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Phonon spectra of a two-dimensional (2D) solid dusty plasma modulated by 2D square and tri-
angular periodic substrates are investigated using Langevin dynamical simulations. The commen-
surability ratio, i.e., the ratio of the number of particles to the number of potential well minima, is
set to 1 or 2. The resulting phonon spectra show that propagation of waves is always suppressed
due to the confinement of particles by the applied 2D periodic substrates. For a commensurability
ratio of 1, the spectra indicate that all particles mainly oscillate at one specific frequency, corre-
sponding to the harmonic oscillation frequency of one single particle inside one potential well. At
a commensurability ratio of 2, the substrate allows two particles to sit inside the bottom of each
potential well, and the resulting longitudinal and transverse spectra exhibit four branches in total.
We find that the two moderate branches come from the harmonic oscillations of one single particle
and two combined particles in the potential well. The other two branches correspond to the relative
motion of the two-body structure in each potential well in the radial and azimuthal directions. The
difference in the spectra between the square and triangular substrates is attributed to the anisotropy
of the substrates and the resulting alignment directions of the two-body structure in each potential

well.

PACS numbers:
I. INTRODUCTION

Dynamical behaviors of collective particles modulated
by substrates are of great interest and have been widely
studied in various two-dimensional (2D) systems, such as
colloidal monolayers [1], vortices in type-II superconduc-
tors [2], electron crystals on a liquid helium surface [3],
pattern-forming systems [4, 5], and dusty plasmas [6].
When a substrate is applied to these systems, a variety
of new physical phenomena can be generated, such as pin-
ning and depinning dynamics [7], Shapiro steps [8], phase
transitions [9], and anomalous transport [10]. These ex-
ternal substrates include one-dimensional (1D) periodic
substrates [11], 2D periodic substrates [12], quasiperiodic
substrates [13], quasicrystalline substrates [14], and ran-
dom substrates [15]. More interesting phenomena are
currently being explored in a range of various systems
for these substrates.

A dusty plasma [16-22], also called a complex plasma,
is a mixture of free electrons, ions, neutral gas atoms
and micron-sized dust particles. Under typical labora-
tory conditions, by absorbing free electrons and ions in
plasmas, micron-sized dust particles gain a high negative
charge of ~ 10~*¢ in the steady state within microsec-
onds. Due to their high negative charge, these dust parti-

cles are strongly coupled, and can be self-organized into a
single layer [23, 24], i.e., the 2D dusty plasma, exhibiting
typical solid-like [25, 26] or liquid-like [27, 28] properties.
The interparticle interaction between these dust particles
can be described as a Yukawa repulsion [29], where the
shielding effect comes from the free electrons and ions.
As a promising physical model system permitting the di-
rect imaging of individual dust particles, various funda-
mental physical processes of solids and liquids, such as
diffusion [30, 31], shear viscosity [32], and phase transi-
tions [25] have been studied widely at the kinetic level in
dusty plasmas.

Phonon spectra are often calculated in the investi-
gations of dusty plasmas using the velocities and posi-
tions of dust particles from either experimental observa-
tions [33-37] or computer simulations [38, 39]. These
spectra provide the energy distribution of phonons in
k —w space, corresponding to the dispersion relation [33]
of the studied system. In dusty plasmas, the phonon
spectra can be derived directly from the thermal mo-
tion of the dust particles [33], in good agreement with
the theoretical dispersion relations [40]. In addition to
the 2D dusty plasmas [33-37], phonon spectra have also
been studied for a 1D chain [41] and a ring [42] of dusty
plasmas.



Recently, 1D periodic substrates have been introduced
in dusty plasmas to modulate the collective behaviors
of dust particles in Langevin dynamical simulations. In
Ref. [43], as the 1D periodic substrate depth increases
gradually from zero, it is found that the 2D dusty plasma
exhibits structural transitions from a disordered liquid
state to a modulated ordered state, and finally to a mod-
ulated disordered state. As the width of the 1D peri-
odic substrate is gradually varied, the particle diffusion
exhibits an oscillation-like feature [44]. When a grad-
ually increasing external driving force is applied to the
2D dusty plasma on the 1D periodic substrate, three dif-
ferent states, i.e., pinned, disordered plastic flow, and
moving ordered states, appear [45]. The properties of
the transition between these states are determined by
the depth of the 1D periodic substrate [6]. In addition,
the phonon spectra of a 2D dusty plasma modulated by a
1D periodic substrate are studied in [46], where breathing
spectra and the backward propagation of sloshing spectra
are observed. However, the collective dynamics of a 2D
dusty plasma modulated by 2D periodic substrates, and
the corresponding phonon spectra, have not been studied
previously.

Another system of particles interacting with 2D pe-
riodic substrates that has been studied extensively is
charged colloids coupled to optical or patterned square
or triangular arrays, where various commensuration ef-
fects appear when the number of particles is an inte-
ger multiple of the number of substrate minima [47-56].
One of the goals in studying these systems is to cre-
ate structures with phononic band gap properties, simi-
lar to photonic band gaps, in which certain mechanical
waves cannot propagate through the system while others
can [57, 58]. In colloidal assemblies, investigations have
considered how a periodic substrate could be used to cre-
ate such phononic band gaps [59]; however, the phononic
modes in most colloidal systems are strongly damped,
giving only a very limited range of propagation [60]. In
contrast, the reduced damping in dusty plasmas can pro-
duce much stronger phononic modes, so understanding
how a periodic substrate could create phononic band gaps
in dusty plasmas could also provide insight into how such
phononic band gaps would appear in other systems. Ex-
amples of underdamped systems include charged colloidal
particles suspended in air rather than in a solution and
interacting with an array of optical traps [61], ions in
periodic atom traps [62], or even a Wigner crystal in a
monolayer system [63]. Our work indicates that a 2D pe-
riodic substrate can create phononic band gaps, and our
results could be general to a wide range of underdamped
systems coupled to a 2D periodic substrate.

This paper is organized as follows. In Sec. II, we briefly
describe our Langevin simulation method to mimic solid
2D dusty plasmas under 2D periodic square and triangu-
lar substrates. In Sec. ITI, we present the phonon spectra
of the 2D dusty plasma on different types of 2D periodic

substrates. We find that the phonon spectra of the 2D
solid dusty plasma changes to branches with nearly un-
modified frequency values, suggesting that all particles
are mainly confined by the substrate. The frequencies
of these branches agree well with our derivation of the
oscillation modes of dust particles within potential wells
of the 2D substrates. Finally, we summarize our findings
in Sec. IV.

II. SIMULATION METHOD

Traditionally, dusty plasma can be characterized by
two dimensionless parameters [64, 65], the coupling pa-
rameter I' = Q?/(4mepakpT) and the screening param-
eter kK = a/Ap. Here @ is the charge of one parti-
cle, T is the averaged kinetic temperature of the par-
ticles, a = (7n)~'/? is the Wigner-Seitz radius [66]
with the 2D areal number n, and A\p is Debye screening
length. The Wigner-Seitz radius a, and the lattice con-
stant b, i.e., the average distance between nearest neigh-
bors (b = (27)*/2a/3%/* ~ 1.9046a for the 2D triangular
lattice), are both used to normalize the length.

We use Langevin dynamical simulations to investigate
the dynamics of a 2D dusty plasma on 2D periodic sub-
strates. In our simulations, for each particle 7, the equa-
tion of motion [46] is

The first term on the right-hand side of Eq. (1
comes from the binary Yukawa repulsion [41], ¢;; =
Q? exp(—ri;/Ap)/4meori;j, where 7;; is the distance be-
tween two dust particles ¢ and j. The second and third
terms correspond to the frictional drag —vmi; and the
Langevin random kicks &;(t) [67, 68], respectively. The
last term is the force from the applied 2D substrate, as
we explain in detail later.

Our simulation parameters are listed below. We simu-
late N, = 1024 particles, confined in a 61.1a x 52.9a rect-
angular box with periodic boundary conditions. The con-
ditions of the 2D dusty plasma are specified as I' = 1000
and k = 2, corresponding to the typical solid state of 2D
Yukawa systems [69]. The frictional drag coefficient is
specified as v/wpq = 0.027, close to the typical experi-
mental value [23], where wyq = (Q?/2megma®)'/? is the
nominal dusty plasma frequency [66]. For each simula-
tion run, we integrate > 107 steps with the time step
of 0.0030.);(11 to obtain the positions and velocities of all
particles.

We investigate the effects on the dynamics of 2D dusty
plasmas of two types of substrates, square and triangular,
as shown in Fig. 1. The square substrate [47] has the form

U(x,y) = Uglcos(2mx/w) + cos(2my/w)], (2)

where Uy and w correspond to the depth and width of
the potential wells, in units of Ey = Q?/4meob and b,
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FIG. 1: Contour plot of the applied potential for the square
(a) and triangular (b) substrates in our simulations. Here,
only ~ 1.8% of the total simulation box is shown.

respectively. The triangular substrate [70] is given by
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where Uy and w are related to the depth of the poten-
tial wells and the distance between them. From these
substrate definitions, we can easily derive the forces F?
acting on the dust particle ¢ as
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from the triangular substrate, respectively.

In our simulations, we choose the commensurability ra-
tio p defined as p = N, /N, to be either 1 or 2. Here, N,
is the total number of particles while N, is the number of
potential well minima. Since we simulate 1024 particles,
we need to arrange either 1024 or 512 potential wells in
our simulation box. For the square substrate, the sub-
strate parameter w is specified as ~ 0.93b and =~ 1.32b,
corresponding to p = 1 and 2, respectively. For the tri-
angular substrate, the substrate parameter w is specified
as b and 1.39b, corresponding to p = 1 and 2, respec-
tively. We specify the other parameter of the substrate
as Uy = 0.5Fy and Ey, respectively. We note that since
our simulation box is designed to match the length ratio
of the triangular lattice and not that of the square lat-
tice, the parameter w in the = and y directions of Eq. (2)
varies slightly, ~ 1%, for the square substrate in order to

satisfy the periodic boundary conditions, while the tri-
angular substrate does not have this problem.

To obtain the phonon spectra, we use the Fourier trans-
forms of the longitudinal and transverse current correla-
tion function. The current autocorrelation functions are
defined as [71, 72]

L

CL(k, t) = N
P

(k-jk )][k-j(=k,0)]),  (6)
for the longitudinal mode, and

Crlie 1) = 51 (e x §e. )] Bk x §(-k,0)) - (7)

p

for the transverse mode. Here, k is the wave vector, and
jk,t) = Zj\f:pl v;(t) exp[ik - r;(t)] is the current function
for a given wave vector k, where v;(t) and r;(t) are the
velocity and position of the jth particle, respectively. Fi-
nally, the phonon spectra can be obtained by the Fourier
transform of these current autocorrelation functions (6)

and (7), defined as
C~1L,T(k,(«d) = / e_i"’tC'L,T(k, t)dt. (8)
0

Here, Cp(k,w) and Cp(k,w) are the longitudinal and
transverse wave spectra, respectively. Due to the
anisotropy which appears in the 2D Yukawa solids when
they are modified by the 2D substrate, we need to an-
alyze the phonon spectra in different directions. Here,
we focus on the phonon spectra of Cr,(k,,w), Cr(ky, w),
C’L(ky,w), and C’T(ky,w), corresponding to the longitu-
dinal and transverse spectra with wave vector along the
x and y directions, respectively. Note, besides the simu-
lations described above, we also perform a few test runs
with longer time durations and the larger system con-
taining 4096 particles, combined with the corresponding
number of potential wells, to make sure that the obtained
phonon spectra reported here are nearly unchanged.

III. RESULTS AND DISCUSSIONS

A. Particle arrangement under substrates

In Fig. 2, we present snapshots of particle positions
from our simulations showing the arrangement of parti-
cles under the square and triangular substrates. For the
square substrate, when the commensurability ratio p = 1
in Fig. 2(a), all particles are pinned at the bottom of
potential wells, forming an ordered square arrangement.
When the commensurability ratio p = 2 in Fig. 2(b),
most potential wells contain two particles. At the bottom
of each potential well, the two particles repel each other
due to their Yukawa repulsion, forming a typical two-
body structure similar to the colloidal molecular crystals
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FIG. 2: Snapshots of the particle positions from our simu-
lations on the square (a, b) and triangular (c, d) substrates
of the same depth, with commensurability ratio p values of
either 1 or 2. Here, p is defined as p = Np/Ny, the ratio of
the number of particles N, to the number of potential wells
N,,. For each panel, the inset in the lower left corner corre-
sponds to the calculated 2D distribution function g(z,y) of
the particles.

or vortex molecular crystals found for colloidal particles
[47-52] or superconducting vortices on 2D periodic sub-
strate arrays [73, 74]. Interestingly, in Fig. 2(b), within
each potential well, the two particles are mostly aligned
in two directions, parallel to either the x or the y direc-
tions, corresponding to the two axes of the square sub-
strate. The inset of each panel presents the correspond-
ing 2D distribution function [75] g(z,y), which provides
the probability density of finding a particle at the rela-
tive position (x,y) from one chosen particle. From our
calculated g(z,y) in Figs. 2(a) and 2(b), we find that,
under the square substrate, the structure along the =z
direction is nearly the same as that along the y direc-
tion, so that the phonon spectra of Cr (k,,w) should be
nearly the same as those for C r(ky,w), and similarly for
Cr(ky,w) and Cr(ky,w), as we will verify later. We note
that a few potential wells contain either three or one par-
ticles, probably due to an energy fluctuation, as shown
in Fig. 2(b).

Under the triangular substrate, the arrangement of
particles is completely different from that found for the
square substrate. When the commensurability ratio
p = 1in Fig. 2(c), the particles are pinned at the bottom
of the potential well, forming a triangular lattice with
hexagonal symmetry matching the triangular substrate.
When the commensurability ratio p = 2 in Fig. 2(d),

most of the potential wells contain two particles forming
a two-body structure, similar to Fig. 2(b). The alignment
direction of the pairs of particles in each potential well
in Fig. 2(b) is either roughly parallel, 60°, or 120° with
respect to the = direction, corresponding to the princi-
pal axes of the triangular substrate. We note that under
thermal motion, these particle pairs in the triangular sub-
strate are more likely to rotate, unlike the particle pairs
on the square substrate described above. From g(z,y) in
Figs. 2(c) and 2(d), we find the anisotropy of the static
structure on the triangular substrate, which is distinct
from those in Figs. 2(a) and 2(b). As a result, the corre-
sponding longitudinal spectra C,(k,w) (transverse spec-
tra Cr(k,w)) along the = direction should be completely
different from those along the y direction. Similar to
Fig. 2(b), there are also a few potential wells containing
either three or only one particle in Fig. 2(d).

B. Wave spectra under a square substrate

0. 002

Cr(kx,0)

0.002

FIG. 3: Calculated longitudinal Cr,(k.,w) (a), Cr(ky,w) (c),
and transverse Cr(kz,w) (b), Cr(ky,w) (d) phonon spectra
for our simulated 2D Yukawa solid without any substrates.
The difference between these two transverse spectra arises
from the anisotropy of the triangular structure of the 2D
Yukawa solid, as does the longitudinal spectra difference. The
conditions of our simulated 2D Yukawa solid are I' = 1000,
K = 2.0, and v = 0.027wpq. Note, the color scale on the
right side corresponds to the magnitude of the calculated
Cr.r(k,w) with the dimensionless unit, similar to those in
Figs. 4, 5, and 7 presented later.

To better quantify the substrate effect, we first cal-
culate the phonon spectra of a 2D Yukawa solid with
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FIG. 4: Calculated longitudinal Cr,(ks,w) (a, c) and trans-
verse spectra Cr(ky,w) (b, d) of the 2D Yukawa solid, un-
der the periodic square substrate with different depths of
Uo = 0.5Ep in (a, b) and Up = Ep in (c, d), with a com-
mensurability ratio of p = 1. Clearly, for each condition,
both the longitudinal and transverse spectra mainly con-
centrate around one specific frequency, suggesting that the
wave propagation is suppressed due to the confinement from
the substrate. As the depth of the substrate increases from
Up = 0.5F to Ey, the frequency of the wave spectra is en-
hanced. The two frequency values in these four panels agree
well with the harmonic oscillation frequencies estimated from
one single particle inside a potential wells with Uy = 0.5F)
and Fy.

the same values of I' and x without any substrates, as
presented in Fig. 3. For both the longitudinal spec-
tra Cp(k,,w) in Fig. 3(a) and the transverse spectra
Cr(ky,w) in Fig. 3(b), the slope around the smaller
wavenumbers indicates the longitudinal and transverse
wave propagation speeds. The longitudinal spectra
of Cr(ky,w) in Fig. 3(c) are similar to Cp(k,,w) in
Fig. 3(a), for almost the full range of the wavenum-
ber. The transverse spectra of Cr(k,,w) in Fig. 3(d)
are similar to C7(k,,w) in Fig. 3(b) only in the lower
wavenumbers. However, when the wavenumber is higher,
Cr(k,,w) in Fig. 3(d) are quite different from Cr(k,,w)
in Fig. 3(b) due to the anisotropy of the highly ordered
triangular lattice at lower temperatures.

In Fig. 4, we present our calculated phonon spectra
of the 2D Yukawa solid under square substrates with
Uy = 0.5Fy and Ey, respectively, for a commensurabil-
ity ratio of p = 1. In Fig. 4, the nearly unchanged fre-
quency for all wavenumbers in the longitudinal and trans-
verse spectra for each Uy shows that the propagation of

FIG. 5: Calculated longitudinal Cr,(ks,w) (a, ¢) and trans-
verse phonon spectra Cr(ky,w) (b, d) of the 2D Yukawa
solid, under periodic square substrates with Uy = 0.5Fp in
(a, b) and Uy = Ep in (c, d), for a commensurability ratio
of p = 2. Clearly, both the longitudinal and transverse spec-
tra mainly concentrate around three frequencies, due to the
motion modes of the two particles within each potential well.
For the substrate depth Uy = 0.5E0, both the longitudinal (a)
and transverse spectra (b) have two equal frequency values,
agreeing well with the oscillation frequencies of one single par-
ticle and two combined particles within the potential well of
Uo = 0.5E). In addition, the highest frequency of the longi-
tudinal spectra (a) and the lowest frequency of the transverse
spectra (b) are consistent with the oscillation frequencies of
the relative motion of a two-body structure inside the poten-
tial well, in the radial and azimuthal directions, respectively.
As the depth of the substrate increases to Ey, the frequencies
of the wave spectra in (c, d) also agree with the estimated
frequencies from Uy = Fp.

both longitudinal and transverse waves are strongly sup-
pressed, indicating that the corresponding group velocity
is nearly zero, i.e., all particles only oscillate locally with
this frequency. When the substrate depth increases from
0.5Fy to Ey, the wave propagation is further suppressed,
as shown in Fig. 4, similar to [76] . In addition, we verify
that the phonon spectra of C’L(km, w) (C’T (ks,w)) are al-
most exactly the same as those of Cy, (k,,w) (Cr(k,,w)).

For each substrate depth, the frequencies of the longi-
tudinal Cp, (k;,w) and transverse spectra Cr (ky,w) are
almost the same, since they correspond to the motion
of particles in the x and y directions. As the substrate
depth increases from Uy = 0.5E) to Ey, this frequency is
greatly enhanced from ~ 1.29w,q in Figs. 4(a) and 4(b)
to &~ 1.79wpq in Figs. 4(c) and 4(d). In fact, these two fre-
quencies can be derived from the harmonic oscillation of



a single particle within the bottom of the square potential
well of Eq. (2) with depth values of 0.5Fy and FEy, respec-
tively. Since the particles only vibrate around the bot-
tom of potential well, we can linearize the force from the
square potential well of Eq. (4) to yield the spring con-
stant of ks = 472Uy /w?, where the subscript s refers to
the square potential well. Thus, the oscillation frequency
of a single particle is just w1 = \/ks/m = /4n2Uy /mw?.
Substituting the depth Uy and width w of the potential
well into this oscillation frequency equation, we derive
the oscillation frequency of 1.28w,q and 1.82wyq for the
substrate depth of 0.5F, and Ej, respectively. Clearly,
these two derived frequency values of 1.28w,q and 1.82wpq
agree well with the phonon spectra frequencies in Fig. 4.
We note that the slight difference between the derived
frequencies and those shown in Fig. 4 may come from
the interparticle interaction, which is not included in the
derivation of the single particle harmonic oscillation.

In Fig. 5, we present our calculated phonon spec-
tra of the 2D Yukawa solid under the same substrate
of depths Uy = 0.5Fy and E; for a commensurability
ratio p = 2. Compared with the spectra for p = 1
in Fig. 4, all spectra in each panel of Fig. 5 contain
three branches, corresponding to three different modes
of the particle motion, probably due to the two-body
structure within each potential well. The frequency of
each branch is nearly unchanged while the wavenumber
varies, suggesting that the corresponding wave propaga-
tion is also strongly suppressed as in Fig. 4. Interest-
ingly, for the same substrate depth Uy, the frequencies of
two branches in Cy,(k,,w) and Cr(k,,w) are the same,
such as 0.91w,q and 0.62w,q in Figs. 5(a, b), as well as
1.25wpq and 1.00wpq in Figs. 5(c, d). We think these
two branches correspond to the harmonic oscillation mo-
tion of one single particle and two combined particles
within the bottom of the potential well. Note that the
oscillation of the two combined particles within the po-
tential well is similar to the sloshing mode [46]. The
oscillation frequencies of a single particle and two com-
bined particles are w; = \/ks/m = \/47T2U0/mw2 and
wo = \/ks/2m = /272Uy /mw?, respectively. Thus, un-
der the substrate depth of Uy = 0.5F), the derived fre-
quencies are 0.91wy,q and 0.64wy,q, respectively. Similarly,
the substrate depth of Ej results in the two frequencies
of 1.28wpq and 0.91w,q, respectively. Clearly, for each of
these two substrate depths, the two derived frequencies
agree well with the frequencies in the spectra of Fig. 5.

Besides the two branches studied above, there is one
more branch in each panel of Fig. 5. Since the two
branches described above correspond to the harmonic os-
cillation of a single particle and two combined particles
together, the left branch should correspond to the rel-
ative motion of the two particles in each potential well,
similar to a breathing mode [46]. In their relative motion,
these two particles always move along or perpendicular
to the vector connecting the particles, i.e., in the radial

or the azimuthal directions. Thus, the highest branch of
Cr(ks,w) in Fig. 5(a) with w = 1.62w,q and the lowest
branch of Cr(k,,w) in Fig. 5(b) with w = 0.42w,4 should
correspond to the relative motion of the two particles in
each potential well for the conditions of Uy = 0.5Fy and
p = 2 in the radial and azimuthal directions, respectively.
When the substrate depth increases to Uy = Ejy, these
two frequencies are changed to 2.24w,q and 0.50w,q as
shown in Figs. 5(c) and 5(d), respectively.

We can directly derive these frequencies from the rela-
tive motion of the two-body structure inside the potential
well in the radial and azimuthal directions, as shown in
the schematic of Fig. 6. Since these two particles mainly
oscillate with small amplitudes around the nearly fixed
equilibrium positions, we follow the 1D chain model [77]
to linearize the interparticle Yukawa repulsive force to
obtain the radial and azimuthal spring constants of &,
and k, as

Q?(L?k% + 2Lk + 2)
4dmegL3a3elr ’

ky = 9)

B Q*(Lk+1)

“ 7 dregL3adels’ (10)

where La is the distance between these two particles in-
side the potential well when they are in their equilibrium
positions. By incorporating the motion of the particles
inside the potential well into their relative motion, using
Egs. (9) and (10), we obtain the corresponding oscillation
frequencies as

ks n ky
2m  m/2

27T2U0
= 3 +
muw

Wy =

(11)

Q?(L%k? + 2Lk + 2)

2megmL3adeln
for the radial direction, and
ks kq
Wy =] — —
m  m/2
(12)
42U Q*(Lk+1)
T\ maw? 2megmL3a3eln

for the azimuthal direction of the two-body structure
in the potential well. In the radial direction, the fre-
quency w, comes from the restoring force of two com-
bined particles from the substrate \/ks/2m, coupled with
the oscillation from their interparticle repulsion of their
reduced mass \/k,/(m/2), since the relative motion of
the two particles is in opposite directions. However,
in the azimuthal direction, the relative motion refers to
the particle motion perpendicular to the radial direction,
i.e., the single particle motion behavior, corresponding



to /ks/m, coupled with the repulsion of their reduced
mass \/kq/(m/2). Furthermore, the pure repulsion be-
tween particles further increases the force in the radial
direction, while decreasing the force in the azimuthal di-
rection, as in Egs. (11) and (12) shown above.

We find that Egs. (11) and (12) correspond to the
highest frequency in the longitudinal spectra and the
lowest frequency of the transverse spectra. Substitut-
ing the substrate depth Uy = 0.5F into Egs. (11) and
(12), we obtain the derived frequencies of the relative
motion as 1.55wpq and 0.43w,q for the relative motion
of the two-body structure in the potential well in the
radial and azimuthal directions, which are very close to
the two frequencies of 1.62wpq and 0.42wpq in Figs. 5(a)
and 5(b). When the substrate depth increases to Ey,
we obtain these two frequencies as 2.20wpq and 0.51wpq,
respectively. These two frequencies are also very close
to 2.24w,q and 0.50w,q observed in Figs. 5(a) and 5(b),
respectively. Thus, our derived results above agree well
with the spectra frequencies in Fig. 5.

Note that, for our system, the alignment direction of
two particles in either the x or y direction inside the
potential well greatly simplifies the spectra results in
Fig. 5. Two particles aligned in the y direction as shown
in Fig. 6(b) mainly oscillate around their equilibrium
positions, so their x coordinates are nearly the same.
From Egs. (6) and (7), their relative motion has almost
no contribution in the current autocorrelation functions
Cr(ks,t) and Cr(ks,t). Thus, only the motion of the
pairs of two particles aligned in the x direction provide
substantial contributions to the longitudinal C7 (k,,w)
and transverse spectra Cr(k,,w), as shown in Fig. 6(a).

C. Wave spectra under a triangular substrate

We next study the effect of a triangular substrate on
the phonon spectra of the 2D Yukawa solid. Figure 7
presents the phonon spectra of the 2D Yukawa solid un-
der the triangular substrate with a depth of Uy = Ej at
a commensurability ratio of p = 1. Clearly, for all four
spectra in Fig. 7, the nearly zero slope indicates that
the group velocity is nearly zero, i.e., the wave propa-
gation is strongly suppressed. Although the current 2D
Yukawa solid is strongly anisotropic in the = and y di-
rections as shown in Fig. 2(c), the calculated longitudi-
nal spectra Cr,(k,,w) in Fig. 7(a) are nearly the same
as O (ky,w) in Fig. 7(c) for almost the entire range of
wavenumbers. However, only for small wavenumbers, the
transverse spectra Cp(k,, w) in Fig. 7(b) are the same as
Cr(k,,w) in Fig. 7(d). In the higher wavenumber range,
the transverse phonon spectra are slightly different, i.e.,
the frequency of éT(kw,w) increases slightly with the
wavenumber, while the frequency of éT(ky, w) does not,
due to the anisotropy of our system, as shown in Fig. 2(c).

Interestingly, we find that all four spectra in Fig. 7

TN

FIG. 6: Schematic of of the two-particle arrangement un-
der the square substrate. The alignment of the two parti-
cles within one potential well is in either the z (a) or y (b)
directions, i.e., parallel to one of the two axes of the square
substrate. Each particle oscillates in the radial and azimuthal
directions, as v, and v, presented here. In the radial direc-
tion, the force F, acting on each particle is the summation
of the interparticle repulsion and the restoring force from the
substrate. In the azimuthal direction, the restoring force from
the substrate is partially canceled out by the interparticle re-
pulsion, due to the purely repulsive force between particles,
shown here as F,,. Note, to present the forces and velocities
clearly, the distance between the two particles is magnified in
this schematic.

have only one frequency, which is ~ 1.12w,q, suggest-
ing that all particles mainly oscillate in both directions
with this frequency inside the potential well. This fre-
quency can also be derived from the harmonic oscillation
motion of a single particle within the triangular poten-
tial well of Eq. (3). We can linearize the force from the
triangular potential well, Eq. (5), to obtain the corre-
sponding spring constant of k; = 1672Uy/9w?, where the
subscript ¢ refers to the triangular potential well. Thus,
we obtain the oscillation frequency of a single particle
as w1 = /ky/m = /16m2Uy/9mw?. Substituting the
depth Uy and width w of the potential well, we derive
the oscillation frequency of 1.13wy,q for the depth of Ey,
in good agreement with the phonon spectra frequency in
Fig. 7.

In Fig. 8, we present the phonon spectra of the 2D
Yukawa solid under the triangular substrate with the
same substrate depth FEy, where the commensurability
ratio is changed to p = 2. Clearly, the longitudinal
and transverse phonon spectra in Fig. 8 contain four
branches, similar to the spectra in Fig. 5. The frequency
of each branch is almost unchanged while the wavenum-
ber varies, also indicating that the corresponding wave
propagation is strongly suppressed in Fig. 8. In the four
panels of Fig. 8, the frequency values of the four branches
are almost the same, which are 1.45wpq, 0.79wpq, 0.58wpq
and 0.17wpg, respectively. Similar to Fig. 5, the two mod-
erate frequencies in Fig. 8 probably come from the oscil-
lation of one single particle and two combined particles
inside the potential well of the triangular substrate. Us-
ing the spring constant of the triangular substrate with
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FIG. 7: Calculated longitudinal Cr(k.,w) (a), Cr(ky,w) (c)
and transverse phonon spectra Cr(kz,w) (b), Cr(ky,w) (d)
of the 2D Yukawa solid under the periodic triangular sub-
strate with Up = Fp at a commensurability ratio of p = 1.
Clearly, all four spectra are mainly concentrated on a specific
frequency value, in good agreement with the oscillation fre-
quency estimated from one single particle within the potential
well. The slight difference between the x and y directions, es-
pecially at higher wavenumber values, is mainly due to the
anisotropy of the triangular substrate, similar to the hexago-
nal lattice arrangement of 2D solids.

the depth of Uy = Ey obtained above, the oscillation
frequencies of a single particle and two combined par-
ticles are w; = \/kt/m = \/16772U0/9mw2 = 0.81wpq
and wy = \/kt/2m = \/8772U0/9mw2 = 0.57wpq, respec-
tively. Clearly, these two derived frequency values agree
well with the two moderate phonon spectra frequencies in
Fig. 8. Note that the oscillation of the two combined par-
ticles inside one potential well corresponds to the sloshing
mode [46].

Besides the two moderate frequency values above, the
highest and lowest frequencies in Fig. 8 probably come
from the relative motion of the two-body structure in the
triangular potential well, in the radial and azimuthal di-
rections, respectively. Due to the alignment of the two
particles in each triangular potential well along =~ 60° or
120° with respect to the x direction, their relative motion
makes contributions to both the longitudinal and trans-
verse spectra. After incorporating the derived spring con-
stants k, and k, of the relative motion in the radial and
azimuthal direction from the interparticle Yukawa repul-
sion, Egs. (9) and (10), into the triangular potential well,

(b) & (kx,0) 0.0015

0
0.0015

FIG. 8: Calculated longitudinal Cr(ks,w) (a), Cr(ky,w) (c)
and transverse phonon spectra Cr(kz,w) (b), Cr(ky,w) (d)
of the 2D Yukawa solid under the periodic triangular sub-
strate of Uy = Fop, with a commensurability ratio of p = 2.
Clearly, all four spectra are mainly concentrated on the same
four frequencies due to the two-body structure formed by two
dust particles in each potential well. The two moderate fre-
quencies agree well with the oscillation frequencies estimated
from one single particle and two combined particles within
the potential well. The highest and lowest frequencies are in
good agreement with the oscillation frequencies of the relative
motion of the two-body structure in the potential well, in the
radial and azimuthal directions, respectively.

we can derive the oscillation frequencies as

ky n ky
Wy = [ T
2m - m/2

(13)
872Uy n Q?*(L?k% + 2Lk +2)
—\ 9maw? 2megmL3adeln
for the radial direction, and
o=yt Fa
“\Um m/2
(14)

 J16mU,  Q(Le+1)
) 9maw? 2megmL3adelr

for the azimuthal direction of the two-body structure
in the potential well. Clearly, in Eqs. (13) and (14),
the coupling with the relative motion of the two-body
structure from the interparticle repulsion of their reduced
mass is exactly the same as y/k,/(m/2) in Eq. (11) and
Vka/(m/2) in Eq. (12). Substituting the depth Uy = Ey




into Egs. (13) and (14), we obtain the oscillation fre-
quencies of 1.51w,q and 0.18wyq for the relative motion
of the two-body structure in the potential well, in the ra-
dial and azimuthal directions, respectively. Clearly, these
two derived frequencies agree well with the phonon spec-
tra frequencies shown in Fig. 8. Note that the spectra
with the higher frequency of 1.51wpq corresponds to the
breathing mode [46].

IV. SUMMARY

We investigate the phonon spectra of a 2D solid dusty
plasma modified by 2D square and triangular periodic
substrates using Langevin dynamical simulations. We
find that the wave propagation is strongly suppressed
due to the confinement of the particles by the applied 2D
substrates. When the commensurability ratio is p = 1,
i,e, only one particle inside each potential well, the spec-
tra mainly concentrate on one specific frequency for all
studied wavenumbers, agreeing well with our derived har-
monic frequency of one single particle oscillation inside
one potential well. When the commensurability ratio
is p = 2, corresponding to two particles on average
within each potential well, the longitudinal and trans-
verse spectra split into four branches in total, where the
frequency value for each branch is nearly unchanged for
all wavenumbers. The two moderate frequencies can be
derived from the harmonic oscillation frequency values
of one single particle and two combined particles inside
the potential well, respectively. The frequencies of the
other two branches can be derived from the relative mo-
tion of the two-body structure inside one potential well,
in the radial and azimuthal directions, respectively. The
force amplitude from the potential well and the interpar-
ticle Yukawa repulsion both determine these frequency
values. The difference between the spectra results modi-
fied by the square and triangular substrates comes from
the anisotropy of substrates and the resulting alignment
directions of the two-body structure inside the poten-
tial wells. There are several future directions to exam-
ine, including the ordering and band gaps that appear at
high fillings such as three or four particles per trap, frac-
tional fillings, and examining other substrate symmetries
or even a quasiperiodic substrate to determine how the
band gaps change. In fact, there have already been sev-
eral works examining colloidal ordering on quasiperiodic
substrates, for example in Ref. [78].
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