, simulations show
that the region of the Trot attractor expands substan-
tially in response to heterogeneity. We determine the
bounds of this region for Trot, and the other attractors,
through both large scale computation and bifurcation
analysis. We then use the extent of those regions to clas-
sify our experimental data. We find that nearly all of
the points distributed around Trot are instances of the
original attractor subject to heterogeneity.

Finally, we did not observe the theoretically pre-
dicted Gallop attractors. Instead, the region of state-
space where we would expect Gallop is completely empty
Fig. 4(a). This indicates Gallop is either unstable or
absent altogether. Like Trot, we will explain this dis-
crepancy between theory and observation further in
Sec. III C.

We can further assess the agreement between theory
and experiment by examining the correspondence be-
tween initial condition and steady state. The theoretical
plot of the basins of attraction summarizes this relation-
ship by mapping each point in phase space to an at-
tractor [Fig. 5(b)]. Experimental initial conditions were
explored by applying phase-shifting perturbations to the
networks at the beginning of the experiment using the
method described in reference [29] and Appendix A. To
compare, we plot the observed probability of converg-
ing to each attractor given the initial condition’s basin
[Fig. 5(c)]. Nearly all experiments that began in the

theory-predicted basin flowed to the corresponding at-
tractor. The exception was Gallop; trajectories that be-
gan in that basin flowed instead to Trot. We found this
basin difficult to sample experimentally, so it is difficult
to prove its existence or absence based on these obser-
vations alone. In the next section we discuss simulations
incorporating heterogeneity that shed some light on these
observations.

Finally, we look for evidence of the higher order IMs
in our experiment. Since theory predicts the transverse
dynamics of the (Ds

1, D
s
1) and (Dp

1 , D
p
1) manifolds to

be largely attracting, we expect them to be observable.
Strikingly, we find trajectories on these manifolds and, in
the case of (Dp

1 , D
p
1), find the trajectories to qualitatively

match theory in that plane [Fig. 6(a)(b)].

C. Heterogeneous Phase Model and Bifurcation
Analysis

We hypothesized that the two main discrepancies be-
tween theory and experiment (the absence of gallop
and the large cloud of steady states around trot), can
be explained by allowing for heterogeneity in the in-
trinsic frequencies of Eqn. 4. We tested this by first
measuring the degree of heterogeneity by fitting Eqn. 4
to experimental data with intrinsic frequency difference
∆ω, coupling strength k, and inhibitory-excitatory ra-
tio ke as fitting parameters, details are presented in Ap-
pendix C. We report the outcome as a distribution of
dimensionless frequency differences ∆ω = ∆ω/(kHmax),
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FIG. 6. Dynamics along higher order H/K invariant manifolds in experiment and simulation. (a) Space-time plots from an
experiment and simulation with a near-Pronk initial state transitioning to Pace. States form 2 symmetric clusters corresponding
to the (Ds

1, D
s
1)A invariant manifold. In the lower panel the experimental trajectory is shown as an arrow traveling through a

2D slice of state-space superimposed over the theoretical velocity field. Video of experiment synchronized to progression along
space-time plot and trajectory in state-space shown in movie S8. (b) Space-time plots from an experiment and simulation
with a near-Pronk initial state transitioning to Trot. The transition corresponds to the (Dp

1 , D
p
1)A invariant manifold. Video of

experiment synchronized to progression along space-time plot and trajectory in state-space shown in movie S9. (c) The invariant
manifold surfaces attract or repel in a state-dependent manner given by the computed maximum transverse eigenvalues λ∗.
When positive (negative), nearby trajectories are repelled (attracted) from (to) the invariant manifold. Both the 2D (Dp

1 , D
p
1)A

and 1D (Ds
1, D

s
1)A invariant manifolds are largely attracting. Video of 3D perspective of plot in movie S10.

where ∆ω is scaled, both by the coupling strength k
and the maximum amplitude of the interaction function
Hmax. We introduce the latter to facilitate compari-
son with the Kuramoto’s canonical case of sinusoidally
coupled oscillators, for which the interaction function
has unit amplitude [Fig. 7]. We anticipate qualitative
changes in dynamics when the heterogeneity exceeds the
“height” of the interaction function [18, 46]. We find
that the distribution of ∆ω is approximately Laplacian
with scale parameter b = 0.244[−] or standard deviation

σ =
√

2 × 0.244[−] [Fig. 7]. Previous work measured
the distribution of intrinsic frequencies of isolated wells
in the same BZ-in-PDMS system to have a 3% coeffi-
cient of variation [21]. This variation was attributed to
slight differences in chemical concentration and bound-
ary conditions created by the applied blue light [47]. By
non-dimensionalizing, we see that this small degree of
heterogeneity is influential because the coupling is suffi-
ciently weak. Fig. 7(c) shows the fraction of experiments
that possess a given overall heterogeneity |∆ω| or less (i.e.
while the mean of ωij is zero, we find that it is unlikely
that all frequency differences in a network will be zero).
We subsequently incorporated heterogeneity into simu-
lation by sampling from this distribution multiple times
for each initial condition.

Fig. 8(a) shows the resulting steady states in state-
space. The simulations produce a distribution of steady
states with multiple clusters, four of which are centered
about the expected H/K attractors. Qualitatively, the
spatial extent of each is distinct. For example, Pronk is

narrow while Trot is dispersed. We associate a steady
state with an H/K attractor if it is within an attractor-
specific cutoff distance determined by examining the den-
sity of steady states as a function of distance from an at-
tractor. Steady states beyond the cutoff distances for all
H/K attractors are classified as ‘Other’, Appendix G.

In comparing identified H/K steady states in hetero-
geneous simulations to those in homogeneous (∆ω = 0)
simulations, we see marked changes in the relative oc-
currences of each H/K state. The added heterogene-
ity dramatically reduced the presence of Gallop. Ho-
mogeneous simulations predicted that 6.0%(N = 5, 399)
of trajectories would converge to Gallop, compared to
0.259%(N = 34, 713) in heterogeneous simulations, a 23-
fold decrease. In experiment this drops to 0%(N = 186).
In contrast, Bound/Pace and Pronk experience, respec-
tively, 2.1, and 3.2-fold decreases and Trot experiences
1.1-fold increase through the elimination of Gallop. The
share of steady states classified as Other is 3.43% in
heterogeneous simulations, comparable to the 2.15% ob-
served in experiments. It is unclear whether all the
Other states should be classified as new states gener-
ated by frequency heterogeneity, or as states that are
improperly classified according to the criteria described
in Appendix G. However, we note the creation of new
fixed points when heterogeneity is introduced. These new
steady states appear as clusters labeled Other in Fig. 8
but are not associated with any of the H/K attractors.
Numerical continuation of Pronk confirms the creation of
a new fixed point at finite heterogeneity, but we did not
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FIG. 7. (a) Example experimental trajectory converging
to steady state (circles), and best fit phase model (solid line).
The fit model required heterogeneity ∆ωij 6= 0 to fit data. For
comparison, the steady state phase difference θ† = (π, π, π)
of the homogeneous phase model is shown (dashed horizontal
line). (b) Distribution of best fit dimensionless intrinsic fre-
quency differences ∆ω = ∆ω/kHmax, nondimensionalized by
the coupling rate k and amplitude of the interaction function
Hmax [Fig. 2]. The distribution is approximately Laplacian
with scale factor b = 0.2441[−]. (c) Cumulative probability
distribution of |∆ω| from (a). Lines denote the average het-

erogeneity 〈|∆ω∗|〉 at which the bifurcation analysis predicts
the attractors: Gallop (green), Pronk (blue), Pace/Bound
(purple) and Trot (red), will lose stability, [Table III]. This
predicts the fraction of experiments that can support a given
attractor given the inherent heterogeneity.

explore its properties in detail. Finally, heterogeneous
simulations recreate the observed cloud of steady states
around Trot. Of the simulations that phase-locked, we
observed that those with the largest heterogeneity tended
to exhibit increased convergence time, as is generically
expected near a saddle node on an invariant circle bifur-
cation [46].

To gain a more quantitative understanding of each at-
tractor’s response to heterogeneity, we examined the re-
sponse to frequency heterogeneity through a bifurcation
analysis. Since we have three potential bifurcation pa-
rameters, ∆ω = (∆ω21,∆ω32,∆ω43), we chose a repre-
sentative subset of possible directions W with symme-
tries inspired by D4 such that ∆ω = αW, Fig. 8(b)
shows the directions considered. These directions either
break or coincide with- the point symmetry of the at-
tractors. We will show that the selection of directions we
chose covers the most extreme cases, providing a frame-
work for understanding the overall sensitivity of an at-

TABLE III. Summary of bifurcation analysis. Different pat-
terns of heterogeneity ∆ω = αW are considered for pos-
itive and negative values of α. The second column shows
the corresponding spatial distribution of intrinsic frequencies;
nodes with identical colors have identical frequencies . The
critical values are reported as the dimensionless ordered pair
[ᾱ∗+, |ᾱ∗−|] where ᾱ = α/(kHmax). The final row reports the

average, dimensionless heterogeneity 〈|∆ω∗|〉 at which bifur-
cations occur.

pronk trot pace bound CW CCW

W ω 1
−1
0

 [
0.35
0.68

] [
1.4
1.2

] [
0.42
0.40

] [
0.42
0.40

] [
0.089
0.14

] [
0.089
0.14

]
 1
−1
1

 [
0.7
0.7

] [
1.9
1.9

] [
0.55
0.55

] [
0.55
0.55

] [
0.18
0.18

] [
0.18
0.18

]
 1

0
−1

 [
0.35
0.35

] [
0.93
0.93

] [
0.93
0.93

] [
0.35
0.35

] [
0.083
0.083

] [
0.083
0.083

]
0

1
0

 [
0.35
0.35

] [
0.93
0.93

] [
0.35
0.35

] [
0.93
0.93

] [
0.083
0.083

] [
0.083
0.083

]
1

1
1

 [
0.12
0.12

] [
0.40
0.40

] [
0.13
0.13

] [
0.42
0.42

] [
0.032
0.062

] [
0.062
0.032

]

〈|∆ω∗|〉 0.34 1.2 0.57 0.12

tractor. Numerical continuation is used to identify the
location of the system’s attractors θ† (α) as α is varied.
The critical values α∗ at which stability is lost are re-
ported in Table III for the system’s attractors. All critical
values are reported in dimensionless terms using Hmaxk
as the scale [Fig. 2]. We also summarize Table III’s con-
tent graphically by plotting the points at which attrac-
tors are eliminated or lose stability through bifurcations
θ† (α∗) and connecting these points to form closed sur-

faces; the average magnitude of heterogeneity 〈∆ω∗〉 re-
ported measures the overall robustness of each attractor
to heterogeneity [Fig. 8(c)]. In all cases, we find that a
finite amount of heterogeneity is needed to eliminate the
attractor; thus, all attractors are structurally stable. No-
tably, the average heterogeneity needed to eliminate Gal-
lop is exceeded during ∼ 80% of experiments Fig. 7(c).

This analysis reveals important qualitative differences
between the attractors as well. The critical values α∗ at
which bifurcations occur depend strongly on W for each
attractor. These bifurcations naturally involve collisions
with the system’s many unstable fixed points that have
intricate trajectories in phase space. Despite this com-
plexity, we now show that an upper bound on α∗ can be
found for a few special, but informative, cases that link
the robustness of attractors back to the interaction func-
tion H [Fig. 2]. To do so, we leverage the system’s 1D
invariant manifolds using ideas from equivariant bifurca-
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FIG. 8. (a) Phase-locked steady states of simulations with heterogeneity ∆ω sampled from the experimentally measured
distribution [Fig. 7]. The steady states are unimodally distributed about each H/K attractor. We associate a steady state
with an attractor if they are within ones of these distributions or as ’Other’ (black) [Appendix G]. Compared to homogeneous
simulations, occurrence of Gallop is reduced by a factor of 23.5 and Trot becomes dispersed over a large volume [Fig. 5].
Videos of 3D perspectives of plots are shown in movies S11 and S12, respectively Supplementary Material [33] . (b) Paths
traced out by the Pace attractor in response to two patterns of heterogeneity indicated by the blue glyphs. Each pattern moves
Pace along a different linear invariant manifold. The mesh surface shows the volume explored by Pace for all perturbations
that we consider. (c) Schematic of all directions in heterogeneity W used during bifurcation analysis. (d) Surfaces of the
phase-differences θ† at which an H/K attractor losses stability due to a heterogeneity induced bifurcation. These surfaces

bound distributions of steady states in (a). The surfaces are labeled by the average magnitude of heterogeneity 〈|∆ω∗|〉 at
which loss of stability occurs. Note that the surfaces have phase differences below 0, as the surfaces are centered about points
containing 0 values. As a result, the surfaces about Pronk, Bound, and Pace define eight, four, and two volumes of points in
(a), respectively.

tion theory [48]. In the following three examples, we will
follow the same template: an attractor will be chosen and
then a spatial pattern of heterogeneity W will be chosen
that aligns with a 1D invariant manifold that intersects
with that attractor. Direct substitution in Eqn. 4 will
then yield a 1D dynamical system parameterized by the
heterogeneity strength α. This procedure identifies an
upper bound because while the 1D picture identifies bi-
furcations, stability may change prior due to interactions
with fixed points that do not reside on that manifold (and
therefore go untracked during the analysis).

We first consider Pace, θ = (π, 0, π). The inset of
Fig. 8(c) shows the path traced out by Pace in phase
space due to two spatial distributions of intrinsic fre-
quency. The first, W = (1, 0,−1), is parallel to
(Ds

1, D
s
1)A and corresponds to cluster-preserving pertur-

bations, see Table II. The second, W = (0, 1, 0), is
directed along (Ds

1, 1)B and disrupts the synchrony of
Pace’s clusters. We analyze the cluster-preserving case
by substituting in θ = (η, 0,−η) into Eqn. 4, where η is
the phase difference between clusters. The reduced dy-
namics are then η̇ = α+k [H (−η)−H (η)] ≡ α+kψ (η).
Along this manifold, the crossing at η = π is Pace. Plot-
ting η̇ in Fig. 9(b) readily shows how shifting the dynam-
ics with α will result in bifurcations that eliminate the
antiphase fixed point at α∗ = ±ψmaxk, or in dimension-
less terms, ᾱ∗ ∼ ±1.

For the second perturbation direction, we consider dy-

namics along (Ds
1, D

s
1)A for which the inter-cluster phase

difference is π but the intra-cluster phase difference is
free to change, θ = (π, η,−π). The dynamics reduce
identically, but the interpretation of η is different. Now,
η = 0 is Pace and local minima and maxima on either
side determines α∗. Since this local maxima < ψmax, we
conclude that Pace is less structurally robust to cluster-
breaking heterogeneity, which is corroborated by the full
numerical continuation analysis, Table III.

We can readily extend this approach to the other at-
tractors. For Trot, resilience to cluster-preserving per-
turbations W = (1,−1, 1) is found by examining dy-
namics along θ = (η,−η, η), which is the intersection of
the two planar IMs (Dp

1 , D
p
1)A and (Dp

1 , D
p
1)B , where η

is the phase difference between the two diagonal clusters.
Qualitatively, the dynamics are identical to those consid-
ered for Pace, η̇ = α + 2k [H (−η)−H (η)]. However, a
factor of 2 strengthens the effective coupling strength for
Trot. It therefore requires twice the heterogeneity to be
eliminated , ᾱ∗ ∼ ±2 [Fig. 9]. Trot is the strongest in
this direction; Table III shows that it is more susceptible
to perturbations with clustered rows or columns.

Finally, we consider gallop, which is only intersected
by one invariant manifold, (Z2, 1). Letting θ = (η, π −
η, η) and W = (1,−1, 1), the dynamics simplify to η̇ =
α+k [H (−π − η) +H (−η)−H (η)−H (π − η)]. These
dynamics are compared to the reduced dynamics of Pace
and Trot in Fig. 9, where the fixed points at η = ±π/2
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FIG. 9. Dynamics η̇ = α + ψ (η; k) along a selection of in-
variant manifolds scaled by coupling strength k and Hmax:
(a) intersection of planar IMs (Dp

1 , D
p
1)A and (Dp

1 , D
p
1)B ,

θ = (−η, η,−η), (b) (Ds
1, D

s
1)A, θ = (η, 0,−η) and (Ds

1, 1)B ,
θ = (π, η,−π), and (c) (Z2, 1), θ = (η, π − η, η). Each is
used to analyze a different attractor subject to heterogeneity
α: (a) Trot (η = π), (b) Pace (η = π for cluster-preserving
perturbations, η = 0 for cluster-breaking) and (c) Gallop
(η = ±π/2). The labeled extrema (red) correspond to the
heterogeneity |ᾱ| at which the fixed points of interest are an-
nihilated through bifurcations.

are the two Gallop states. They vanish when ᾱ exceeds
the local maxima/minima near them ∼ ±0.34, which is
less than that which annihilates the in-phase and anti-
phase fixed points for Trot and Pace.

Numerical continuation shows that Gallop’s stability
changes before annihilation at ᾱ∗ ∼ ±0.18, Table III.
Thus, the invariant manifold analysis gives only an up-
per bound. Still, the semi-analytical examination facili-
tates intuition about how different interaction functions
H might impact stability and robustness to heterogene-
ity. For example, if H ∼ sin(), then dynamics along
(Z2, 1) simplify even further to η̇ = α, which is a marked
qualitative difference between the BZ-in-PDMS system
and an idealized Kuramoto network.

Between the full numerical continuation and IM anal-
yses, we arrive at an approximate ranking for the relative
robustness of the attractors that agrees with experimen-
tal observations (in order of most resilient against hetero-
geneity to least): Trot, Pace/Bound, Pronk, Gallop. As
seen within Fig. 7(c) the theory predicts Trot was stable
for nearly all experiments. In contrast, Gallop was rarely
stable.

IV. DISCUSSION

We theoretically and experimentally studied a 4-ring
network of self-driven oscillators. We utilized the H/K
theorem to enumerate steady states and other invariant
manifolds (IM) required by symmetry. We developed a
phase model faithful to the experimental BZ-in-PDMS

system that included chemical details and treated the
heterogeneity of the oscillators which allowed us to pre-
dict the stability of the steady-states and manifolds, and
to describe the dynamics. Each invariant manifold pre-
dicted by the H/K theorem breaks some symmetry of the
underlying network; a notable feature of our experimen-
tal system is that the combination of inhibitory and exci-
tatory interactions render many of these structures stable
and therefore experimentally accessible. Inhibitory inter-
actions generated by the high permeability of PDMS to
bromine are responsible for the symmetry breaking that
stabilize the Trot state in which every oscillator is out-of-
phase with its nearest neighbor, and excitatory interac-
tions are responsible for stabilizing synchronized nearest
neighbors in the Pronk and Pace/Bound states, in which
either all (Pronk) or half of the oscillators (Pace/Bound)
are in-phase. In a purely excitatory-coupled system, all
invariant manifolds would still exist, but a fully synchro-
nized (in-phase) state would be the only stable state and
therefore would dominate observations. The influence of
the other invariant manifolds would be limited to tran-
sient behavior. The BZ-in-PDMS network possesses both
excitatory and inhibitory coupling, which allowed us to
experimentally quantify the coexistence of multiple com-
peting attractors in the network. We note that the com-
plexity of the BZ-in-PDMS interaction function is mini-
mal in the sense that, when placed in the 4-ring topology,
it renders all H/K fixed points as attractors while produc-
ing no additional ones. This feature is serendipitous but
underscores the potential benefits of exploring real oscil-
lators rather than idealized ones. By contrast, the Ku-
ramoto model considered in the supplement (Fig. S7),
lacks the rich multi-stability even though all of the H/K-
predicted fixed points are necessarily identical to those
in the BZ network.

On the one hand, while previous studies on biolog-
ical networks have demonstrated some correspondence
between observed spatiotemporal patterns and topology,
it is difficult to contextualize the observations because
the living networks lack a quantitative model of the os-
cillators and their coupling, and the experiments lacked
steady state conditions [5, 49]. On the other hand, elec-
tromechanical [7], electrical [6, 50], or electrochemical
[51] based oscillator networks leverage components en-
gineered to high precision with which the oscillator dy-
namics and coupling details are known, facilitating trans-
parency between topology and dynamics. However, these
systems follow different engineering principles than do bi-
ological and synthetic chemical systems and therefore do
not shed light on the challenges of building autonomous
materials. Hybrid systems that mediate coupling be-
tween chemical oscillators through a computer provide a
unique degree of control over network dynamics [52, 53],
including some studying similar networks, including the
4-ring network studied here [54–58], but using a com-
puter to control interactions between chemical oscilla-
tors means these systems are neither autonomous or self-
organizing. Here, we build on the foundation of the BZ
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chemical oscillator, which is perhaps the best charac-
terized chemical oscillator in isolation [21, 34], to pre-
dict network-level phenomena. Our work is the first
to simultaneously build an autonomous, self-organizing
reaction-diffusion system with multiple attractors and
address the role of heterogeneity on those spatiotempo-
ral patterns. We measure the dimensionless heterogene-
ity [Fig. 7], which is the key parameter for controlling
the existence of phase-locked states. Through its union
of theory and experiment, our work provides an essential
linkage between the biological and the engineered.

Kuramoto’s work on heterogeneous, weakly-coupled
pairs provides the essential framework for understand-
ing how frequency differences between oscillators lead to
desynchronization [18]. In larger networks this intuition
is obfuscated by the higher dimensionality of the system.
We show that this complexity can be reduced to that of
the pairwise problem by judiciously choosing particular
spatial patterns of heterogeneity that preserve invariant
manifolds of the system, and then examining dynamics
and bifurcations along them. This analysis confirmed
the experimental and computational observations that
each attractor had a different response to heterogene-
ity and that this response depended on the spatial pat-
tern of frequency heterogeneity. Systematically examin-
ing heterogeneity for each invariant manifold allows us
to use symmetry-derived features of the dynamics to un-
derstand the impact of symmetry-breaking heterogeneity.
More broadly, our work demonstrates a general method-
ology, applicable to many networks and oscillator sys-
tems, for analyzing the impact of heterogeneity in nature
and tailoring its use in engineered systems.

Prior work using group theoretic approaches [8, 9]
and equitable partitions [59, 60] have been particularly
fruitful in systematizing the identification of topology-
required clustered states. Once symmetries are identi-
fied, a master stability function approach is used to de-
termine transverse stability of identified clustered, limit-
cycle solutions [61]. In contrast, we use the H/K the-
orem to identify not just clusters, but spatiotemporal
patterns described by phase relationships between os-
cillators. In principle, systematizing application of the
H/K theorem to the large, arbitrary networks considered
by Pecora et. al. [8] is possible, but to our knowledge
has not been achieved. Another difference with prior
work is that we create a phase model of the dynamics
in the weak coupling limit, further reduce the dynamics
by examining only the relative dynamics between oscilla-
tors, and then assess the stability of the fixed points and
higher order invariant manifolds that emerge. However,
we note that both the prior work and ours are quan-
tifying the same quality of the network, the ability to
phase lock parts of an network. In our case, as we limit
the theory to weak-coupling, phenomena associated with
higher coupling strength are lost, but we gain the ability
to semi-analytically analyze bifurcations along 1D mani-
folds, providing intuition that may be hard to extract via
other methods. We note that corrections to the phase

model can be systematically introduced [42], but at the
cost of adding additional degrees of freedom.

Heterogeneity can impact dynamics in unexpected
ways. A recent experimental work on an electromechan-
ical system [62, 63] has demonstrated that heterogeneity
leads to robustness in the face of system noise through
converse symmetry breaking [64]. This work explored the
phenomena of symmetry arising from system assymme-
try in inertial oscillators, however it is not known whether
there is an analog in the case studied here of weakly cou-
pled networks for which the dynamics are overdamped.
Other examples of coupled oscillators also note qualita-
tively different synchronization phenomena in the face of
heterogeneity between strongly and weakly coupled os-
cillators [53]. Our measurements confirm that we are in
a weakly coupled regime and thus our analysis is valid.

Finally, we note limitations of the current study.
Firstly, complete experimental control of initial condi-
tions was not achieved. The use of a photosensitive cata-
lyst coupled to a computer controlled light projector was
excellent at setting inphase or antiphase synchrony in
experiment. For reasons we have yet to understand, set-
ting other initial conditions, e.g. Gallop, with the same
method often failed. As a result, we could not unambigu-
ously determine if Gallop was fully unstable or possessed
an extremely small basin of attraction. Secondly, exper-
imentally validating the response of fixed points to con-
trolled addition of structured heterogeneity is a natural
extension of our work. Control of both initial conditions
and heterogeneity would allow an efficient search for the
steady states created by heterogeneity, labeled ‘Other’, in
Fig. 8(a). Experimentally implementing both is planned
as a continuation to this work. Lastly, we note the fi-
nite lifetime of an experiment, ∼70 oscillations, is in-
sufficient to observe steady states with long convergence
times. While sufficient to observe states which are ro-
bust to heterogeneity: Pronk, Bound/Pace, and Trot, it
may hinder observation of sensitive states that are on the
verge of annihilation through a bifurcation. Use of mi-
crofluidic reactors that are fed new reactants to create
truly open chemical systems, currently yet to be devel-
oped, would allow much longer experiments to explore
these dynamics.

V. CONCLUSION

Understanding how network structure controls spa-
tiotemporal pattern formation remains a central prob-
lem in network science. Analysis of spatial network
symmetries has led to great progress by illuminating
mechanisms behind the emergence of clustered, dynam-
ical states. Specifically, tools based on group theory
[8, 9] and equitable partitions [59, 60] have been par-
ticularly fruitful in systematizing the identification of
topology-required clustered states. Theoretically gener-
alizing these methods to predict behaviors in real sys-
tems, with mathematically imperfect network structure,
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is a largely untouched topic, but one essential for elu-
cidating the engineering principles necessary to exploit
network symmetries in applications involving chemical
networks.

This work represents the most thorough experimental
study of a reaction-diffusion network to date with an or-
der of magnitude increase in the longevity of each experi-
ment and the number of experiments performed. Within
this work we find consistencies and discrepancies between
theoretical predictions and experimental observations of
a small reaction-diffusion network of oscillators assuming
perfect square symmetry. The majority of attractors are
distributed about the values predicted by assuming that
the network’s nodes and connections are homogeneous.
The distributions possess widely varying shapes and one
attractor predicted by the idealized theory was altogether
absent. We account for these discrepancies between the
theory of homogeneous oscillators and experiment by in-
corporating heterogeneity in the intrinsic frequency of the
oscillators using simulations, numerical continuation, and
a quasi-analytical bifurcation analysis of a phase model
in a fashion inspired by Kuramoto. Our multifaceted ap-
proach infers there is a small degree of chemical hetero-
geneity in the system, producing only 3% variations in in-
trinsic frequencies [21], but which was sufficient to cause
major changes to some attractors predicted by symmetry
while only weakly altering others. The analytic method
we apply is generalizable to any system modeled by a
phase model and any topology, requiring only that a
number of 1D invariant manifolds be identified. Fur-
ther, we demonstrate that with proper accounting of het-
erogeneity, symmetry can be used to rationally engineer
spontaneously organizing reaction-diffusion networks, an
important category that includes biological systems such
as neural networks. In particular, we studied a ring of
four chemical oscillators, which symmetry-based theories
predict are capable of generating the spatiotemporal pat-
terns known as the gaits of a quadruped. In this work, we
experimentally validate that symmetry dictates function
in weakly-coupled reaction-diffusion systems even in the
presence of heterogeneity.
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Appendix A: Experimental Methods

1. Network Fabrication

The microfluidic reaction-diffusion network was made
out of four adjacent reactors embedded in polydimethyl-
siloxane (PDMS). The reactors are formed out of div-
ots in PDMS that we fill, and then seal with a sin-
gle piece of glass, forming a common lid for the array.
We manufactured these divots using a soft lithographic
process in which PDMS is cured while pressed against
an inverse (positive) of the divots made out of a pho-
toresist deposited onto a silicon wafer. This was per-
formed as previously published [20], with the exception
of one adaptation described below. This generates a glass
microscope slide coated with many reactors organized
into networks of four reactors, shown in Fig. 1(b)(c) and
Supplementary Material [33] Fig. S1 and S2(a).

The dimensions chosen for the network allow for ro-
bust coupling between the four nodes in ring topology.
By adjusting the sizes and distances between reactors
we found that rectangular reactor dimensions 62µm x
62µm x 30µm (L x W x H) with side-to-side distance
26 µm resulted in strong coupling. The network re-
actors are organized in a 2 by 2 grid [Fig. 1(b)(c)] in
such a way that nearest neighbor reactors possess much
more shared surface area relative next-nearest neigh-
bors across the diagonal. This results in a ring-like
connectivity, where coupling between nearest neighbors
is stronger than across the diagonal. The rectangle
of BZ surrounding the network [Fig. 1 (c)] is forced
into a steady state, setting the concentration of chem-
icals surrounding the network. During each experi-
ment we observe nine or sixteen coupled, individual net-
works, separated from one another by controlled barriers
[Supplementary Material [33] Fig. S1(b)(c)].

The only alteration of the procedure in fabricating the
PDMS networks published [20] was to change the way in
which the PDMS was pressed and cured – instead of a
15kg lead brick applied for 12 hours followed by bak-
ing in a 70C oven, we used a thermal press applying
90-113kg set at 70C for 2.5 hours. This reproducibly
kept the PDMS flash at the bottom of the wells to less
than 2 µm and reduced the likelihood of wafer fracture
[Supplementary Material [33] Fig. S1(d)].

2. Sample Holders

In a previous work, BZ laden PDMS reactors were
sealed using an acrylic plastic clamp [20]. All exper-
iments were conducted at room temperature. In this
work, since the oscillation period of BZ depends on tem-
perature [65], we created a clamp that controlled sam-
ple temperatures to within 0.1°C of 22.0 °C to maximize
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TABLE IV. Final experimental chemical conditions in reac-
tors:

Chemical Molecular Formula Concentration
mm

Sulfuric Acid H2SO4 80
Sodium Bromide NaBr 25

Malonic Acid C3H4O4 400
Sodium Bromate NaBrO3 288

Ferroin C36H24FeN6O4S 3
Tris(2,2’-bipyridyl)

dichlororuthenium(II)
hexahydrate

C30H24Cl2N6Ru · 6 H2O 1.2

reproducibility. The clamp’s temperature is controlled
through a thermistor that measures the temperature of
the clamp near the sample and 2 Peltier (TEC) devices
that are managed through a PID feedback loop run on
an Arduino [Supplementary Material [33] Fig. S2]. The
sample is robustly driven to the clamp’s temperature be-
cause the clamp possesses a large thermal mass relative
the sample and large thermal contact area with the sam-
ple [Supplementary Material [33] Fig. S2].

Samples are loaded in a manner identical to the
previous study [20]. Further details are presented in
Appendix A Protocol.

3. BZ Chemical Preparation

The BZ loaded into the microfluidic network is first
mixed outside the microfluidic device. A 0.24mL vol-
ume of photo-sensitive BZ is prepared by sequentially
adding equal 60µL volumes of Sulfuric acid, Sodium
Bromide, Malonic acid, Sodium Bromate, Ferroin then
Tris(2,2’-bipyridyl)dichlororuthenium(II)hexahydrate to
an Eppendorf tube, then mixing it with a Vortex mixer.
Note that during the sequential pipetting of the chemi-
cals, upon adding the Sodium Bromate, the solution con-
verts from colorless to a vivid, transparent yellow for 15
seconds before returning to a colorless state. The output
volumes of the pipette used had a measured percent co-
efficient of variance of 1.2%. The concentrations of the
reagents in the final 0.24mL mixture, and ultimately in
the individual BZ microreactors, are in Table IV.

4. Optics

We measured the chemical state of the reactors by
measuring their absorbance of green light. Ferroin’s ab-
sorbance changes drastically between its oxidized and
reduced state. The green light is filtered to 515 ±
10nm, to avoid exciting the photocatalyst, Ru(bipy)3

[Supplementary Material [33] Fig. S3(a)(c)].
Patterns of blue light perturbations were used

to set boundary conditions and initial condi-
tions by selectively exciting the photocatalyst

[Supplementary Material [33] Fig. S3(a)(c)]. Bound-
ary conditions were applied by shining light on
the rectangle surrounding each network at an
intensity that completely inhibited oscillations
[Supplementary Material [33] Fig. S3(b). Initial con-
ditions were set by applying light to the reactors by
inhibiting all reactors with light for 300-600 seconds.
Then, the light was turned off at different times from
each of the reactors, thus causing them to resume
oscillating at different times. The success rate of hitting
target initial conditions far from Trot or Pronk was low.

As in previous works [20, 27, 28], the patterned blue
light was periodically turned off and on (period 2[s], 50%
duty cycle) to allow image acquisition without the inter-
ference of the applied illumination. During some of the
experiments, the blue light was homogenized by measur-
ing the heterogeneity with a CCD and iteratively adjust-
ing the applied illumination through a feedback scheme
[21].

The light intensity of sample illumination was mea-
sured by placing a power meter in the sample plane,
the results are similar to previous work [27]: intensity
of blue light applied to boundaries: 0.3± .04 mW cm−2,
intensity of blue light applied to reactors during ini-
tial condition setting: 1 ± 0.2mW cm−2, intensity of
blue applied light when projector blank/black: 0.09 ±
0.009mW cm−2, Intensity of 515nm green sample illumi-
nation: ∼0.1mW cm−2. Errors, in standard deviations,
express variance in average illumination across the whole
sample field of view across all experiments, not the vari-
ance across the field of view in individual experiments

5. Protocol

The protocol for an experiment is as follows:

1. PDMS chip, reentrant window, and O-ring
[Supplementary Material [33] Fig. S2(a)] are
cleaned with isopropyl alcohol, deionized water,
and dried with compressed air. They are left under
petri dishes to prevent dust accumulation.

2. A small batch of BZ solution is prepared as detailed
earlier in Appendix A. Solution is left in a dark
chamber.

3. The PDMS chip is plasma treated for 3 minutes at
400mbar in ambient atmosphere.

4. The BZ solution is then pipetted into the networks
of interest in the PDMS chip as shown in depth in
supplementary movie S7 of [20].

5. Now, with the reentrant window placed ap-
proximately above a feature of networks cov-
ered by BZ, the reentrant window must be se-
cured firmly and precisely. While viewing the
sample using a stereomicroscope with green fil-
tered transmission illumination, the thumbscrews
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[Supplementary Material [33] Fig. S2] are slowly
turned, clamping the device. We alternated
tightening them in a zig-zag pattern, with each
tightening of a screw being roughly a 1/8 or
less rotation. During this process any bub-
bles which are present in the reactors should de-
crease in size until they are invisible. Once
all reactors are surrounded by dark outlines
Supplementary Material [33] Fig. S1(a), there are
no shearing distortions to the network, and there
are no bubbles, this process is halted.

6. The clamp and the network with BZ sealed into it
are then left in a dark, room temperature cham-
ber until it has been 40 minute since the BZ was
initially mixed in step 2, typically 20 minutes.

7. The clamp is then loaded into the
projection illumination microscope
Supplementary Material [33] Fig. S3(c). Then,
a MATLAB code with GUI is used to
align a projected pattern onto the sample
Supplementary Material [33] Fig. S3(b) and
initiate temperature control.

8. Light is projected onto boundaries and sets ini-
tial conditions of networks as described earlier in
Appendix A. Data is gathered for between 3000
and 24000s, ∼ 10 and 81 periods of oscillation of
each reactor.

9. In a few experiments a second attempt at setting
initial conditions was made.

Appendix B: Experimental Phase-Locked Criteria

To identify phase-locked states in experiments we re-

quire that d
dt (φi−φj) is almost zero and that d2

dt2 (φi−φj)
is also small. We use the following algorithm to identify
phase-locked experiments:

1. Identify the time evolution of the three phase dif-
ferences (θ21, θ32, θ43).

2. Lowpass them to form (θ21, θ32, θ43).

3. Find the longest region in the time series where the
absolute values of each velocity and the average ac-
celeration for the system are below thresholds εa,v
such that∣∣∣∣ ddtθ21

∣∣∣∣ , ∣∣∣∣ ddtθ32

∣∣∣∣ , ∣∣∣∣ ddtθ43

∣∣∣∣ < εv

and

d

dt

1

3

(∣∣∣∣ ddtθ21

∣∣∣∣+

∣∣∣∣ ddtθ32

∣∣∣∣+

∣∣∣∣ ddtθ43

∣∣∣∣) < εa.

We use εv = 2.5 × 104[rad s−1] and εa = 9 ×
10−8[rad s−2].

TABLE V. Simulation parameters known:

Reagent concentrations:
Description Value Unit

a Bromate 288 mm
m Malonic acid 400 mm
co Total metal

ion catalyst
4.2 mm

h Protons 160 mm
b Bromomalonic

acid
0.12 ∗m mm

Reaction rates and relevant constants:
Value Unit

k1 2× 106h m−1 s−1

k2 2h2a s−1

k3 3× 103 m−1 s−1

k4 42ha s−1

k5 5× 109h m−1 s−1

k6 10 s−1

k7 29m s−1

k8 9.3m s−1

k9 b s−1

k10 0.05m s−1

kr 2× 108 m−1 s−1

kred 5× 106 m−1 s−1

kI 0 s−1

bC 0.05 m

cmin
√

2kr(k9 + k10)co/k2red m

4. If the longest region is 5 or more periods (1500 [s]),
we consider the experiment to be phase-locked.

Appendix C: Best Fit Model

1. Fitting to Experiments

We fit the model Eqn. 4 to each experimental time
series of phase differences [Fig. 7(b)] by varying the
coupling strength k, excitatory coupling ratio ke, and
the set of three intrinsic frequency differences ∆ω =
(∆ω21,∆ω32,∆ω43) to minimize the squared error be-
tween theory and experiment. The first experimental
data point was used as the initial condition.

Only a selection of the experimental data was used in
the fit. First, we excluded early time points for which
oscillators had not achieved a similar frequency. This
threshold is defined in A Appendix A. The final point in
an experimental trajectory used in a fitting was half way
between when the phase-locked condition was met and
when it was lost or the end of the experiment if it did
not unlock. Further details on the transient dynamics
are shown in Supplementary Material [33] Fig. S4.

The identified best fit parameters were: ∆ωij 6= 0, k =
2× 10−2 [s−1], and ke = 0.05[-]. The intrinsic frequency
differences divided by coupling rate ∆ωij/k obeyed a

Laplacian distribution 1
2b exp(− |∆ωij/k−µ|

b ) with mean

µ = 0 and rate parameter b = 2π × 4 × 10−3[rad s−1]
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TABLE VI. Simulation parameters fitted: In ’Fit values’ and
’Values used in theory’ a single number represents the num-
ber fit or used in simulations. If in a fit or simulation values
were randomly distributed, the form of the distribution is de-
scribed by ’L(µ, b)’ represents a Laplacian probability density
function with mean µ and rate parameter b.

Parameter Fit values Unit
Coupling:

k 2× 10−2 s−1

ke 0.05 1
Chemical heterogeneity:

∆ωij L
(
0, 2π × 8× 10−5

)
rad s−1

∆ωij/k L(0, 2π × 4× 10−3) rad
∆ωij/kHmax L(0, 0.2) 1

[Fig. 7(b)]. Dividing these by the maximum of the H
function used in the fitting, determines a distribution
of dimensionless heterogeneity. Further, the fitting re-
quired some excitatory coupling ke = 0.05[−]. Table VI
summarizes the best fit values used in subsequent sim-
ulations. We also explored the possibility of diagonal
coupling when fitting, but found its contribution to the
quality of fit to be two orders of magnitude less sensitive
compared to nearest neighbor coupling and frequency
heterogeneity.

The observed distribution in angular frequency differ-
ences is commensurate with previous observations in [21]
where we noted a 2% variation in the periods of individ-
ual (uncoupled) wells of the same BZ-in-PDMS system.
We can compare the present measurements with the pre-
vious through the relation τ+∆τ = 2π/ (ω + ∆ω). Solv-

ing for ∆τ , letting ∆ω =
√

2b (where b = 2π × 8× 10−5

from Table VI), and τ = 300[s] gives ∆τ ∼ 10[s], or ap-
proximately 3% of the total period. Thus, the present
variation we infer from fitting the phase model to ob-
served dynamics agrees with the spread in oscillation pe-
riods previously measured.

In the supplement Supplementary Material [33] Sec. SIII
we estimate the coupling strength from first prin-
ciples kideal and find that the best fit value is
two orders of magnitude less than this calculation
Supplementary Material [33] . In past works with
emulsion droplets the best fit value of k has been
closer to one order of magnitude lower than expected
[24, 25, 28]. Compared to these past experiments on
emulsion droplets, the experiments performed here
had a much larger amount of oil-phase in the form of
PDMS surrounding each 4 ring network Fig. S1. As
Br2 is known to partition into and react with oil and
PDMS [32], more PDMS would cause a reduction in
inter-reactor coupling. We hypothesize that this is the
cause of the discrepancy.

2. Simulations

Simulations without heterogeneity: The dynamics,

Eqn. 4, were implemented using the Chebfun Toolbox
[66] and integrated using MATLAB’s ODE45 with rela-
tive and absolute tolerances of 1× 10−10.

A dense, uniform sampling of half of the state-space,
62251 simulations in total, was used to determine the
size of each attractor’s basin of attraction, Fig. 5B. An
additional set of 5399 simulations were run that densely
sampled initial conditions in the θ21 and θ43, but coarsely
in θ32, to generate the slices shown in Fig. 5A.

Simulations with heterogeneity: In running simula-
tions from a dense set of initial conditions, each initial
condition had 7 simulations initialized from it with in-
dependent resamplings of frequency heterogeneity. We
thus could observe the impact of heterogeneity through-
out state-space by sampling the distribution of hetero-
geneity in all regions of state-space. The result of 34713
such simulations are shown in Fig. 8(b).

To determine the impact of experimentally realistic
heterogeneity on the model, we ran simulations of Eqn. 3
with the experimental best fit parameters in Table VI.
Specifically, we included heterogeneity in intrinsic fre-
quencies in our simulations, with ∆ωij drawn from the
measured Laplacian distribution defined in Table VI,
with mean 0 and rate parameter 2π × 8× 10−5[rad s−1],
while all other parameters are the constant value enu-
merated in the third row.

3. Phase Model Reduction

In the limit of weak coupling, the dynamics of each
oscillator in a network can be reduced through the in-
troduction of a coupling function H. This nonlinear
function quantifies how mass transport dynamically al-
ters the phases of connected oscillators. To determine
this function for our system, we first identify the phase
response curves (PRCs) Q of the Vanag-Epstein model
using Malkin’s adjoint method [40–42, 44]. Q quanti-
fies the phase-dependent response of an oscillator’s phase
due to infinitesimal chemical perturbations δc such that
δφ = Q (φ) · δc. In our case there are four curves, one for
each chemical species in the VE model.

The instantaneous rate of change of an oscillator i’s
phase due to interactions with the jth oscillator is de-
noted Fij and is proportional to dot product of Q
and the mass flux g [m s−1], Fij(φi, φj) = Q(φi) ·
g(φi, φj). Since the mass flux is driven by concentra-
tion differences between oscillators, we set g(φi, φj) =
µ [cLC(φj)− cLC(φi)], where the dynamic concentrations
are that of an isolated oscillator and the matrix µ is iden-
tical to the one in Eqn. 1. The ability to use the pre-
tabulated concentration dynamics in generating the in-
teraction function is key to the model reduction process.
Importantly, it is an approximation valid in the weak cou-
pling limit; in general, oscillator interactions with modify
the limit cycle of coupled oscillators.

The complete phase dynamics of each oscillator are
then give by the sum of all inter-node interactions
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and the intrinsic frequency ωi such that d
dtφi = ωi +∑

j AijF (φi, φj). For our system, multiple species dif-
fuse across the PDMS barrier. F is therefore the linear
combination of the flux due to Br2, u, and HBrO2, x such
that

F (φi, φj) = k[Qu (φi) (uLC(φj)− uLC(φi))

+keQx (φi) (xLC(φj)− xLC(φi))] (C1)

We can further simplify the dynamics by assuming that
the phase difference φj − φi evolves slowly compared to
the intrinsic frequency, and period-average the interac-
tion. We introduction the interaction function H such
that

Hij(φj−φi) ≡ k−1(2π)−1

∫ 2π

0

F (α, α+φj−φi)dα. (C2)

Typically, the coupling rate k [s−1] is incorporated into
H. Here, we’ve divided by the coupling strength to make
the coupling strength dependence in Eqn. 4 explicit. We
express the interaction function H as the sum of two
terms arising from the form of Eqn. C1. The final ex-
pression is then

H(φj − φi) = Hu(φj − φi) + keHx(φj − φi). (C3)

Appendix D: Metric of Distance

To measure distances between two points in the state-
space of the 3D phase difference dynamics, we found a
surprising function d(θ,θ′) was required. For a given
pair of points θ and θ′ d is calculated by the following
algorithm:

1. Consider two points in the state-space: θ′ =
(θ′21, θ

′
32, θ

′
43) and θ = (θ21, θ32, θ43).

2. Compute phase difference of fourth edge,
which is completely determined by the other
three θ′f = (θ′21, θ

′
32, θ

′
43, θ

′
21 + θ′32 + θ′43) =

(θ′21, θ
′
32, θ

′
43, θ

′
41) and θf = (θ21, θ32, θ43, θ41).

3. Define a vector of phase difference between states
with ∠ being complex, or phasor, angle θdiffj

=
∠ exp(i ∗ (θ′fj − θfj )).

4. Let the distance between θ′ and θ be the Euclidean
norm of the 4D phase difference vector d(θ,θ′) =
|θdiff|2.

Appendix E: Computing Transverse Stability of
Invariant Manifolds

1. Point Invariant Manifolds (Fixed Points)

Traditional linear stability analysis determines the
stability of the point invariant manifolds. A given

point invariant manifold θ†, at which by definition
Ψ(θ†) = 0, is stable when the Jacobian J = ∇θΨ|θ†

has eigenvalues with real part which are all strictly
negative. This 3 × 3 matrix is written explicitly in
Supplementary Material [33] Sec. SIV, Eqn. S2. The
maximum real eigenvalue λ∗ of all steady states of the
model, including the attractors discussed in the paper,
are listed in the Supplementary Material [33] Fig. S6
and S7.

2. Higher Order Invariant Manifolds

The maximum transverse eigenvalue λ∗ of higher-order
invariant manifolds determines whether trajectories will
locally collapse to or diverge from them [67]. λ∗ can
be computed at the phase model level by linearizing the
dynamics Eqn. 4 about the invariant manifolds [8, 16, 61,
67, 68]. The analysis is simplified by the fact that all the
IMs enumerated by the H/K theorem are linear geometric
objects with explicit representations. This simplification
is a consequence of choosing to represent the network’s
dynamics in phase difference space.

We begin by considering whether a trajectory θ′ (t)
perturbed off an invariant manifold with displacement
δθ, will converge back to or diverge from the manifold.
For small displacements, the dynamics can be linearized
around the trajectory that lies on the manifold by letting
θ = θ′+ δθ and expanding the dynamics Ψ (Eqn. 4) for
small δθ:

d

dt
(θ′ + δθ) = Ψ(θ′ + δθ)

≈ Ψ(θ′) + Jδθ + O(δθ2), (E1)

where J = ∇θΨ|θ′ is the Jacobian evaluated along a tra-
jectory on an IM. Since we are only interested in whether
or not perturbations decay or grow, we consider the lead-
ing order dynamics of the perturbation relative the man-
ifold trajectory θ′:

d

dt
δθ = Jδθ (E2)

We now project the perturbation and its dynamics onto
a basis aligned with an invariant manifold using the uni-

tary transformation matrix P = [t1...n1...]
T

, where ti
and ni are, respectively, the set of unit vectors tangent
to and normal to the manifold that form an orthonor-
mal basis. The units vectors in P are defined in terms
of the original basis, e.g. ti = (ti · eθ21 , ti · eθ32 , ti · eθ43).
By defining a new perturbation ξ = P.δθ and multiply-
ing both sides of Eqn. E2 by P , we can transform the
dynamics of perturbations to the following:

d

dt
(P.δθ) = PJδθ =⇒ d

dt
ξ = PJP−1ξ (E3)

The properties of the resulting matrix J ′ = PJP−1 de-
termine manifold stability. Firstly, we are only interested
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in perturbations off of the manifold, δθ ∈ [n1,n2 · · · ].
Perturbations along the manifold cannot produce dynam-
ics that carry trajectories off it because normal dynamics
are always zero by definition everywhere along IMs s.t.
Ψ.ni|θ′ = 0. Secondly, tangent dynamics of ξ that might
result from normal perturbations also do not contribute
to the perturbed trajectories convergence or divergence
from the manifold [67]. We can therefore focus on the
block of J ′ that corresponds to normal dynamics in re-
sponse to normal perturbations. This block will be a
C × C matrix where C is the system dimension minus
the dimension of the manifold. In our case, C =1 or
2 for, respectively, planar and linear IMs; examples are
shown in the Supplementary Material [33] . The maxi-
mum real eigenvalue of this block λ∗ then determines the
linear stability of the manifold.

3. Algorithm

We summarize the process described above as follows:

1. Choose an invariant manifold M , of dimension k,
in an n node network.

2. Determine k orthonormal vectors which span M
and label them the tangent vectors T . Determine
a set N of C = n − 1 − k vectors orthonormal
one another and T . We use the Gramm-Schmitt
procedure.

3. Compute a unitary transformation matrix P , with
the first columns composed of invariant manifold
tangents, then followed by normals.

4. Compute the Jacobian J(θ′) the system dynamics
at points on the invariant manifold θ′.

5. Transform the Jacobian into its tangent and normal
components using P , J ′(θ′) = P.J(θ′).P−1.

6. Extract the block of J ′ that contains the decou-
pled transverse dynamics - the columns and rows
corresponding to normal components.

7. Compute the maximum real eigenvalue of the nor-
mal block λ∗(θ′).

An example outcome of this procedure for
the (Dp

1 , D
p
1) invariant manifold is shown in

Supplementary Material [33] Sec. SIVA. Generic expres-
sions of block of J ′ for all invariant manifolds of a broad
class of 4 ring networks are computed in terms of first
derivatives of H in Supplementary Material [33] Table
SII. A comparison between the stability of manifolds of
a 4-ring network of Kuramoto oscillators to our system
is presented in Supplementary Material [33] Fig. S9.

Appendix F: Numerical continuation to compute
bifurcation diagrams

1. MATCONT was used to compute the loss of stabil-
ity of attractors to heterogeneity [69]. To this end
we setup MATCONT to continue the attractors in
the ∆ω = 0 case in different directions ∆ω = αW -
each parameterized by a single parameter α. MAT-
CONT was set to run until discovering loss of sta-
bility and not further. During this limited analy-
sis we observed Limit (Saddle-Node) and Branch
(Transcritical) points as well as Hopf bifurcations.

2. We found it was essential to pose the problem
carefully otherwise the MATCONT solver was un-
able to continue the problem. Firstly, it was es-
sential we represent the interaction function H as
a chebychev function [66]. This alone required
us to use the script based CL MATCONT (ver-
sion 6.11) instead of the GUI based version. We
also needed to provide a symbolic Jacobian of the
system, with d

dχH(χ) approximated using deriva-

tives of the chebychev represented H. Thirdly, we
needed to provide the Jacobian of the dynamics
Ψ with respect to the parameters W. We use
the options: ’MaxStepSize’, 1× 10−3, ’MinStep-
Size’, 1× 10−8, ’FunTolerance’, 1× 10−9, ’Var-
Tolerance’, 1× 10−11, ’TestTolerance’, 1× 10−11,
’Singularities’, 1, ’Eigenvalues’, 1, ’InitStepSize’,
1× 10−11, ’MaxCorrIters’, 20, ’MaxNewtonIters’,
3, ’SymDerivative’, 2, ’SymDerivativeP’, 1

Appendix G: State classification method

Experimentally observed steady states are associated
with an H/K attractor using heterogeneous phase model
simulations as a guide using the following protocol:

1. Compute the distances between steady states from
simulation and all H/K attractors.

2. Assemble histograms of the distances. Fig. 10
shows the histograms for each H/K attractor.

3. For each histogram, determine a threshold distance
dA at which first peak decays to zero or is a local
minimum.

4. For an experimentally observed steady state, if it
falls within the distance dA of an attractor, assign
it to that attractor. Otherwise, if the steady state’s
location is further than the threshold for all attrac-
tors, assign it to the Other category.
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