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In networks of coupled oscillators, it is of interest to understand how interaction topology affects
synchronization. Many studies have gained key insights into this question by studying the classic
Kuramoto oscillator model on static networks. However, new questions arise when network structure
is time-varying or when the oscillator system is multistable, the latter of which can occur when an
inertial term is added to the Kuramoto model. While the consequences of evolving topology and
multistability on collective behavior have been examined separately, real-world systems such as
gene regulatory networks and the brain may exhibit these properties simultaneously. How does
the rewiring of network connectivity affect synchronization in systems with multistability, where
different paths of network evolution may differentially impact system dynamics? To address this
question, we study the effects of time-evolving network topology on coupled Kuramoto oscillators
with inertia. We show that hysteretic synchronization behavior in networks of coupled inertial
oscillators can be driven by changes in connection topology alone. Moreover, we find that certain
fixed-density rewiring schemes induce significant changes to the level of global synchrony that remain
even after the network returns to its initial configuration, and that these changes are robust to a
wide range of network perturbations. Our findings suggest that the specific progression of network
topology, in addition to its initial or final static structure, can play a considerable role in modulating
the collective behavior of systems evolving on complex networks.

I. INTRODUCTION

Understanding the emergence of collective behaviors
in systems of dynamical units coupled through complex
networks remains an important goal in the study of dy-
namical systems. The synchronization of coupled oscilla-
tors is a key example of such behavior [1], and computa-
tional models have proven effective in gaining insight into
a number of real-world systems where this phenomenon
occurs, including the synchronization of power grids, the
flashing of fireflies, and the dynamics of neuronal net-
works [2–7]. More generally, a number of past studies
have focused on the question of how distinct dynamical
behaviors of coupled oscillators arise from distinct net-
work topologies, assuming that a given topology remains
fixed for a given system [8–10]. Yet, in many systems,
network organization is not static, but rather evolves over
time; social networks, neuronal networks, and biological
regulatory networks are all examples of systems whose in-
teraction topology can change with time [6, 11–14]. The
existence of such time-evolving networks motivates an
investigation of how specific pathways of network evolu-
tion alter the dynamical behaviors of coupled oscillators,
which serve as a useful model of many systems.

To date, studies of interacting oscillators on
temporally-evolving networks have often used the Ku-
ramoto model. This model is an established system
for examining synchronization behavior, widely used for

its simplicity and analytical tractability. For Kuramoto
oscillators in the limit of fast network rewiring, prior
work has shown that switching between different cou-
pling topologies has the same effect as allowing oscilla-
tor dynamics to evolve on a network with weights av-
eraged over the different switching topologies [15]. In
contrast, another study investigated the effects of net-
work connectivity that co-evolves with Kuramoto oscil-
lator dynamics, and showed that an adaptive rewiring
scheme where oscillators re-route links away from their
neighbors with which they are most in-phase can result
in network topologies that enhance synchronization [16].
Other work has demonstrated that networks of phase-
lagged Kuramoto oscillators with a biologically-inspired
Hebbian learning rule gives rise to unique spatiotempo-
ral activity patterns [17]. These studies are illustrative of
the breadth of the field [18–22], which collectively demon-
strates that the dynamics of Kuramoto oscillators depend
appreciably on the type of reconfiguration that the cou-
pling network undergoes.

In the presence of bimodal natural frequency distribu-
tions, phase lags, or frequency-degree correlations, the
Kuramoto model can exhibit a variety of complex be-
haviors, such as hysteretic transitions as a function of
coupling strength [23–26]. However, under standard
conditions, the Kuramoto model does not exhibit path-
dependent dynamics. Specifically, when adiabatically in-
creasing and then decreasing the coupling strength of a
Kuramoto oscillator population, the value of the order
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parameter is typically identical along the forward and
backward transitions. Indeed, for non-negative values of
coupling, systems of Kuramoto oscillators with unimodal
natural frequency distributions are monostable [27], in-
dicating that a particular evolution of network connec-
tivity occurring in conjunction with oscillator dynamics
will not affect levels of synchrony once a coupling pattern
has been fixed. In other words, network history does not
have an effect on the dynamics of standard Kuramoto
oscillators once transient effects are discarded.

In contrast, systems of second-order Kuramoto oscil-
lators are known to be sensitive to history. In particu-
lar, the introduction of an inertial term to the Kuramoto
model has been shown to result in highly multistable
dynamics in certain parameter regimes [28–30]. Unlike
the standard Kuramoto model, adiabatically tuning the
coupling strength of inertial Kuramoto oscillators results
in hysteretic synchronization transitions [31]. Specifi-
cally, slowly increasing and then decreasing the coupling
strength of inertial Kuramoto oscillators creates a hys-
teresis loop in the order parameter, indicating that iner-
tial oscillator dynamics can depend significantly on prior
conditions. Furthermore, it has been analytically proven
that any nonzero amount of inertia can induce these hys-
teresis loops by turning a supercritical bifurcation into
a subcritical bifurcation [32]. These behaviors and the
studies unearthing them collectively suggest that path-
dependent dynamics may arise from time-varying con-
nectivity in networks of inertial Kuramoto oscillators.

Like the standard Kuramoto model, the inertial Ku-
ramoto model has also proven insightful for understand-
ing real-world systems. The inertial Kuramoto model
was first introduced to explain synchronization patterns
in groups of fireflies [30]. It has since been used exten-
sively to study the stability of power grids and the syn-
chronization of Josephson junctions [33]. One interpreta-
tion of the inertial term is that it extends the Kuramoto
model beyond the simplified and completely overdamped
regime, where system dynamics behave analogously to
coupled units oscillating in an extremely viscous medium.
The inclusion of inertia allows for both underdamped and
overdamped dynamics, depending on the value of the in-
ertial constant. In the context of neuroscience, one source
of biological support for the inclusion of an inertial term
in equations for neural dynamics comes in the form of in-
ertia being analogous to inductance [34]. Forms of induc-
tance have been observed experimentally in squid axons,
and the inclusion of inductive effects in models of neurons
has been shown to allow for richer modulation of tempo-
ral dynamics [35, 36]. Other studies have used inertial
phase oscillators as a simplified model for the dynamics
of a neuron with an axon and dendrite [37, 38], finding
that incorporating inertia to model dendritic dynamics
can alter responses to stimulation.

While previous work has considered how variations in
global coupling strength affect the dynamics of coupled
inertial oscillators, here we consider how time-varying
network topology may impact these systems. Given the

sensitivity of the inertial Kuramoto model to history, we
hypothesize that network rewiring alone can induce path-
dependent behaviors. This hypothesis, combined with
the relevance of the inertial Kuramoto model to real-
world systems, prompts us to investigate how specific
network evolution pathways affect the collective behav-
ior of inertial Kuramoto oscillators.

The remainder of the paper is organized as follows.
Section II defines the inertial Kuramoto model on com-
plex networks as studied previously [29, 31]. In Sec-
tion III, we describe the procedures used for all simu-
lations and rewiring processes. In section IV, we exam-
ine how the collective dynamics of inertial oscillators are
affected by different network evolution schemes, and we
analyze the robustness of the effects induced by network
rewiring. We conclude in Section V with a discussion of
our findings as well as of possible areas for further study.

II. THE INERTIAL KURAMOTO MODEL

A system of N inertial Kuramoto oscillators evolves
according to the equation

mθ̈i + θ̇i = ωi + α

N∑
j=1

Aij sin(θj − θi), (1)

where θi represents the instantaneous phase of the ith
oscillator, ωi is the natural frequency of the oscillator,
α is the coupling strength, m is the inertial constant,
and A is an N × N unweighted, undirected adjacency
matrix representing network connectivity [31]. Note that
in the overdamped limit m → 0, the original first-order
Kuramoto model is recovered.

The instantaneous level of global synchrony in a popu-
lation of oscillators is usually quantified by the modulus
of the complex order parameter

R(t) =
1

N

∣∣∣∣∣∣
N∑
j=1

eiθj(t)

∣∣∣∣∣∣ , (2)

which takes on values ranging from 0 to 1, with higher
values indicating higher levels of phase synchronization.
We also introduce the time-averaged order parameter

〈R〉 =
1

T

∫ TR+T

TR

R(t)dt, (3)

where TR represents a discarded transient period, and T
is the length of the interval over which the order param-
eter is averaged.
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FIG. 1: A schematic of the network rewiring process. Initially,
the network connectivity evolves from G0 to Gf through a series of
unweighted and undirected intermediate graphs (dashed arrow). The
network connectivity then returns to G0 through the same series of
intermediate graphs (solid arrow). Throughout this rewiring process,
oscillator dynamics evolve atop the time-varying connectivity.

III. SIMULATIONS AND REWIRING
PROCEDURES

We used N = 100 oscillators in all figures shown in
the main article, but also demonstrate that our main re-
sults hold for other values of N (see Supplementary Fig.
6 [39]). Initial phases {θi(0)} were selected at random

from [−π, π], while initial frequencies {θ̇i(0)} and natu-
ral frequencies {ωi} were both selected at random from a
uniform distribution in the interval [−3, 3]. Unless speci-
fied otherwise, reported measures represent ensemble av-
erages over different graph structures, initial conditions,
and natural frequencies.

To understand how time-varying connectivity affects
networked inertial oscillators, we developed a network
rewiring scheme that allowed us to isolate the effects of
rewiring on network dynamics. Given initial and final
graphs G0 = (V,E0) and Gf = (V,Ef ), we generated
a sequence of intermediate graphs {G0, G1, . . . Gf} that
determined how network topology would vary over time.
Specifically, let Sdel = E0\Ef denote the edges in G0 but
not in Gf , and let Sadd = Ef \E0 be the edges in Gf but
not in G0. We generate the i + 1st intermediate graph
Gi+1 from Gi by randomly removing ≈ |Sdel|/f edges
in Sdel ∩ Ei from Gi, and randomly adding ≈ |Sadd|/f
edges in Sadd ∩ Ei to Gi, where G = (V,E) represents
the complement graph of G.

After generating the sequence of graphs {G0, . . . , Gf},
we carried out a two-step process (Fig. 1). First, we sim-
ulated the time-evolution of inertial oscillator dynamics
as network connectivity evolved from G0 to Gf through
the series of intermediate networks. Then, we contin-
ued the time-evolution of inertial oscillator dynamics as
network connectivity evolved from Gf back towards G0

through the same series of intermediate graphs. For our
simulations, we use f = 50 transition graphs, and the
network rewiring occurs every l = 5 × 104 time-steps at
∆t = 0.02 resolution. We also confirm that our main
results hold when using different timescales of rewiring,
as well as when using a different number of transition
graphs (see Supplementary Figs. 1 and 2 [39]). Time-
averaged values of the order parameter at each network
in the rewiring process are reported after discarding a
transient period of TR = 1

2 (l × ∆t). The length of this
transient period was chosen to be sufficiently long so that

reported order parameter values reflect the dynamics af-
ter any transient effects of the network rewiring have de-
cayed away. In addition, initial and final order param-
eters (i.e., computed on the static network connectivity
present at the onset and conclusion of rewiring) are also
explicitly shown where appropriate.

IV. RESULTS

IV.A. Varying Network Density

We first demonstrate that hysteretic synchronization
behavior occurs while increasing and then decreasing
network density as oscillator dynamics evolve atop the
time-varying network structure. We generate graphs
G0 through Gf by starting with a random Erdős–Rényi
graph with an average degree of 〈k〉 = 10. We next add
edges uniformly at random until a graph Gf with an av-
erage degree of 〈k〉 = 40 is reached. Then, we apply the
rewiring procedure (see Sec. III) to generate the inter-
mediate graphs between G0 and Gf . Starting with G0

we allow the dynamics of the oscillators to run atop the
graph with random initial conditions {θi(0)} and {θ̇i(0)}.
Next, we switch the network topology to G1, a slightly
denser graph, using the final states of the oscillators af-
ter running atop G0 as the initial conditions for G1. This
sequential process is repeated until Gf is reached, and is
then continued in reverse until the network returns to
G0. We hold m and α constant throughout the process.

To determine if the presence of inertia gives rise to
path-dependent behavior, we allow Kuramoto oscillator
dynamics to evolve with and without inertia while we
vary network density in the manner described above. To
compare the two situations, we set the coupling values
for the non-inertial and inertial system such that the ini-
tial level of synchrony is relatively low and comparable
between the two cases. As expected, in the absence of
inertia, we find that oscillator dynamics evolve in a re-
versible manner throughout the G0 → Gf → G0 rewiring
process, suggesting that dynamics are identical for the
same network structures regardless of the network evo-
lution pathway taken to reach those structures (Fig. 2a).
However, this reversibility is not observed in the presence
of inertia (Fig. 2b), where we instead observe asymmetric
trajectories of both phase synchronization and frequency
entrainment as a function of time.

Given the irreversibility of collective dynamics in the
inertial case, we hypothesized that a hysteresis loop of
the time-averaged order parameter should form as the
network density is slowly increased and then decreased
back to its initial value. We indeed observe this phe-
nomena when inertia is present (Fig. 3b), but not for
the standard Kuramoto system (Fig. 3a). Note that this
finding is consistent with prior work reporting hysteretic
behavior in the second-order Kuramoto model while tun-
ing the global coupling strength but holding network con-
nectivity fixed [31]. Indeed, for Erdős–Rényi networks, it
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FIG. 2: Oscillator dynamics when varying network density, with and without inertia. Single-instance examples of all oscillators’
instantaneous frequencies {θ̇i} (top panels) and the global order parameter R(t) (bottom panels) as a function of time as network density is first
increased (〈k〉 = 10→ 40) and then decreased (〈k〉 = 40→ 10) as the dynamics evolve. (a) The process with no inertia (m = 0, α = 0.15). (b)
The process with inertia (m = 2, α = 0.3). Network evolution from G0 to Gf and from Gf back to G0 are colored blue (left half) and red (right

half), respectively. For visual clarity, these examples were produced on a faster rewiring timescale than described in the main text (l = 103).
Parameters have been chosen such that minimum and maximum levels of synchrony are comparable in the two cases.

(a)
1.0~-------------~ 

__....._ 

cc: 
--......- 0.8 

... 
L 
QJ 
-'-' E o.6 
ro 
L 

~ 0.4 
L 
QJ 
E 0.2 
0 

o.o....___,__-----.-------------.---------,---------,-------,-J 
0 10 20 30 40 50 

Graph Index 

(b)

__......,., 

cc: ...._... 
... 

L 
OJ 
"'-' 
OJ 
E 
ro 
L 
ro 
a.. 
L 
OJ 

"'C 
L 

0 

0.8 

0.6 

0.4 

0.2 

◄ 

◄ 

◄ [> 
[> 

◄ [> 
◄ [> 
[> 

0 

◄ 

◄ 

◄ 

[> 

[> 

[> 

[> 
[>[> 

10 20 30 40 50 
Graph Index 

FIG. 3: Inertia causes hysteresis in the order parameter when varying network density. The time-averaged order parameter 〈R〉 as
network density is first increased (〈k〉 = 10→ 40) and then decreased (〈k〉 = 40→ 10). (a) The process with no inertia (m = 0, α = 0.15). (b)
The process with inertia (m = 2, α = 0.3). The coupling strength in panel (a) has been chosen to ensure that the minimum and maximum levels
of synchrony are comparable to those in panel (b). In both panels, the order parameter is plotted against the index of the intermediate graphs
(rather than the average degree) to emphasize that 〈R〉-values lying along the same vertical line were obtained from identical network connectivity
patterns. All curves depict averages over 25 instantiations of initial conditions, natural frequencies, and initial and final connectivity patterns.

is intuitive that increasing and then decreasing network
density should have an effect similar to that of increasing
and then decreasing the coupling strength.

Our observations thus far leave unanswered the ques-
tion of how varying network density in the manner we de-
scribe affects oscillator dynamics when both inertia and
strong network coupling are present. To investigate this
case, we increased the global coupling strength α for both
the inertial and non-inertial system such that the ini-
tial synchrony level would be intermediately-valued and
again approximately the same for the two conditions.
That is, we consider a situation where the oscillators ini-
tially exhibit partially synchronized dynamics. At high
coupling, the order parameter for the model without in-
ertia continues to exhibit reversible behavior as network
density increases and then decreases (Fig. 4a). In con-
trast, evolution from low-density networks towards and
then away from high-density networks creates a signifi-
cant separation between the forward and backward order
parameter curves when inertia is present (Fig. 4). How-
ever, the form of the irreversibility at high coupling is

qualitatively different than that observed with moderate
coupling; specifically, no closed hysteresis loop is formed
in the high coupling scenario (Fig. 3b). Rather, at high
coupling, levels of synchrony remain markedly increased
even after the original, lowest-density network is recov-
ered. The shape of this trajectory suggests that, when
the parameters and initial network connectivity of iner-
tial oscillators allow for partially synchronized dynamics,
network evolution towards and then away from more syn-
chronizable network structures may irreversibly increase
levels of global synchrony.

IV.B. Varying network connectivity at fixed
density

The effects induced by the rewiring processes described
above could be consequences of local changes in network
connectivity as well as broader changes in network den-
sity. To isolate the effects of changing network topology
alone, it is therefore necessary to consider rewiring pro-
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FIG. 4: Varying network density with strong coupling. The time-averaged order parameter 〈R〉 as network density is first increased
(〈k〉 = 10→ 40) and then decreased (〈k〉 = 40→ 10) with strong coupling. (a) The process with no inertia (m = 0, α = 0.35). (b) The process
with inertia (m = 2, α = 0.5). Network evolution occurs to the right of the red line, with initial and final order parameters computed on the
static network connectivity present at the onset and conclusion of rewiring shown to the left. The coupling strength in panel (a) has been chosen
to ensure that the minimum and maximum levels of synchrony are comparable to those in panel (b). All curves depict an average over 25
instantiations of initial conditions, natural frequencies, and initial and final connectivity patterns.

cesses that maintain the network density. This case is
also especially pertinent to real-world network systems
wherein there often exists a cost associated with the
development and maintenance of network connections.
For example, the energy consumed by synapses in mam-
malian brains places metabolic constraints on brain de-
velopment [40, 41].

In considering fixed-density network evolution, a par-
ticularly interesting question is whether there exist
rewiring schemes that also produce significant separa-
tion between the forward and backward order parame-
ter curves. To answer this question, it is useful to con-
sider network evolution pathways toward and away from
topologies that are known to significantly enhance syn-
chrony in the standard Kuramoto model. Along these
lines, prior work has demonstrated that networks of stan-
dard, first-order Kuramoto oscillators with optimal align-
ment between the network Laplacian’s eigenvectors and
the oscillators’ natural frequencies are highly synchroniz-
able [9]. To describe this alignment, let λj and vj rep-
resent the j-th largest eigenvalue and its corresponding
eigenvector of the network Laplacian Lij = δijki − Aij ,
where ki is the degree of node i. Following Ref. [9], in the
strongly synchronized regime, minimizing the synchrony
alignment function

J(ω, L) =
1

N

N∑
j=2

λ−2
j 〈v

j ,ω〉2, (4)

serves to maximize the global order parameter R in the
standard Kuramoto model.

Applying this approach, we generated synchrony-
aligned networks of a given average degree 〈k〉 via a
hill-climbing algorithm with the procedure described in
Ref. [9] (see Supplementary Material [39]). Then, using
Erdős–Rényi graphs forG0 and synchrony-aligned graphs
for Gf , we considered the network evolution pathway de-
fined by G0 → Gf → G0 while maintaining a fixed net-

work density (〈k〉 = 20).

We begin by considering a situation of relatively high
global coupling (Fig. 5). For the standard Kuramoto
model, rewiring towards synchrony-aligned networks in-
creases the order parameter substantially, and as ex-
pected, the synchrony level returns to its initial value
along the same path as the network returns back to the
original Erdős–Rényi graph (Fig. 5a). When inertia is in-
corporated (and the coupling strength adjusted to obtain
a similar level of initial synchrony), we again find that
network evolution towards synchrony-aligned graphs en-
hances the order parameter, and the system nears perfect
synchrony at Gf = G∗ (Fig. 5b). Moreover, in contrast
to the non-inertial case, the transition from Erdős–Rényi
graphs toward and away from synchrony-aligned graphs
creates a significant separation between the forward and
backward order parameter curves. However, this rewiring
does not elicit a closed hysteresis loop. Similar to the case
of varying network density with strong coupling (Fig. 4)
for the second-order Kuramoto model, we find that the
steady-state level of synchrony is maintained at a signif-
icantly higher value even after the system returns to the
original Erdős–Rényi graph.

We next quantify how the steady-state synchronization
gap Rssf −Rss0 changes over a swath of the inertia-coupling

parameter space (0.2 ≤ α ≤ 0.5, 1.0 ≤ m ≤ 2.5).
Here, Rss0 and Rssf represent the initial and final time-
averaged order parameters, respectively, after discard-
ing a long transient period (Fig. 6a). At high coupling
and low inertia, there is little steady-state separation be-
tween the initial steady-state order parameter Rss0 and
the final steady-state order-parameter Rssf . This behav-
ior is expected because oscillators with high coupling and
low inertia reach close-to-perfect synchrony on the ini-
tial Erdős–Rényi connection topology (see Supplemen-
tary Fig. 3 [39]); rewiring towards synchrony-aligned net-
works can therefore only induce a small enhancement of
the order parameter (Fig. 6b). As detailed further in the
following paragraph, low coupling and high inertia also
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FIG. 5: Synchrony gains through network evolution at constant density and intermediate coupling. The time-averaged order
parameter 〈R〉 as the network connectivity of inertial oscillators evolves from an Erdős–Rényi graph towards a synchrony-aligned graph at
constant density (〈k〉 = 20), followed by reversal along the same set of intermediate networks until the original connectivity graph is recovered.
(a) The process with no inertia (m = 0, α = 0.18). (b) The process with inertia (m = 2, α = 0.3). Note that coupling strengths have been chosen
such that minimum and maximum levels of synchrony are comparable in the two cases depicted in panels (a) and (b). All curves depict averages
over 25 instantiations of initial conditions, natural frequencies, and initial and final connectivity patterns.
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result in negligible steady-state separations Rssf − Rss0
(e.g., the parameter combination denoted by the green
triangle in Fig. 6d). In contrast, in the regime of mod-
erate coupling and moderate inertia, the network evolu-
tion process has a clear sustained effect on the system’s
collective dynamics as reflected in the steady-state syn-
chronization gap Rssf −Rss0 .

To dig deeper into the behavior of the system, we next
consider the fact that for some parameter combinations,
the Erdős–Rényi → synchrony-aligned → Erdős–Rényi
network evolution could induce a hysteresis loop but not
a steady-state synchrony gap. To assess this more nu-
anced behavior, we calculated the area between the for-
ward and backward order parameter 〈R〉 curves resulting
from Erdős–Rényi → synchrony-aligned → Erdős–Rényi
network evolution, over the same inertia-coupling param-
eter space (Fig. 6c). For this analysis, the area is defined
such that it is positive when the backward order param-
eter curve is above the forward curve (and we again ig-
nore contributions from initial and final order parameters
computed on static network connectivity present at the
onset and conclusion of rewiring). Interestingly, we ob-
serve a regime at low coupling and high inertia where
no steady-state synchrony gap is produced, but hystere-
sis loops of negative area are formed (Fig. 6d). That
is, the order parameter actually decreases upon rewiring
towards synchrony-aligned networks, and then increases
back to its initial value along the reverse network evolu-
tion pathway.

This type of dynamical trajectory could be a natural
consequence of the fact that the derivation of the syn-
chrony alignment function used to produce synchrony-
aligned networks employs the approximation of the
strong synchrony regime [9]. This fact in turn suggests
that synchrony-aligned networks could be ineffective in
promoting synchronization when synchronizability is al-
ready low as a result of parameter choices. However, it is
also possible that the ineffectiveness of synchrony-aligned
networks (and the emergence of hysteresis loops charac-
terized by negative area) in some parameter regimes is a
consequence of inertia rather than initial synchrony lev-
els alone. Indeed, oscillators coupled through synchrony-
aligned networks exhibit strong sensitivity to initial syn-
chrony levels when inertia is present (see Supplementary
Fig. 5 [39]). To probe this possibility further, we assessed
the Erdős–Rényi → synchrony-aligned → Erdős–Rényi
rewiring process using the standard Kuaramoto model,
with a coupling strength chosen to make initial synchrony
levels comparable to that of the main panel in Fig. 6d.
Consistent with the idea that inertia is responsible for
the ineffectiveness of synchrony-aligned networks in some
parameter regimes, we find that standard Kuramoto os-
cillators with similar levels of initial synchrony still syn-
chronize well when they are rewired towards a synchrony-
aligned topology (Fig. 6d inset).

IV.C. Further Network Perturbation

We next sought to quantify the robustness of increases
in synchronization due to network rewiring. We be-
gan by taking the final, high-synchrony states of iner-
tial oscillators obtained after rewiring towards and away
from synchrony-aligned graphs at intermediate coupling
(Fig. 5b), and using these final states as initial conditions
for a set of new simulations. The initial topologies G0

of these new simulations were the original Erdős–Rényi
graphs used and the parameters remained fixed at m = 2,
α = 0.3. While holding network density constant, we
then rewired oscillator connectivity towards and away
from one of four final network topologies Gf : 1) other
Erdős–Rényi graphs, 2) synchrony-misaligned graphs, 3)
random modular graphs, or 4) frequency modular graphs
(see the Supplementary Material [39] for details on graph
construction). These final network structures were cho-
sen so as to assess the level of topological perturbation
needed to effectively desynchronize systems of inertial os-
cillators in a high-synchrony state induced by a particular
network evolution history.

We hypothesized that further network evolution to-
ward and away from other Erdős–Rényi graphs would
have little effect on global synchrony, and would pre-
serve most of the prior synchrony gains. In contrast,
we expected that networks with modular organization
may effectively erase global synchrony gains resulting
from a specific path of network evolution. In particular,
we conjectured that frequency modular graphs—graphs
created by assigning oscillators with similar natural fre-
quencies to the same module—would be most effective in
perturbing rewiring-induced gains in global synchrony.
Consistent with intuition, we found that rewiring to-
wards other Erdős–Rényi graphs had little-to-no effect
on levels of synchrony (Fig. 7a). In every numerical
experiment, the system remained at the enhanced syn-
chrony level acquired under Erdős–Rényi → synchrony-
aligned → Erdős–Rényi network evolution, with little
deviation throughout both the forward and backward
rewiring trajectories. This finding suggests that gains in
synchrony due to network rewiring through synchrony-
aligned graphs are quite robust to further random net-
work perturbations.

Still, it remains unclear as to which topologies might be
able to desynchronize inertial oscillators with synchrony
gains resulting from a particular network evolution his-
tory. To probe this question further, one natural idea is
to use synchrony-misaligned graphs for the Gf network
structures (blue curves, bottom of Fig. 7a). Such net-
works are constructed by maximizing (rather than min-
imizing) the synchrony alignment function (Eq. 4), and
thus should theoretically be quite difficult to synchro-
nize. We found that rewiring trajectories towards the
synchrony-misaligned graphs induced partial desynchro-
nization of the oscillators. Interestingly, though, we ob-
served clear irreversibility in the order parameter as we
rewired from the synchrony-misaligned graphs back to
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FIG. 7: The robustness of gains in global synchrony from network evolution through synchrony-aligned graphs. We considered the
final states of oscillators from Erdős–Rényi → synchrony-aligned → Erdős–Rényi shown in Fig. 5b. We then used these final states as initial
conditions for a simulation that began at the same Erdős–Rényi G0 connectivity and evolved toward and away from one of four final network
topologies Gf . (a) Results of simulations in which Gf was set to be another Erdős–Rényi graph (orange, top), or in which Gf was set to be a
synchrony-misaligned graph (blue, bottom). (b) Results of simulations in which Gf was set to be a modular graph (orange, top), or in which Gf

was set to be a frequency modular graph (blue, bottom). Parameters m = 2, α = 0.3 were used throughout all simulations for both panels. The
horizontal dashed-line indicates the baseline level of synchrony obtained with G0 connectivity and random initial conditions; that is, the order
parameter prior to any network rewiring. All curves depict averages over 25 instantiations of initial conditions, natural frequencies, and initial
and final connectivity patterns.

the original Erdős–Rényi graphs. Specifically, the system
did not fully return to the baseline synchrony level ob-
tained with random initial conditions (green dotted line
in Fig. 7a).

For our final analysis, we wished to investigate whether
networks that promote local synchrony can effectively
reset gains in global synchrony resulting from network
history. To do so, we considered modular networks,
which have topologies known to favor local synchrony
over global synchrony. Rewiring towards both random
modular and frequency modular Gf graphs greatly re-
duced the global synchrony of the oscillators (see for-
ward trajectories in Fig. 7b). However, only evolution
towards frequency modular graphs gave rise to effects
that remained even after Erdős–Rényi G0 connectivity
was recovered (see backward trajectories in Fig. 7b). This
behavior might occur because, in addition to discourag-
ing global synchronization, frequency modular graphs are
more prone to allowing oscillators to evolve onto the clus-
ter synchronization manifold, resetting much of the his-
tory of global synchrony. Note also that rewiring towards
frequency-modular graphs yields a slightly lower level of
global synchrony than rewiring to modular graphs, which
may also play a role in determining the final level of syn-
chrony after rewiring back to the Erdős–Rényi networks.

In sum, our results indicate that the extent to which
enhanced synchrony is maintained after further network
rewiring depends on more than just how effectively the
Gf topology reduces global synchrony during its pres-
ence. In particular, global synchrony while Gf topology
was present was higher for synchrony-misaligned graphs
than for random modular graphs, but as the system re-
turned to its initial topology along the backward transi-
tion, the synchrony-misaligned pathway ultimately led to
more sustained desynchronization. This pattern of find-
ings suggests that the specific pathway of network evo-

lution can play a key role in modulating the collective
dynamics of coupled oscillators, beyond just the imme-
diate effects that different network structures have on
synchrony.

V. DISCUSSION

In this paper, we investigated how various routes of
network evolution affect systems of coupled oscillators.
Networks of standard Kuramoto oscillators are monos-
table [27]. Therefore, under standard conditions network
rewiring processes do not produce lasting effects on them;
the post-transient global synchrony of the oscillators at
a given time are a function of just the network struc-
ture present at that time. However, it may not be the
case that this path-independent behavior persists in sys-
tems of inherently multistable oscillators. To probe the
question of whether multistability in the dynamics of in-
dividual oscillators gives rise to path-dependent behavior
under network rewiring, we used the inertial Kuramoto
model, which adds an inertial term to the standard Ku-
ramoto model and consequently exhibits sensitivity to
initial conditions [28–30]. Prior work has shown that sys-
tems of inertial oscillators can exhibit hysteretic synchro-
nization transitions as the coupling strength is increased
and then decreased [30, 31]. For networked oscillators,
this tuning of the coupling strength can be regarded as a
global scaling of the strength of connections that leaves
the network topology intact.

However, in many systems, it is the network organiza-
tion itself—i.e., where edges exist or do not exist—that is
dynamic, rather than the overall strength of each connec-
tion [11–13]. In this case, it then becomes interesting to
ask whether networks of inertial oscillators exhibit path-
dependent dynamics induced by changes in network or-
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ganization alone. To answer this question, we developed
a network rewiring procedure that isolates the effects of
network evolution history. Specifically, we evolved the
network connectivity of systems of coupled inertial (and
non-inertial) oscillators towards a pre-specified final net-
work structure, and then we reversed the rewiring process
along the same path. In this way, any path-dependent
synchronization behavior would be reflected as asymme-
tries of the order parameter between the forward and
backward network rewiring trajectories.

We first investigated the effects of slowly increasing
the network density of random graph topology and then
reversing the evolution until the original graph was recov-
ered. For oscillators with moderate inertia and a moder-
ate coupling strength, we found that this density-varying
process could induce a hysteretic synchronization loop,
with oscillators preferring to stay in a more globally syn-
chronized state for more of the backward rewiring process
than the forward rewiring process. This finding is in line
with the aforementioned work showing that hysteretic
transitions occur in networks of inertial Kuramoto os-
cillators upon increasing and then decreasing the global
coupling strength [30, 31]. Indeed, it is natural to ex-
pect that increasing the density of connections in non-
sparse random networks will yield similar effects to that
of globally increasing the strength of connections between
oscillators. Going a step further, we then analyzed the
case of varying network density at high coupling. For
this scenario, we uncovered a qualitatively unique form
of path-dependent behavior in which network rewiring
resulted in irreversible gains in global synchrony.

To isolate the role of network topology alone in driving
path-dependent behaviors, we next studied how inertial
oscillators behave when their network topology is rewired
at constant density. Specifically, we generated networks
known to be highly synchronizable for the standard Ku-
ramoto model, and analyzed the effects of constant-
density rewiring of initially randomly-coupled networks
of inertial oscillators toward and then away from these
synchrony-aligned networks. Notably, we found that
even when density is held constant throughout the net-
work rewiring process, the collective dynamics of coupled
inertial oscillators can depend on network evolution his-
tory. Further, this dependence of oscillator dynamics on
network evolution history depends significantly on the
choice of inertia and coupling strength, and can poten-
tially lead to both positive and negative hysteresis loops.
In addition, we found that gains in synchrony induced by
the constant-density rewiring were robust to a number of
subsequent network perturbations. Of the perturbations
examined, near-complete reversal of the synchrony gains
occurred only in the extreme case of further rewiring to-
wards networks amenable to strong cluster synchroniza-
tion. Collectively, these results demonstrate that varia-
tions in topology alone can drive path-dependent dynam-
ics of inertial oscillators, and that the resulting effects
typically persist upon further alterations to the network
structure.

Opportunities for extensions and expansions. Our
results prompt a number of interesting directions for fur-
ther investigation, particularly related to the nature of
the rewiring process and expansions to other models.

First, we studied the effects of rewiring an initial net-
work topology towards a final network topology, where
the necessary edges to be moved were rewired in a ran-
dom order. A future study could consider whether the
order in which edges are rewired plays a significant role
in the development of path-dependent behavior. Prior
work has shown that enforcing certain relationships be-
tween pairwise differences in the natural frequencies of
oscillators and their coupling patterns may promote more
complex oscillator dynamics, such as explosive synchro-
nization [42, 43]. Therefore, it is possible that first plac-
ing edges between oscillators with the least similar natu-
ral frequencies may affect how synchronization develops
during rewiring processes. Moreover, while the rewiring
process we used was convenient for illustrating potential
path-dependent behavior, it was controlled in the sense
that only the edges that ultimately needed to be moved
were rewired, and each relevant edge was only altered
once. It would be interesting to see how inertial oscilla-
tors behave when the rewiring process occurs in a more
organic manner, such as by allowing for all edges to be
added and pruned repeatedly.

Another possible area for future study is to consider
how path-dependence arises in systems of inertial oscilla-
tors adhering to an adaptive rewiring scheme, where the
states of the oscillators themselves inform the network
rewiring process [16, 21, 44, 45]. For example, investi-
gating systems of inertial oscillators under Hebbian or
anti-Hebbian adaptive rewiring [46, 47] may be useful for
understanding the development of neuronal networks. It
is also well known that the human brain undergoes a va-
riety of structural changes during development [48–50],
not only in synaptic density but also in topological char-
acteristics such as degree heterogeneity, clustering, and
modularity [51, 52]. Such changes complicate any infer-
ences drawn from the existing levels of synchronization,
which may be both a function of the current network
topology and a function of the network’s developmental
history.

Finally, it is worth noting that other variants of the
Kuramoto model can also exhibit multistability, such
as the Kuramoto-Sakaguchi model with time-delayed
coupling [23–26]. It would thus also be interesting to
investigate the interplay between multistability arising
from these alternative means and the network evolution
of oscillator connectivity.

Conclusion. Discerning the effects of dynamic network
organization on the collective behavior of coupled dy-
namical elements remains an important area of study,
with implications for a number of physical and biological
systems [3–5, 11–13, 44]. To understand whether oscilla-
tors coupled through time-varying networks can be signif-
icantly affected by the history of the coupling network –
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or if only the final network structures obtained from the
network evolution process are relevant – we have stud-
ied the impact of various network rewiring pathways on
systems of inertial Kuramoto oscillators. While previous
works have studied hysteretic effects arising from tuning
the global coupling strength, we demonstrate through-
out this study that path-dependent synchronization be-
haviors can arise solely due to evolution of network con-
nectivity at fixed density and fixed coupling strength.
Collectively, our findings demonstrate that beyond the
overdamped limit, specific network evolution trajectories
can themselves play an important role in regulating the
behavior of networks of coupled subunits, and require
consideration when studying the dynamics of systems

evolving over complex networks.
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