
This is the accepted manuscript made available via CHORUS. The article has been
published as:

What is entropy? A perspective from games of chance
Sarah Brandsen, Isabelle Jianing Geng, and Gilad Gour

Phys. Rev. E 105, 024117 — Published 11 February 2022
DOI: 10.1103/PhysRevE.105.024117

https://dx.doi.org/10.1103/PhysRevE.105.024117


What is Entropy?
A new perspective from games of chance

Sarah Brandsen,1, 2, ∗ Isabelle Jianing Geng,2 and Gilad Gour2

1Department of Physics, Duke University, Durham, NC, USA 27708
2Department of Mathematics and Statistics, Institute for Quantum

Science and Technology, University of Calgary, AB, Canada T2N 1N4

The crucial role of channels in physics and information theory motivates the task of characterizing
the entropy, or uncertainty, of a channel. Games of chance become a natural candidate for this task,
as a system’s performance in a gambling game depends solely on the uncertainty of its output. In
this work, we construct families of games which induce pre-orders corresponding to majorization,
conditional majorization, and channel majorization. Finally, we provide operational interpretations
for all pre-orders, show the relevance of these results to dynamical resource theories, and find the
only asymptotically continuous classical channel entropy.

I. INTRODUCTION

Entropy plays a central role in many areas of physics
and science including statistical mechanics, thermody-
namics, information theory, black hole physics, cosmol-
ogy, chemistry, and even economics [1–3]. Consequently,
there are multiple approaches to understanding entropy:
in thermodynamics it can be understood as a measure
of energy dispersal at a given temperature, whereas in
information theory entropy is a compression rate. Other
properties related to entropy such as disorder, chaos, ran-
domness of a system, and the arrow of time [4], have also
been studied extensively in literature. Despite the many
different definitions of entropy, one unifying theme is the
idea of uncertainty.

The diverse roles of entropy would benefit from a more
systematic and unifying approach, in which entropy is
defined rigorously and in a way that is independent of
the physical context. In this work, we introduce games
of chance as a means of characterizing the uncertainty
of a physical system. Games of chance are ideal can-
didates for studying uncertainty, as the performance in
such games depends solely on the certainty about the
outcome of the game such that “more uncertain” systems
will have a lower expected reward. Thus, for any phys-
ical object such as a system, measurement, or channel,
we define its degree of uncertainty in terms of the prob-
ability of winning a game of chance. Since we construct
a family of games, uncertainty cannot be quantified with
one function that is induced by a single game, but rather
is characterized with a partial order where system A is
said to be “less uncertain” than system B if system A
performs at least as well as system B for all games of
chance. Equivalently, we state that A majorizes B.

We then apply our framework to the task of character-
izing the entropy of a channel. The classical channel is a
fundamental concept in classical information theory, as
classical states (which can be viewed as a probability dis-
tribution), random relabelings, and stochastic evolutions
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can all be viewed as a certain type of classical channels.
Likewise, quantum states, unitary evolutions, quantum
measurements, state preparations and marginalization
over any subsystem of a larger quantum system can be
regarded as special cases of quantum channels [5]. Over
the past few years, several works have aimed to charac-
terise and order channels based on their performance for
certain tasks [6–11]. The seminal work by John Kelly [12]
in 1956 developed the Kelly criterion which yields the op-
timal protocol for a player to maximize the growth rate
of their gambling profit via N uses of a communication
channel in the limit as N →∞.

The idea of using majorization to study entropy could
be found in [13], while the notion of conditional majoriza-
tion was first introduced in [14], and extended in [15].
However, channel majorization had not been considered
in previous literature, nor had a unifying operational in-
terpretation across different types of majorization. In
our work, we construct gambling games that give rise
to three types of partial orders: majorization, condi-
tional majorization, and channel majorization.The first
two partial orders characterize the degree of uncertainty
and conditional uncertainty in (possibly composite) phys-
ical systems, while the last characterizes the uncertainty
associated with a channel. Critically, we provide opera-
tional interpretations for each type of majorization and
demonstrate that the definition of conditional majoriza-
tion coincides with the definition provided in [15].

Our main result is demonstrating that there exists a
unique channel entropy which reduces to the Shannon
entropy on states. The definition of classical entropy
based on different sets of axioms has been well stud-
ied [16–18], and the Shannon entropy is the most well
known measure of the uncertainty of a given probability
distribution [19]. The Shannon entropy allows for a rein-
terpretation of the thermodynamic entropy as consistent
with information-theoretic entropy [20]. Additionally the
Shannon entropy is the unique entropy with the desirable
property of asymptotic continuity such that the differ-
ence between the entropy of two states approaches zero
as the distance between the two states approaches zero.
Thus, we would expect that any reasonable entropy of
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a channel would be equivalent to the Shannon entropy
whenever the channel is a classical state. Some ground-
breaking works which characterize properties of channels
are thus excluded from providing reasonable measures of
entropy, as there is no possibility of this reduction to
states. For example, Kelly’s work characterizes channels
based on the probability of predicting the channel input
given the output state, and as such offers no possibility
for reduction to the Shannon entropy on states (in fact,
no way to order classical states at all.)

We find the unique asymptotically continuous classical
channel entropy function which reduces to Shannon en-
tropy on classical states. Based on these results, one key
application is to investigate whether a unique asymp-
totically continuous channel entropy also exists in the
quantum case. Additionally, we provide a first opera-
tional interpretation to the complete family of dynami-
cal monotones introduced in [21]. Finally, we expect our
framework to have a broad applicability given the key
role of uncertainty and entropy in multiple fields. One
key extension of our work is determining the entropy of
a quantum channel.

Notation We denote classical channels by calligraphic
letters P, Q, etc and use capital text letters to denote
the corresponding transition probability matrices as P =
{py|x} where py|x := Pr(Y = y

∣∣X = x). The set of all
classical channel that takes inputs from a m-dimensional
system and produces outputs in am n-dimensional sys-
tem is the set of all n × m column stochastic matrices
and we denote this set as Stoch(m,n).

We likewise use capital text letters to denote joint
probability distributions. For example, P = {pyx},
Q = {qy′x′}, T = {ty′′x′′}, where {pyx} is the joint distri-
bution for X and Y such that pyx := Pr(Y = y,X = x)
and similarly for {qy′x′} and {ty′′x′′}.

II. DICE GAMES AND MAJORIZATION

Gambling games are games in which a player is pro-
vided with partial information and use statistical infer-
ence to take their best guess in the face of incomplete
information. We first consider a gambling game in which
the host rolls a biased dice, and the player has to guess
its outcome. Denote by p = (p1, ..., pn)T the probability
vector corresponding to the n possible outcomes, and de-

note by p↓ = (p↓1, ..., p
↓
n)T the vector obtained from p by

rearranging its components in non-increasing order.

A w-gambling game occurs when the player is allowed
to provide a set with w outcomes as guesses prior to
rolling the dice. The player then wins if the outcome from
the dice roll belongs to the set of guesses. For example,
if w = 2, then the player will choose to provide numbers
{1, 2} (as these have the highest probability of occurring),

and will win the game with probability p↓1+p↓2. In general,
the maximum probability of winning a w-game with dice
p can be denoted as:

Probw(p) = ‖p‖(w) :=

w∑
x=1

p↓x (1)

where ‖ · ‖(w) denotes the Ky-Fan norm. For simplicity,
in the remainder of the paper we will assume that p is or-
dered with components arranged in non-decreasing order
such p = p↓ unless stated otherwise.

Suppose that at the beginning of each game, the player
is allowed to choose between two dice with corresponding
probabilities p and q. Clearly, the player will choose the
dice which gives better odds of winning the game, and so
will choose the p-dice if ‖p‖(w) > ‖q‖(w). In general, the
player’s choice will depend on the value of w- for example,
if p = ( 1

2 ,
1
2 , 0) and q = ( 2

3 ,
1
6 ,

1
6 ) then the player will

choose q when w = 1 and p when w = 2.
We now consider a more general game where w itself is

no longer predetermined, but rather is drawn from some
distribution {tw}mw=0. If the player knows the distribu-
tion from which the w-gambling game is determined, then
the probability that the player wins such a w-game is
given by

Probt(p) =

m∑
w=1

tw‖p‖(w) :=

m∑
x=1

m∑
w=x

twpx , (2)

In general, we allow t0 > 0, such that there is a non-zero
probability that the player loses the game irrespective of
the dice outcome. We likewise set p↓x := 0 if x > n.

Finally, we say that p majorizes q and write q - p if
and only if

Probt(q) 6 Probt(p) . (3)

for all (possibly incomplete) distributions {tw}. This can
be interpreted as stating that q - p if the player will
always choose the p-dice over the q-dice for any gambling
game.

III. CONDITIONAL MAJORIZATION: GAMES
WITH A CORRELATED SOURCE

Here we consider a game in which the host rolls a dice
with two outcomes x and y. The host sends the value
of x to the player, and the value y is kept hidden from
the player. The player knows the distribution {pxy} from
which x and y are sampled, and the player’s goal is to
guess the value of y. Our goal is to construct all possible
gambling games that incorporate a correlated source, so
we allow the player to choose a value z and then have
the host select w from a conditional distribution T with
conditional probability matrix T := {tw|z} after receiving
the value z from the player. We denote the player’s choice
of z with a function z = f(x). In general, the player will
choose z based on their knowledge of x, as well as the
fixed distributions {pxy} and {tw|z}. In Fig. 1 we depict
such a T -gambling game.
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FIG. 1: A classical gambling game with a correlated source.

The player is provided with the value x. Based on this

value, the player chooses z (or the function f) and sends it

to the host. The host then chooses the w game based on a

(possibly incomplete) distribution matrix T= (tw|z). The

player’s optimal choice is then to guess {1, ..., w} such that

the player will win the game if y 6 w.

Let P = (pxy) be the m × n probability matrix, and
w.l.o.g. suppose P = P ↓ such that

px1 > px2 > · · · > pxn ∀ x = 1, ...,m. (4)

For a given x and z, the probability to win the game can
be expressed as rz · px, where {px} are the rows of P
and rz := Utz, where {tz} are the columns of the ` × q

matrix T= (tw|z) and where U =

(
1 1 ... 1
0 1 ... 1
. . ... .
0 0 .... 1

)
is an upper

triangular matrix. Therefore, the optimal probability to
win a T -game is given by

ProbT (P ) =

m∑
x=1

max
z

rz · px . (5)

We are now ready to compare between two dice, a P -
dice and a Q-dice, and call this comparison conditional
majorization.

Definition 1. Let P = (pxy) be an m × n probability
matrix, and Q = (qx′y′) be an m′×n′ probability matrix.
We say that P conditionally majorizes Q and write

Q -c P if and only if ProbT (Q) 6 ProbT (P ) (6)

for all classical channels T with corresponding (column)
stochastic transition matrices T.

Theorem 1. Let P and Q be two m×n joint probability
matrices. Then,

Q -c P ⇐⇒ Q =
∑
z

SzPVz (7)

where each Sz is a sub-stochastic matrix such that
∑

z Sz

is a column stochastic matrix (i.e. a classical channel),
and each Vz is a permutation matrix.

Remark 1. This theorem states that conditional ma-
jorization is equivalent to a relation induced by a con-
ditional random relabeling map; see Fig 2.

Proof. The proof is contained in appendix A [29].

FIG. 2: The action of conditional random relabeling map

on a correlated source P = (pxy) yields the correlated source

Q = (qx′y′) =
∑

z SzPVz. When channel S takes an input
x, there is a probability of sx′z|x to output a pair (x′, z),

where sx′z|x is the matrix component of Sz.

IV. CHANNEL MAJORIZATION: GAMES
WITH A CLASSICAL CHANNEL

We now identify the class of gambling games corre-
sponding to the uncertainty of a channel. Roughly speak-
ing, our aim is to identify games in which the player has
a lower probability of winning the game with a noisier
channel. We will consider a classical channel P with
transition probability matrix P = (py|x) ∈ Stoch(m,n)
which takes inputs x ∈ {1, ...,m} and gives outputs
y ∈ {1, ..., n}. The goal of the game is for the player
to correctly guess the value y at the output of the chan-
nel.

In the most general settings, the host does not provide
the player the full information about w at the early stage
of the game. Instead, the player receives a number z
that is sampled from a joint distribution {twz} with w =
1, ...,m and z = 1, ..., `. Denote by {tz} the columns of
T . Then Pr(Z = z) = |tz|, where | · | is the 1-norm, and
one can write the conditional probability for w given z
as tw|z = twz

|tz| for all w, z.

The player knows the m × ` joint probability matrix
T = (twz). While T in the previous section represented
a classical channel which takes z as an input and outputs
w, here T represents a correlated bipartite source which
generates w and z. Based on this partial information
about which w-game will be played later on, the player
will choose the optimal value of x to send through the
channel. Finally, the host draws the value of w and the
player wins if y 6 w.

Such a T -gambling game with channel P is then de-
picted in Fig. 3.

Let P↓ be the ordered transition matrix of the chan-
nel P, in which the columns of P are arranged in non-
increasing order. For a given choice of x and z the prob-
ability that the player wins the game is given by

m∑
w=1

tw|z

w∑
y=1

py|x =

m∑
y=1

m∑
w=y

tw|zpy|x :=
rz · px

|tz|
(8)
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FIG. 3: A classical gambling game with a channel. The

host provides the player with a value z that is drawn from

T = (twz), then the player chooses channel input x = f(z).

The host selects w, and the player is allowed w guesses.

Given that the player’s optimal choice is to always guess the

first w numbers with the highest corresponding probabilities,

the player wins if y 6 w.

where rz := Utz and {px} are the columns of the transi-
tion matrix P; and in particular, each px is a probability
vector. The player will choose x (i.e. f(z)) such that
rz ·px = maxx′ rz ·px′ . Thus, the optimal probability to
win a T -gambling game with a classical channel P can
be written as

ProbT (P) =
∑̀
z=1

max
x

rz · px (9)

Note that the above quantity is the dual of (5) in the
sense that the maximum is over x instead of z. Unlike (5),
here px is a probability vector for each x.

Definition 2. Let Q and P be two classical channels.
We say that the channel P majorizes Q and write

Q - P if and only if ProbT (Q) 6 ProbT (P) (10)

for all (possibly incomplete) probability matrices T .

We now provide the following characterization of chan-
nel majorization, which demonstrates that Q - P if and
only if Q can be simulated using P, an arbitrary pre-
processing channel, and random isometry post-processing
channels which may in general be correlated with the in-
put to the pre-processing channel.

Theorem 2. Let Q = (qy|x) ∈ Stoch(m,n) and P =
(py′|x′) ∈ Stoch(m′, n′) correspond to two classical chan-
nels Q and P. Then, Q - P if and only if there
exists a preprocessing channel with transition matrices
S = {sx′w′|x}|x′,w′,x ∈ Stoch(m,m′×`) , and postprocess-
ing channels with transition matrices {Vw′}|w′ described
by permutation matrices in Stoch(n′, n), such that

Q =
∑
w′

Vw′PSw′ (11)

where Sw′ = {sx′w′|x}|x′,x for all w′ (see Fig. 4).

Proof. See appendix B of the supplementary material for
the complete proof. We note here that the proof addi-
tionally provides the first operational interpretation of
the dynamical monotones introduced in [21].

FIG. 4: The simulation of Q with P in the case that Q - P.

We now provide a lemma showing that it is sufficient
to consider only games with a fixed value of z.

Lemma 1. The pre-order induced by the set of classical
gambling games is unchanged if we restrict to the set of
gambling games such that T = p where p is a vector
probability distribution. Equivalently, Q - P if and only
if Probp(Q) 6 Probp(P) for all p.

Proof. See appendix C of the supplementary material for
the complete proof.

Equipped with the above pre-order, we now provide an
operational definition of the family of entropy functions
which take the channel’s transition probability matrix as
an input.

Definition 3. (cf. [6, 22]) A non-zero function,

H :
⋃

m,n∈N+

Stoch(m,n)→ R

where the union is over all finite m × n stochastic prob-
ability matrices, is a channel entropy if it satisfies the
following two conditions:

1. It is monotonic under channel majorization; i.e.
given classical channels Q and P with correspond-
ing transition matrices Q and P, then

H(Q) > H(P) if Q - P

2. It is additive under tensor products; i.e.

H(P⊗Q) = H(P) + H(Q)

for all finite stochastic matrices P and Q.

Remark 2. In appendix D, we demonstrate that games of
chance provide an operational motivation for the defini-
tion of entropy for classical channels previously outlined
in [6, 22].

Finally, we prove that there is only one channel entropy
function that reduces to the Shannon entropy on classi-
cal states. Suppose that P is a classical state preparation
channel which takes a trivial system as an input and pre-
pares one of n possible outputs according to distribution
p. A channel entropy function H is said to reduce to to
the Shannon entropy on states if and only if for all state
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preparation channels with transition probability matrix
P = p:

H(P) = HS(p)

where HS is the Shannon entropy.

Theorem 3. Suppose that H is a channel entropy as
given by Definition 3 and that H reduces to the Shannon
entropy on states. Then for any channel P with transi-
tion probability matrix P = {py|x}|x,y ,

H(P) = min
x

HS(px).

where px = {py|x}|y are the column vectors of P.

Proof. See appendix E of the supplementary material for
the complete proof.

Remark 3. It follows from [23] that H(P) is asymp-
totically continuous (see appendix E of supplementary
material for details).

V. CONCLUSIONS

In this work, we introduce a new method for charac-
terizing uncertainty via payoff functions from games of
chance. From this, we introduce families of games of
chance which give rise to three different partial orders:
majorization, conditional majorization, and channel ma-
jorization. We provide an operational interpretation for

each ordering. Finally, we find the only asymptotically
continuous channel entropy.

One natural extension of this work is to characterise
the uncertainty of quantum channels. Unlike the classical
case, we expect the ordering induced by quantum gam-
bling games to also take into account resources such as
entanglement. An open question is whether there also ex-
ists a unique asymptotically continuous channel entropy
in the quantum case. Finally, previous works on ma-
jorization have led to a variety of applications such as
finding the capacity of bosonic Gaussian channels, com-
puting quantum discord, characterizing allowed thermo-
dynamic transformations, and developing entanglement
detection protocols [24–28]. Likewise, previous entropy
definitions such as the Shannon entropy have had wide-
reaching applications in thermodynamics and data com-
pression [16, 17]. Thus, given the central role of channels
in multiple areas of physics and our results for character-
izing channel entropy via majorization, we expect broad
potential applications in thermodynamics and informa-
tion theory.
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