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We experimentally and computationally study the flow of a quasi-two-dimensional emulsion
through a constricting hopper shape. Our area fractions are above jamming such that the droplets
are always in contact with one another and are in many cases highly deformed. At the lowest flow
rates, the droplets often clog and thus exit the hopper via intermittent avalanches. At the highest
flow rates, the droplets exit continuously. The transition between these two types of behaviors is
a fairly smooth function of the mean strain rate. The avalanches are characterized by a power law
distribution of the time interval between droplets exiting the hopper, with long intervals between
the avalanches. Our computational studies reproduce the experimental observations by adding a
flexible compliance to the system (in other words, a finite stiffness of the sample chamber). The
compliance results in continuous flow at high flow rates, and allows the system to clog at low flow
rates leading to avalanches. The computational results suggest that the interplay of the flow rate
and compliance controls the presence or absence of the avalanches.

I. INTRODUCTION

Many slowly strained materials exhibit intermittent
flow behavior: long still periods punctuated by rapid
avalanches where material flows [1–5]. Examples include
diverse phenomena such as earthquakes [6, 7], general
deformations of solids [8], stick-slip friction due to gran-
ular layers [9–11], Barkhausen noise in magnetic mate-
rials [12], and sheep herded through constrictions [13].
For athermal soft materials, avalanches are seen in slow
flows of materials such as emulsions [1], bubble rafts [14],
foams [4, 15–18], and granular materials [19–25]. These
soft materials typically have amorphous structure, neces-
sitating that flow and rearrangements are disordered on
a microscopic scale. The slow flow speed is a key feature:
for example, a rotating drum experiment with sand in-
side demonstrated avalanches at low rotation rates and
smooth flow at high rotation rates [26]. For granular
materials, static friction can prevent the material from
flowing and can lead to avalanches. In systems composed
of fluids such as foams and emulsions, stresses are sup-
ported not by static friction but rather surface tension,
which resists the deformation of the bubbles or droplets.
Hopper flow is a useful case study for these types of

flowing particulate materials. In this geometry (Fig. 1),
the material starts in a wide channel but then exits the
chamber through a narrow orifice. This is of industrial
interest for storage of granular materials [27, 28] and has
been long studied scientifically. For example, an early
paper in 1929 examined hopper flow of various granular
materials and observed that flow halted when the exit
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FIG. 1 Schema of our sample chamber (left) and raw image
of the emulsion flowing in the +x-direction (right). The
hopper angle θ = 54◦ ± 5◦.

orifice diameter was less than about 4 particle diameters
[29], which has been observed many times since [30–33].
Subsequent work found that for small exit orifices, the
flow rate fluctuates as small arches form and break near
the exit [34, 35]. For larger exit orifices, the flow rate is
smooth and generally a simple function of the orifice size
and various material parameters [28, 30, 31].

In this manuscript, we present experimental and com-
putational studies of hopper flow of emulsion samples.
Our experimental emulsions are oil droplets in water and
are compressed between two parallel glass plates so that
the droplets are deformed into pancake-like disks. The
area fractions are all above jamming [15]. Our exit ori-
fices are all small (∼ 4 droplet diameters across). We
drive the flow with a pump, and given that our droplets
are deformable, they cannot permanently clog at the exit.
We see a range of flow behaviors. At the slowest flow
rates, the flow pauses for long periods of time broken
up by large avalanches of rearrangements. At higher
flow rates droplets exit continuously. Intriguingly, the
transition between the two flow behaviors occurs fairly
smoothly as the flow rate is increased, and at moderate
flow rates we see an intermediate type of flow behav-
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ior. The non-constant flow seen in the experiment is in
contrast with the constant flux driving condition at the
pump, indicating that the system has compliance: rather
than being infinitely rigid, the system expands under
pressure. Our computational studies address this using
the “Durian bubble model” [4, 36], modified to mimic
our experiment and with the effects of an added com-
pliance. The simulations show the same results as the
experiment: at lowest driving, the simulated compliance
results in clogging and avalanches; for larger driving, we
see a smooth transition to continuous flux. Our results
highlight the interesting influence of compliance on the
behavior of these flowing soft particles.

II. METHODS

A. Experimental samples and sample chambers

Our emulsions are mineral oil droplets in water using
Fairy detergent (mass fraction 0.025) as a surfactant to
prevent coalescence of the droplets [37, 38]. The droplets
are produced using a standard co-flow micro-fluidic tech-
nique [39]. The radius polydispersity of our droplets is
1% (standard deviation divided by mean). To prevent
droplets from organizing into crystalline arrays, for each
experiment we make a bidisperse emulsion by mixing to-
gether two separate batches of monodisperse droplets at a
volume ratio of about 1:1. While each individual batch of
monodisperse droplets has a low polydispersity, there is
some variability between batches. The mean diameter of
the large droplets is 270±50 µm and of the small droplets
is 200± 40 µm, and the diameter ratios of the bidisperse
mixtures we form are in the range dL/dS = 1.5± 0.2.
In our experiment, we confine droplets between two 25

mm × 75 mm glass slides. The slides are separated by
pieces of 100 µm transparency film sealed with epoxy.
These pieces of film act as spacers and thus create a gap
between the slides. This gap ranges from 115 to 140
µm in different experiments. This range is mainly due
to the different amount of epoxy applied when making
each chamber. Nonetheless, within a given sample cham-
ber, this gap is constant with uncertainty 1.8% within
any given sample chamber so the slides are parallel (the
corresponding maximum angle between two slides is less
than 1◦). Sample chambers for which this was not true
were discarded. While the gap thickness varies from ex-
periment to experiment, our prior work found that the
thickness was unimportant as far as the contact forces
droplets exert on one another when they contact [37]. In
all cases, the diameters of the oil droplets are chosen to
be larger than the gap of the sample chamber. Thus,
the droplets are squeezed between the two glass slides to
achieve a quasi-2D system.
The left panel in Fig. 1 shows the schema of the cham-

ber. The pieces of film are cut to form a symmetric hop-
per channel with angle θ = 54 ± 5◦ (see Fig. 1) and
opening width 0.7− 1 mm. The sample chamber is tilted

at an angle 5 ± 1◦ relative to the horizontal, to use the
buoyant force of the droplets to balance the viscous fric-
tion between droplets and glass slides at intermediate
flow rates. The buoyant force is due to the density differ-
ence between water and mineral oil (ρwater = 1.00 g/cm3,
ρoil = 0.83 g/cm3). First we load the emulsion into the
sample chamber, and then behind the emulsion we add
pure mineral oil. A syringe pump injects additional min-
eral oil into the chamber at constant flux rate to push
the emulsion through the chamber and thus funnel the
droplets through the hopper exit. The syringe pump is
connected to the chamber via Teflon tubing.
We use a microscope with a 1.6× objective lens to

image the system, focusing on the chamber midplane
where the 2D droplet images are clearest. A CCD cam-
era records the images in the region close to (0.5-2 mm
away from) the hopper opening. Depending on the mean
speed of the flow in a given experiment, the camera frame
rate is between 0.2 and 2 images/second. This is suffi-
cient to track the trajectory of each individual droplet
using standard software [40], even at the maximum ve-
locity 0.06〈D〉/s, where 〈D〉 is the mean diameter of the
droplets. The right panel in Fig. 1 shows a typical raw
image, in which we record hundreds of droplets within
the field of view. Typically, we have 100-200 droplets in
the field of view. In the 45 experiments, an average of
425 droplets are seen to exit during an experiment, al-
though the exact amount varies from ∼ 100 to ∼ 1000.

B. Experimental control parameters

One of our main control parameters is the area frac-
tion φ occupied by oil droplets, as measured from our
image analysis. φ is somewhat controllable by what we
put into the sample chamber: ahead of time, we prepare
bulk emulsion samples at different 3D volume fractions.
All our reported φ in this paper are the measured val-
ues from the image analysis. From the post-processed
images, we observe that φ has only minimal fluctuations
during an experiment, with a relative standard deviation
no more than 0.5%. These fluctuations are primarily due
to the finite field of view, with φ changing when droplets
flow in and out. In flowing suspensions of solid particles
there can be a self-filtration effect [41], but we see no ev-
idence of this (which would be signaled by a monotonic
increase of φ). Additionally, we look for water flow rel-
ative to the emulsion droplets [42, 43] by adding tracer
particles to the water for a few cases. In every case, the
water flows at the same rate as the oil droplets. For ex-
ample, in some situations, the oil droplets cease flowing
for a period of time, and during those times the water is
also seen to cease flowing. There is an additional possible
systematic uncertainty for φ as the apparent size of each
droplet depends on the illumination settings of the mi-
croscope. We keep these settings constant between each
experiment.
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The other main control parameter for our experiments
is the flux rate F . We take a total of 45 data sets with
0.83 ≤ φ ≤ 0.99 and 0.0001 ≤ F ≤ 0.02 ml/hr. For
each experiment, F is set by a syringe pump and thus
is constant at the pump. However, the observed flow
velocity fluctuates. This is likely due to some compliance
in the sample chamber, allowing sample to flow in slightly
without having to flow out, and building up pressure until
it is released by droplets flowing out. Therefore, rather
than using F to parameterize the experiments, we instead
use the observed flux rate rexpt, measured by the total
number of droplets that exit the sample chamber divided
by the total observation time.

C. Computational methods

As noted above, while the pump provides a constant
flux rate F , the observed flow velocity fluctuates due to
sample chamber compliance. We use a simulation to bet-
ter study the importance of compliance. In particular,
we use the “Durian bubble model,” introduced in [36].
We use the version as modified in [4] to account for vari-
able numbers of nearest neighbor particles and as further
modified in [44] to account for viscous friction between
the moving droplets and the glass walls that make the ex-
perimental droplets quasi-2D. In this model, droplets are
considered as disks of fixed radius Ri (for disk i) with
a repulsive force when they overlap, meant to approx-
imate the influence of surface tension for real droplets.
Droplet motion is assumed to be at low Reynolds num-
ber (Re ≈ 10−2 at most in our experiment), so the model
sets the droplet velocity by having all repulsive droplet-
droplet forces (or droplet-wall forces) balanced with the
velocity-dependent viscous forces. The resulting equa-
tion is
∑

j

[~F contact
ij + ~F viscous

ij ] + ~Fwall
i + ~F driving

i + ~F plates
i = 0.

(1)
The repulsive contact force between droplets i and j is
given by

~F contact
ij = F0

[ 1

|~ri − ~rj |
−

1

|Ri +Rj |

]

~rij , (2)

using the droplet radii Ri, their positions ~ri, and the
vector ~rij = ~rj − ~ri. The neighbors j are defined as
those droplets for which |~rij | < Ri + Rj , that is, over-
lapping circles. The repulsive wall force is similar, point-
ing away from the wall and using Rwall = 0. The vis-
cous forces between two droplets act if they are over-

lapping and moving with different velocities: ~F viscous
ij =

bdroplet(~vj − ~vi), a force which attempts to equalize their
velocities. The viscous force from the confining plates is

given by ~F plates
ij = −bplateR

2
i~vi. As in prior work [44, 45],

we take F0 = bdroplet = bplate = 1, and use droplets
with a Gaussian distribution of droplet sizes (mean di-
ameter 1, standard deviation 0.1). (The desire to use

a Gaussian distribution in the simulation, rather than a
bidisperse distribution to better match the experiment,
is that this way the simulations are consistent with our
prior work [44, 45]. Also, the details of the particle size
distribution should not matter that much to the overall
phenomenology we’re studying; the main goal in both
simulation and experiment is to avoid the particles or-
ganizing into hexagonal crystals, as they would do in a
monodisperse sample.) The unit of time in the simula-
tion is bdroplet〈R〉/F0, the time it takes two droplets to
push apart, limited by viscous drag.
The final force in the model is the driving force. To

understand this force we will digress to discuss the in-
fluence of compliance on regular fluids in a microfluidic
chamber, following the argument in Tabeling [46] (see
also [47, 48]). Tabeling considers the case of an incom-
pressible fluid driven by a constant flux pump at one end
of a long tube with elastic wall compliance; the fluid exits
the tube at the other end. Initially before the pump is
started, the system has pressure P0 = 0 and tube diam-
eter D0. When the pump drives the fluid, the pressure
P (t) at the pump end of the tube increases, putting stress
on the tube walls. The hoop stress and axial stress are
related to the pressure as

σθθ = 2σzz =
D

2T
P (3)

in terms of the tube diameter D and tube wall thickness
T ≪ D [? ]. (The radial stress is negligible in tubes
[? ].) Positive hoop stress tries to increase the tube
diameter D, and positive axial stress tries to increase the
tube length L, with the amount of increase limited by
the Young’s modulus E for the tube material. These
expansion effects are coupled via the Poisson ratio ν of
the tube material, so the changes in the tube dimensions
for small pressure increases are [? ]:

∆L

L
=

1

E
(σzz − νσθθ) =

D

4TE
(1 − 2ν)P (4)

and

∆D

D
=

1

E
(σθθ − νσzz) =

D

4TE
(2− ν)P. (5)

The fractional change in volume is given by

∆V

V
≈

∆L

L
+ 2

∆D

D
=

D

4TE
(5− 4ν)P ≡ P/S (6)

where S ∼ E relates to the stiffness, that is, the resis-
tance of the tube material to stress. We can integrate
both sides to relate the pressure P (t) to the volume V (t)
as

P (t) = S ln

(

V (t)

V0

)

(7)

and we see that a change in P has a larger influence on
V when S is small. This would be the case if the tube is
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made of a more flexible material. Note that while we have
derived this for a cylindrical tube, the relation Eqn. 7 is
quite general and applies for different geometries with
S ∼ E in all cases. The exact relation between S and E
depends on the specific geometry.
We now consider how this relation between pressure,

volume, and elasticity applies to our simulation. In two
dimensions, the instantaneous area of the sample cham-
ber is A(t), with A(t) = A0 at t = 0. The pump moves to
try to create a constant flux ra0, but initially P ≈ P0 = 0
so the tube expands without any fluid flowing out of the
end of the tube. Here a0 = π〈R2〉 is the mean area of one
droplet, so that r is the number of droplets that should
exit the hopper per unit time. The increasing A(t) ties
to an increasing pressure P (t) (at the pump) and this
pressure gradient then can push fluid out of the far end
of the tube. There are steady-state values of A and P
such that the flux out of the far end of the tube is r.
However, the simulation considers not a regular fluid

but rather a collection of soft particles which are capable
of clogging [44, 45]. In other words, even with P > 0
the system may clog, causing A to increase (as the pump
continues moving) and increasing P via Eqn. 7 such that
the system eventually unclogs. To quantify this, define
Aout(t) as the amount of material that has exited the
system. Define

Aexcess(t) = ra0t−Aout(t), (8)

the difference between the amount of fluid the pump has
moved into the tube (area ra0t) and the amount of fluid
that has actually left the tube. Thus, the area of fluid
contained in the tube is given at time t by by

A(t) = A0 +Aexcess(t) (9)

so that

A(t)/A0 = 1 +Aexcess(t)/A0. (10)

This expression can be put into Eqn. 7 to relate Aout(t)
to the pressure P (t) at the pump, causing a pressure
gradient acting on each particle.
In the simulation, we treat the pressure gradient as if

it is a gravitational force with strength g(t), so that

~F driving
i (t) = g(t)R2

i x̂ (11)

pushes the particles toward the hopper exit. The choice
of this force being proportional to R2

i is for two rea-
sons. First, this dependence matches that of F plates such
that an isolated droplet moves with constant terminal
velocity, as expected. Second, this lets us compare with
our prior work which explicitly considered gravitational
forces [44, 45]; as will be demonstrated, this is a fruit-
ful comparison that will illustrate the interplay between
compliance, clogging, and avalanches.
To put this all together, Eqn. 7 is rewritten

g(t) = S ln (1 +Aexcess(t)/A0) (12)

≈ ln (1 +Aexcess(t)[S/A0]) , (13)

where the approximation is valid for Aexcess ≪ A0. Given
that S and A0 now appear in a ratio, we define this ratio
to be the effective stiffness s, and rewrite Eqn. 12 as

g(t) = ln (1 + sAexcess(t)) . (14)

In the simulation we will vary s from 10−5 to 2·10−3, and
in practice this equation will lead to values of g in the
range g ∼ 10−4 − 10−1, consistent with our prior work
which found that clogging occurs in this range [44]. Aout

increases by πR2
i when droplet i exits; a droplet that is

partially out of the hopper contributes its fractional area
to Aout.
To run the simulation we put 500 particles into the

hopper near the exit and start with Aexcess(t = 0) = 0,
g(t = 0) = 0. The hopper is set with a fixed opening
width w/d and stiffness s. g then increases according to
Eqns. 8, 14 using the desired flux rate r. Droplets that
exit the hopper add their area to Aout(t); the droplets
are then replaced into the hopper touching the droplets
farthest away from the hopper exit, so that the number
of particles remains constant. Indeed, at steady state,
fluid exiting the compliant tubing would be replaced by
new fluid injected by the syringe pump, keeping the total
amount in the tubing constant. This choice of a constant
number of droplets is equivalent to saying that Aexcess(t)
is always small compared to A0.
We run the simulation using fourth-order Runge-Kutta

to solve the differential equations for the droplet veloci-
ties, typically using a time step of 0.1 [44]. We would
expect there is some value of g such that the time-
averaged flux matches ra0, but we would also expect that
g will fluctuate and that dAout/dt will fluctuate around
the value ra0. The data are examined and the initial
transient is discarded, such that for the remaining data
dAout/dt indeed fluctuates around ra0. The simulation
is then run until 1000 droplets exit the hopper.

III. EXPERIMENTAL RESULTS

We observe a wide range of flow behaviors as we vary
F and φ for different experiments. For large F , droplets
flow continuously and smoothly (referred as smooth flow

cases). For small F , we see avalanche-like flow (referred
as avalanche cases). For intermediate flux rates F , we
observe intermediate cases between these two flow pat-
terns. As will be discussed below, we do not see any clear
dependence of these flow patterns on the area fraction φ.
We summarize these three flow behaviors in Fig. 2.

The three pictures in Fig. 2(a)-(c) use color to show the
time each droplet exits the hopper opening to the right.
Red droplets exit the earliest, and blue the latest. The
left picture is a smooth flow case, which shows a smooth
gradient in color. The right one shows an avalanche case,
where droplets have distinct groups of colors indicating
that droplets exit the hopper in bursts. Note that the
color scale of each plot corresponds to a different amount
of time, as specified by the color bar.
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FIG. 2 Description of the three flow behaviors. (a-c) Images of the samples at a particular time, with the color indicating the
time when the droplet exits (see color bars). The red droplets exit earlier and blue droplets exit later. (d-f) The cumulative
number of droplets that have exited the hopper as a function of time. (g-i) Histograms of the number of droplets exiting the
hopper within a short time window ∆t, chosen such that the mean of the histogram is 10 droplets. The flow conditions are:
(a,d,g) smooth flow, φ = 0.87, rexpt = 0.17 s−1. (b,e,h) Intermediate, φ = 0.96, rexpt = 0.085 s−1. (c,f,i) Avalanche, φ = 0.96,
rexpt = 0.020 s−1.

Figs. 2(d)-(f) quantify these pictures by showing the
cumulative number of droplets that have exited the hop-
per as a function of time for our three flow cases. In
the smooth flow case (d), the data form a smooth curve
with a well-defined slope, showing that droplets exit the
hopper continuously at a fairly constant rate. The inter-
mediate case (e) shows fluctuations in the rate, although
it is still fairly continuous. In avalanche case (f), there are
stretches of time where no droplets exit, followed by dis-
crete sudden flow events where many droplets exit within

a short period of time, indicated by the vertical portions
of the data in (f). Specifically, the first vertical line at
t ≈ 6000 s relates to all of the light green droplets in (c)
that exit at nearly the same time. Again, the existence
of avalanches despite the constant flux set by the syringe
pump shows that there is some compliance in the cham-
ber, such that the pressure builds up before an avalanche.

Fig. 2(g)-(i) show the histograms of numbers of
droplets that outflow within a short time window ∆t.
∆t is chosen to make the mean outflow size to be 10.
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FIG. 3 Schema of the definition of interval ∆t. The left
figure is at time t1 when the black droplet exits the hopper.
The right figure is at time t2 when the red droplet exits the
hopper.

The smooth flow case (g) has a Gaussian shape while
the avalanche case (i) has a few rare but large events.
To quantify this, the skewness values for these distribu-
tions are (g) 0.15, (h) -0.03, and (i) 2.2 for smooth flow,
intermediate, and avalanche cases respectively. Not sur-
prisingly, the avalanche case has a large positive skew-
ness, and this is generally true that all avalanche flow
cases have positively skewed distributions. Given that
the avalanche cases have few events overall (∼ 100 in
some cases), our skewness data are noisy and we cannot
resolve any clear trend in the skewness as a function of
our control parameters. The general picture shown in
Fig. 2(g)-(i) is clear, though, that avalanche cases have
distributions with positive skewness and there is a trend
toward more symmetric distributions with skewness ≈ 0
as the mean flux rate rexpt increases.

To better quantify the difference of these flow behav-
iors, we focus on the temporal behavior of the flow. In
avalanche cases, discrete sudden flow events are sepa-
rated by time intervals where droplets barely move and
no droplets exit the hopper. Accordingly, we define the
time between two successive droplets exiting the hopper
as the interval ∆t. As shown in Fig. 3, we set t1 as
the time when the black droplet exits the hopper, t2 as
the time when the next droplet (in red) exits, and then
∆t = t2 − t1. In most experiments, we observe at least
100 droplets exit and thus have that many intervals. For
the fastest flow rates, we have over 1000 intervals mea-
sured.

It is apparent in the plots in Fig. 2(d-f) that the dis-
tributions of ∆t are different for the smooth flow and
avalanche cases. In smooth flow, the values of ∆t are
small and do not fluctuate much. In the avalanche case,
∆t is sometimes small (vertical portions, where many
droplets exit over a short time interval) and sometimes
large (horizontal stretches, where a long time passes be-
tween one droplet exiting and the next). Figure 4 shows
the probability distribution functions for ∆t for the same
three data sets shown in Fig. 2. The smooth flow case
shown in Fig. 4(a) is well fit to an exponential, as shown
by the dashed red line; note this is a semilog plot. The

FIG. 4 Typical examples of three types of probability
distribution functions of ∆t: (a) exponential distribution,
(b) intermediate case, (c) power law distribution. The area
fraction φ and mean flux rate rexpt are as indicated in each
panel. In (a) the line shows an exponential fit

P (∆t)∼e−∆t/τ with τ = 6.3 s. In (b) the straight line is a
power-law fit P (∆t)∼∆t−α with α = 2.1 and the curved line
is an exponential fit with τ = 12.7 s. In (c) the line is a
power-law fit with α = 1.6.

exponential fit suggests that the time between events
follows a Poisson process, where events occur continu-
ously and independently with a constant mean rate. The
avalanche case shown in panel (c) is well fit to a power
law, as shown by the dashed red line; note this is a log-log
plot. The fit in this case is given by P (∆t)∼∆t−α with
α = 1.6, and the power law regime covers more than 2
decades in ∆t and more than 4 decades in probability.
The tails correspond to the long periods of time where
droplets barely move. The intermediate case in panel (b)
is plotted on log-log axes, and can be fit with either a
power law (straight line) or an exponential (curved line);
neither fit is perfect. The exponential fit fails for the
largest ∆t while the power law is not adequate to de-
scribe the small ∆t region.

In our experiments we vary both φ and flux rate. For
each experiment, we use the shape of P (∆t) to describe
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FIG. 5 Phase diagram of fitting patterns of P (∆t) in terms
of area fraction φ and flux rate rexpt for our 45 experiments.
Red circle: power law; blue triangle: intermediate; black
cross: exponential.

its flow behavior. Figure 5 shows the phase diagram of
fitting patterns. There is no obvious trend with φ, but
more clearly a transition from avalanche flow (red cir-
cles) to avalanche flow (black cross) with increasing rexpt.
Note that the judgment about the best fitting function
is done by eye. The quality of each fit depends on which
range of data is used for the fit, and while we have tried
several ways to approach the fitting procedure more sys-
tematically, none seem satisfactory for the intermediate
cases, and none affect the appearance of Fig. 5 in any
substantial way.

The phase diagram of Fig. 5 is perhaps unsatisfying
as the intermediate cases (blue triangles) are mixed in
with the other two cases. However, by ignoring φ and
focusing only on the flow rate dependence, the data be-
come more unified. In particular, Fig. 6 shows the re-
lation between the power law exponent of P (∆t) and
rexpt. The power exponent α increases as the flux rate
increases. Even when the power law fit is not perfect (tri-
angles), the data still follow the general trend started by
the well-fit power law cases (circles). Smaller values of α
indicate a broader distribution, where the large ∆t events
are more significant: these are the avalanche cases with
long pauses between short bursts when many droplets
exit. This is similar to previous experimental studies of
sheared granular materials, which have power law dis-
tributions of various stick-slip event properties including
forces, energy, and avalanche sizes [23, 50–54]. Likewise,
studies of clogging with sources of vibration or agitation
find power law distributions of exit times [13, 21]. To
comment briefly on the exponential cases, note that the
exponential fitting parameter τ corresponds to the mean
interval between droplets exiting, and thus is connected
to the flux rate by τ = 1/rexpt.

FIG. 6 (a) The power law exponent α as a function of the
experimental flux rate rexpt. For the power law fits, only
data in the tail are used for the fit. Different choices of the
minimum ∆t used for the fit give rise to different values of
α, reflected in the error bars shown.

IV. SIMULATION RESULTS

As described in Sec. II C, the aim of the simulation is
to describe the flow of soft 2D particles with viscous in-
teractions and in a system with controllable compliance.
From our prior work with fixed (gravitational) driving,
we know that such systems can clog [44, 45] where parti-
cles stop exiting the hopper permanently. This clogging
occurs more easily for narrow opening exit widths w/d
(in terms of the mean droplet diameter d). In the simula-
tions we report here, the driving can increase indefinitely
(Eqns. 8, 14) so that no clog is permanent.
Figure 7 confirms that this simulation leads to clog-

ging and avalanche behavior. In this figure the condi-
tions have been optimized for clogging: a small opening
width w/d, small flux rate r, and small stiffness s (see
caption for details). The behavior of g is shown in Fig. 8
(r = 0.001 data, bottom curve). The small flux rate and
small stiffness results in a repeated cycle where g is small
enough to cause clogging, then gradually Aexcess and thus
g build up until the clog is disrupted and an avalanche
occurs, at which point Aexcess quickly decreases, decreas-
ing g so that another clog can occur. In Fig. 7 there’s
an obvious division between the red and yellow droplets.
The red droplets all exit the hopper before rt ≈ 100. At
rt ≈ 100, Fig. 8 shows the start of a long nearly mono-
tonic increase in g, which ends at rt ≈ 220. This is when
the yellow droplets of Fig. 7 begin to exit the hopper.
As with the experiment, the time ∆t between sub-

sequent droplets exiting the hopper varies. Represen-
tative probability distributions for the simulation are
shown in Fig. 9, where the only parameter varied is the
imposed flow rate r as indicated in each panel. The
largest flow rate corresponds to an exponential distri-
bution [Fig. 9(a)], the slowest flow rate corresponds to a
power law distribution [Fig. 9(c)], and the intermediate
flow rate is a bit hard to characterize [Fig. 9(b)].
The simulation allows us to better understand how the
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FIG. 7 Image of the simulation data, colored similarly to
Fig. 2 with color indicating the time when the droplet exits.
For this simulation, the exit width is w/d = 1.4 (width
divided by mean droplet diameter), the flux rate is
r = 10−3, and the stiffness is s = 3 · 10−5. The exit time
distribution appears power law with exponent α = 1.7. The
total time shown is 5.53× 105, during which given r = 10−3

we’d expect 553 droplets to flow out; only 500 droplets flow
out for this particular time interval.

FIG. 8 The value of the simulation driving parameter g as
a function of time. Time is normalized by the rate r such
that on average one droplet should exit per unit normalized
time. Stretches of data where g increases are due to periods
where the system is clogged. The values of the rate r are as
indicated.

avalanches are related to clogging. To do this we conduct
a complementary set of simulations where g is fixed (in
other words, an infinitely stiff system [s → ∞], and not
using Eqn. 14) and the simulation is run until clogging
is observed. As with the main simulations described in
Sec. II C, we use 500 droplets and when a droplet ex-
its the hopper it is replaced. When a clog occurs, the
clogging event is recorded, and the system is reset by
removing the droplets forming the clogging arch and re-
placing them at the back of the hopper. A clog is defined
as when no droplets exit the hopper for a long time, and
the maximum velocity of any droplet falls below 10−5

[44]. During times when clogging has not occurred, we
measure the mean flux rate 〈r〉. These no-compliance re-
sults are shown in Fig. 10(a) as the solid lines – that is,
these lines are the time averaged flux 〈r〉 emergent from
the simulation at fixed g. These results are comparable
to the results from the first set of simulations, plotted as

FIG. 9 Typical examples of three types of probability
distribution functions of ∆t from simulation data: (a)
exponential distribution, (b) intermediate case, (c) power
law distribution. The flux rate r is as indicated, and for
these data the stiffness is s = 10−4. The time is normalized
by r, so that the mean time between droplets exiting is 1. In
(b) the straight line is a power-law fit P (∆t) ∼ ∆t−α with
α = 6.5. In (c) the straight line is a power-law fit with
α = 2.1. The dashed lines in (a) and (b) are exponential fits.

symbols, where the flux rate r is fixed and we measure
the time averaged 〈g〉. For r > 10−2 at the right side of
the graph, we get the same results whether we fix g or
fix r.

On the left side of the graph in Fig. 10(a), for the sim-
ulations with compliance, the mean value of g is higher
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FIG. 10 (a) Symbols: the mean value of the gravitational
driving parameter g as a function of the desired mean flux
rate r, for w/d = 1.4 (circles) and w/d = 2.0 (triangles).
The thin vertical lines indicate the spread from the 10%ile
to 90%ile of g. Thick lines: the mean value of the measured
flux rate r from simulations with constant g, omitting
moments when the simulation permanently clogged. (b) The
horizontal axis shows the probability per droplet of a
clogging event from simulations with constant gravity g
(vertical axis).

than we would expect for a given desired flux rate r
based on the no-compliance simulations. To understand
this, we consider the clogging probability measured in
the no-compliance simulations. We determine the mean
number of droplets that flow out between clogs 〈N〉, and
define Pclog = 1/〈N〉, the mean probability of any in-
dividual droplet clogging. This probability is plotted in
Fig. 10(b): to be clear, the no-compliance simulations are
done with fixed g (vertical axis) and we measure Pclog

(horizontal axis), plotted this way to facilitate compari-
son with panel (a). For smaller values of g, clogging is
easier. Additionally, for smaller opening size w/d, clog-
ging is easier [red circles in Fig. 10(b)]. This then ex-
plains the flux results for small gravity (small flux) in
Fig. 10(a): The “expected” value of g for achieving a de-
sired flux rate r is so small that clogging easily occurs for
the given opening width w/d. Thus g rises until the clog
breaks, although at that point g is larger than needed for
the desired flux rate r and g thus decreases. It is these
fluctuations in g that result in long-lived clogs and large
avalanches. Due to the logarithm in Eqn. 14, the mean
value of g is higher than “expected” from simple extrap-
olation of the no-compliance simulation data [the solid
lines in Fig. 10(a)]. The thin vertical lines in Fig. 10(a)
show the variability of g, highlighting that the fluctua-
tions are more significant when the desired flux rate r is
small. The long tails of the P (∆t) distributions are due
to unusually strong clogging arches. This suggests that
the strength of an arch – how much weight it can support
– may have a power law distribution as well.
Figure 10(a) also suggests that there is some thresh-

old arch strength that must be exceeded to break the
strongest arches. That is, the height of the thin vertical
lines is nearly constant for low values of r, showing that
the fluctuations in g always rise above a threshold to un-
clog the system. This is also suggested in Fig. 8, where

the two lowest rates r have similar maximal values of g.
In a sense, our clogging system is acting like a yield stress
fluid [55]. For a yield stress fluid, if the applied stress is
below the yield stress, it does not flow. The difference
between a yield stress fluid and our system is that for the
former the non-flowing behavior is a homogeneous bulk
response from the entire material, whereas in our system
the clogging is due to the few specific particles forming
the arch at the exit [44]. For this reason, in our simu-
lation the particular yielding point (value of g for which
the system unclogs) varies from clog to clog, given that
the arch structure is variable.
These results (clogging and time-varying forcing g)

conceptually explain the probability distribution func-
tions for the time intervals shown in Fig. 9. To complete
the story, Fig. 11 uses the compliance simulation data
to show how the measured power law exponent α varies
with the flux rate r at fixed stiffness s in panel (a), and
how α varies with s at fixed r in panel (b). The larger
uncertainties at r ∼ 10−2 and s ≥ 10−3 indicate that the
power law fits become dubious, signalling the crossover
to exponential distributions. Power law exponents α > 3
are also reasonable indications of a transition to exponen-
tial distributions. The results of Fig. 11 strongly suggest
that indeed it is the experimental compliance that allows
for us to observe the flow rate dependent crossover from
avalanche behavior to continuous flow. The values of α
we see in the simulation are comparable with the exper-
imental values (compare Fig. 6) at the low end; at the
high end, the simulation can generate more data and thus
measure power law exponents even for steeply decaying
functions with 3 < α < 6.

V. CONCLUSIONS

We have demonstrated that in a simple hopper geom-
etry we see behaviors changing from clear avalanches to
smooth continuous flows as we increase the mean flow
rate by a factor of 100. We quantify these behaviors
by examining the distributions of times ∆t between sub-
sequent droplets exiting the hopper. Intriguingly, the
transition in the flow behaviors is smooth as we increase
the flow rate: the power law exponent characterizing the
tails of P (∆t) smoothly varies as the flow rate increases
past the point where a power law no longer adequately
describes the data [Figs. 6, 11(a)]. One possibility is that
at any flow rate, the distribution P (∆t) may be describ-
able by a power law with an exponential cutoff, and this
cutoff may smoothly move to smaller ∆t as the flow rate
increases. However, the data we have for the intermediate
cases [such as shown in Fig. 4(b) and Fig. 9(b)] are hard
to interpret in the tails, and so it is difficult to resolve
this question. The rate dependence of our observations
is consistent with prior studies of athermally sheared 2D
amorphous solids which demonstrated rate dependence
[19, 56–61]. A simulation [62] based on Durian’s 2D bub-
ble model [15] predicted a similar trend for the flow be-
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FIG. 11 (a) Power-law exponent α as a function of flux rate
r from simulation data, for w/d = 1.4 (circles) and
w/d = 2.0 (triangles). The stiffness is s = 10−4. (b) α as a
function of stiffness s for fixed flux rate r = 10−3 and the
symbols indicating w/d as in panel (a). For both panels, the
error bars indicate the uncertainty of α. Where not shown,
the uncertainty is smaller than the symbol size.

havior as strain rate increases. However, this study also
found a dependence of the transition on area fraction,
which we do not see. It is likely this is due to different
flow geometries (a simple shear flow in the simulation, as
compared to our hopper flow which allows for clogging).
The dependence on velocity is also displayed in experi-
mental studies of sheared granular materials, where fric-
tion plays a key role [9–11]. One of these studies in par-
ticular also noted that more compliant driving resulted
in larger fluctuations in the sample motion [10], in agree-
ment with our observations. For hopper flow in granular

experiments, the presence of static friction can make jam-
ming and clogging obvious, where stress-supporting solid
arches form across the exit [32, 44]. In addition to static
friction, such experiments are also driven by a constant
force (gravity), whereas in our experiments the syringe
pump increases the pressure until flow occurs, and so no
arches can persist indefinitely.

It is also clear from the simulations that the compliance
plays an important role. By increasing the stiffness of
the system [Fig. 11(b)] we can drive the system from
power-law behavior to exponential behavior. While our
results suggest that even for a quite stiff system there is
still some hypothetical quite slow flux rate that would
lead to avalanches, it is likely that such a low flux rate
would be experimentally challenging to control. While
our simulation method uses some approximations, the
conceptual picture is simple. At slow flow rates, when
the sample clogs, the pressure rises until it unclogs, and
then the pressure drops to keep the mean flow rate slow.
For fast flow rates, the driving pressure is such that the
sample never clogs, so the flow rate is steadier.

In summary, we see that the flow of an emulsion
through a hopper can vary from avalanche-like to con-
tinuous. The transition between these behaviors is not
abrupt, but rather a continuous function of the flow
rate. At the lowest flow rates, the power law expo-
nent we observe approaches α = 1, showing that the
flow has extremely long quiescent intervals in between
the avalanches. The decrease of the power law exponent
with decreasing flow rate [Figs. 6, 11(a)] suggests that
even with these slow flows, we are not in a quasi-static
limit, in agreement with a prior study of slowly sheared
bubble rafts [63]. In this simple limit where the strain
rate approaches zero, the flow is not simple, but rather
dominated by the rare intermittent avalanches.
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