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The Hawk-Dove evolutionary game offers a paradigm of the trade-offs associated with aggressive
and passive behaviors. When two (or more) populations of players compete, their success or failure
is measured by their frequency in the population, and the system is governed by the replicator
dynamics. We develop a time-dependent optimal-adaptive control theory for this dynamical system
in which the entries of the payoff matrix are dynamically altered to produce control schedules that
minimize and maximize the aggressive population through a finite-time cycle. These schedules
provide upper and lower bounds on the outcomes for all possible strategies since they represent
two extremizers of the cost function. We then adaptively extend the optimal control schedules over
multiple cycles to produce absolute maximizers and minimizers for the system.

I. INTRODUCTION

The Hawk-Dove game (aka Chicken or Snowdrift
game) is a game-theoretic paradigm for studying the con-
flict between players (or populations of players) who use
two opposing strategies: aggressive (Hawks) and pas-
sive (Doves). One way of framing the conflict is to con-
sider competition in the animal world where two differ-
ent species compete for a limited resource [1–4]. With no
Hawks in the population, Doves will share the resources
and avoid conflict. With no Doves, the Hawks will fight
with each other for resources, taking the risk of injury
or death. If Hawks are present in large enough numbers,
the Doves will flee without fighting. A sufficient fraction
of Doves, on the other hand, can cooperate and expel
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the Hawks from the population thereby protecting the
resource [5]. The challenge is to find conditions for sta-
ble co-existence of the two opposing populations. In the
context of military conflicts, the game is framed as the
game of chicken, thought of as a situation in which two
drivers head towards each other in a single lane trying
not to be the first to swerve away (Doves), each mind-
ful of the fact that if neither swerves (Hawks), both will
die. Key to this game is that the cost of losing is greater
than the value of winning. Versions of this (static) game
have been analyzed and used extensively in political sci-
ence communities to study strategies associated with the
problem of nuclear brinkmanship [6]. In this set-up, the
payoffs are fixed, and the interactions unfold based on
the cost-benefit balance determined by these payoffs.

In a more complicated setting, one might want to mea-
sure repeated interactions in populations of competitors,
~x = (x1, x2)T ∈ R2, where winning and losing is rein-
forced by the relative frequencies of the two competing
populations (frequency dependent selection as in Dar-
winian evolution). For this, the replicator dynamical sys-
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tem is commonly used [7–9]:

ẋi = xi((A~x)i − ~xT (A~x)) (i = 1, 2) (1)

with x1 + x2 = 1, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, where each
variable has the interpretation of frequency in the pop-
ulation or the alternative interpretation as a probability
of picking a member of one of the two subgroups ran-
domly. It is sometimes useful to also think of the vari-
ables ~x = (x1, x2)T as strategies (heritable traits) that
evolve, with the most successful strategy dominating, as
in the context of Darwinian evolution [4] by natural se-
lection. Here, A is the 2 × 2 payoff matrix, (A~x)i is the
fitness of population i, and ~xT (A~x) is the average fitness
of both populations, so xi in (1) drives growth (instanta-
neously) at times when the species population i is above
the population average and decay at times when it falls
below the system average. Cumulative growth or decay

over a time T is governed by
∫ T

0
((A~x)i−~xT (A~x))dt which

can either be positive or negative depending on the pro-
portion of time spent above or below the system average.
The fitness functions in (1) are said to be population
dependent (selection pressure is imposed by the mix of
population frequencies) and determine growth or decay of
each subpopulation. Because of this, these equations are
also used extensively in the reinforcement learning com-
munity where success begets success and failure leads to
a downward spiral of frequency in the population [10].

Using the standard Hawk-Dove payoff matrix [5]:

A =

[
a11 a12
a21 a22

]
=

[
3 1
5 0

]
, (2)

where the population x1 are the Hawks (aggressive), and
x2 are the Doves (passive), the strict Nash equilibrium,
~x∗ ≡ (x∗1, x

∗
2) is the mixed state x∗1 = 1

3 , x
∗
2 = 2

3 since

~x∗
T

A~x∗ > ~xTA~x for all ~x 6= ~x∗. This implies that the
mixed state is also an evolutionary stable state (ESS) of
the replicator system (1) as discussed in [11]. It is also
useful to uncouple the two variables in (1) and write a
single equation for the aggressor population frequency
x1:

ẋ1 = x1(1− x1) [(A~x)1 − (A~x)2] (3)

= x1(1− x1) [(a12 − a22) + ((a11 − a21)− (a12 − a22))x1]

Note also that a single equation for the passive popula-
tion x2 is easily obtained using the change of variable
x1 = 1− x2 in eqn (3).

The question we address in the paper is whether it is
possible to alter the entries in the payoff matrix A in
a time-dependent fashion (dynamic incentives) in order
to optimally achieve some pre-determined goal (such as
minimizing aggression) at the end of fixed time T? Dy-
namically altering the entries of a payoff matrix in an
evolutionary game setting has only recently been studied
by coupling the entries, for example, to a system that rep-
resents an external environment [12, 13]. One can easily
imagine different scenarios in which this might be use-
ful. In the context of nuclear brinkmanship, for example,

is it possible to alter the payoff incentives dynamically
in order to achieve a goal [6] that would not be achiev-
able with fixed payoffs? Is it possible to offer dynamic
economic incentives that optimize some desired outcome
across a population of participants [14, 15]? In this con-
text, one can fruitfully think of the problem as one in op-
timal control theory where in real time, the government
either turns on or turns off various economic incentives,
such as adjusting interest rate policies or implementing
targeted changes to control inflationary pressure. In the
context of evolutionary game theory, this translates into
introducing time-dependent control schedules that can
alter the punishment-reward structure of the system by
explicitly controlling the entries of the payoff matrix.

Can one optimally design time-dependent incentive
schedules of rewards/punishments to compel groups of
people to get vaccinated [16]? For co-evolving microbial
populations, is it possible to dynamically schedule selec-
tive antibiotic agents in order to steer the evolutionary
trajectory in an advantageous direction [17, 18], or even
reverse antibiotic resistance, or in the context of schedul-
ing chemotherapy treatments, is it possible to design
schedules optimally that make best use of the chemother-
apy agents administered in order to delay chemothera-
peutic resistance [8, 9, 19–21]? Control theory is increas-
ingly being used in a wide range of biological applications
[21–27] but to date, has not been systematically imple-
mented in the context of evolutionary games as far as we
know, aside from [8, 9, 21, 28].

One interesting evolutionary context where an appar-
ent Hawk-Dove scenario may require attainment of a
quasi-stable equilibrium condition is during the evolu-
tion of symbiotic relationships in which one partner is
aggressive or predatory. For example, hostile colonies of
eusocial insects, such as ants and termites, are plagued by
a diversity of solitary arthropods that have evolved to in-
filtrate the social system and parasitize the nest [30, 31].
The majority of such parasitic species evolved from free-
living ancestors without any behavioral specialization
[32, 33]. It follows that the initial steps in establishing the
symbiosis were contingent on these free-living species (the
Doves) entering into equilibrium with their aggressive
eusocial hosts (the Hawks). This equilibrium, once at-
tained, may have provided an essential, permissive step-
ping stone to evolving the essential adaptive traits—such
as social behaviors and pheromonal mimicry—that facil-
itate social parasitism [32].

To address these and related types of settings, we
develop a mathematical framework to determine time-
dependent incentive schedules for altering the payoff en-
tries of a Hawk-Dove evolutionary game in such a way as
to (i) maximize aggression at the end of time T , and (ii)
minimize aggression at the end of time T . By considering
the bang-bang schedules that produce these upper and
lower bounds on the competing frequencies, we can con-
clude that any alternative payoff schedule will produce
a result that lies somewhere between the two bounds as
each are extremizers of a cost function associated with
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FIG. 1. Twelve regions in the off-diagonal (a12, a21) plane [29]
(deliniated by dashed lines) define which game is being played.
We choose a22 at the origin (without loss). Starting at t = 0 in
the Hawk-Dove square, indicated by the initial large (red) dot,
what are the paths that minimize and maximize aggression
at time t = T? The solid (red) curve is one example of a path
that crosses into four different regions of the plane.

the Pontryagin maximum (minimum) principle. We then
extend the time-period to time nT (n = 1, ..., 5) by us-
ing an adaptive control method that adjusts the schedule
in the (n + 1)st window based on the ending frequency
values from the nth window. The schedules produced
drive aggression down to an absolute minimum (xmin

1 ),
or drive it up to an absolute maximium (xmax

1 ), which
are functions of the cycle-time T . These values provide
absolute lower and upper bounds on opposing behavior
strategies in an evolutionary setting.

II. OPTIMAL CONTROL THEORY FOR THE
REPLICATOR DYNAMICAL SYSTEM

To implement an optimal dynamic incentive strategy,
we consider the time-dependent system:

A =

[
a11 a12
a21 a22

]
= A0 +A1(t) (4)

=

[
3 1
5 0

]
+

[
0 4u2(t)

6u1(t) 0

]
(5)

=

[
3 1 + 4u2(t)

5 + 6u1(t) 0

]
, (6)

where A1(t) represents our control with entries in the
off-diagonal terms, and A0 is the baseline Hawk-Dove

(a)

(b)

FIG. 2. Dynamics of the uncontrolled (u1 = 0, u2 = 0) Hawk-
Dove evolutionary game. (a) Phase portrait associated with
the aggressor population x1. Both Hawk and Dove dominance
(x1 = 1, 0) are unstable fixed points, while the mixed state
x1 = 1/3 is the evolutionarily stable strategy (ESS); (b) Hawk
dynamics for various initial conditions. T = 1 is the end of
one control cycle and also the linear growth rate of the Hawk-
Dove system.

payoff matrix. The time-dependent functions ~u(t) =
(u1(t), u2(t)) ∈ R2 are bounded above and below, −1 ≤
u1(t) ≤ 1, −1 ≤ u2(t) ≤ 1 and have a range (−3 ≤ a12 ≤
5; −1 ≤ a21 ≤ 11) that allows us to traverse the plane
along any path depicted in red in figure 1, starting in
the Hawk-Dove zone in the uncontrolled (u1 = 0;u2 = 0)
case which is shown in figure 2 in the phase plane (a) and
the frequency plane (b). Traversing this plane amounts
to dynamically sampling the five reciprocity mechanisms
allowable in 2×2 games, discussed in the context of social
dilemmas in [34, 35]. Dynamically altering the entries of
the payoff matrix allows the freedom to choose differ-
ent mechanisms to gain advantage over some prescribed
finite-time. Note that we have chosen the coefficients and
bounds on the controllers to ensure that all regions of the
plane in figure 1 are accessible. The ESS for the uncon-
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trolled case is x1 = 1/3. The control path chosen, and
the time parametrization 0 ≤ t ≤ T determines both the
sequence of games being played as well as the switching
times (the times at which the path crosses over from one
region to the next) between games. We denote the total

control output ~C ∈ R2:

~C(t) = (C1(t), C2(t)) =

∫ t

0

~u(t)dt (7)

with total output delivered in time t, then:

~̇C(t) = ~u(t) (8)

and:

~C(0) = 0, (9)

~C(T ) =

∫ T

0

~u(t)dt = ~CT (10)

where T denotes a final time in which we implement the

control over one cycle. We consider ~CT as a constraint

on the optimization problem, with ~CT = (0, 0), and our
goal is to first find schedules that minimize and maxi-
mize aggression (x1) at the end of one cycle t = T sub-
ject to this constraint. For the uncontrolled case, we
know x1 → 1/3 as t→∞ and we compare the controlled
cases with the uncontrolled case, both satisfying the con-
straint. Also notice that the linear growth rate in (3) is
(a12 − a22) = 1 − 0 = 1, so we scale T the same way in
our computations, as T = 1. We then perform the op-
timization adaptively over multiple cycles nT using the
end value of cycle nT as the initial condition to compute
the optimal schedule for the (n + 1)st cycle. Using this
method, we are able to identify absolute maximizers and
minimizers as a function of the cycle time T .

A. Optimal control formulation

A standard form for implementing the Pontryagin
maximum (minimum) principle with boundary value con-
straints is:

~X = [~x(t), ~C(t)]
T
, ~X ∈ R4 (11)

~̇X = ~F ( ~X) = [~̇x, ~̇C(t)]
T

, ~F : R4 → R4 (12)

where one would like to minimize or maximize a general
cost function:∫ T

0

L(~x(t), ~u(t), t)dt+ ϕ(~x(T )). (13)

In our case, we are only interested in minimizing the
terminal value φ(~x(T )) ≡ x1(T ), which is called a clas-
sical Mayer problem (specifically choosing L = 0 and
optimizing the terminal value, developed in the context
of missle guidance problems where final distance from
the target is optimized) discussed in detail in §13.3, and

together with the Pontryagin principle in §14.6 of [36].
The controllers, of course, still play an important role as
they enter both the payoff matrix through eqn (6) as well
as the constraint eqn (7).

Since the method is standard, we will just briefly de-
scribe the basic framework and refer readers to [37–41]
for more details on how to implement the approach. Fol-
lowing [40] in particular (see page 62 Theorem 4.2.1), we
construct the control theory Hamiltonian:

H(~x(t), ~C(t), ~λ, ~u(t)) = ~λT ~F (~x) (14)

where ~λ = [λ1, λ2, µ1, µ2]T are the co-state functions (i.e.

momenta) associated with ~x and ~C respectively. Assum-
ing that ~u∗(t) is the optimal control for this problem,

with corresponding trajectory ~x∗(t), ~C∗(t), the canonical
equations satisfy:

ẋi
∗(t) =

∂H

∂λ∗i
(15)

Ċi
∗
(t) =

∂H

∂µ∗i
(16)

˙λi
∗(t) = − ∂H

∂x∗i
(17)

˙µi
∗(t) = − ∂H

∂C∗i
(18)

where i = (1, 2). The corresponding boundary conditions
are:

~x∗(0) = ~x0 (19)

~C∗(0) = 0, ~C∗(T ) = ~C∗T (20)

λ∗i (T ) =
∂ϕ(~x(T ))

∂x∗i (T )
(21)

Then, at any point in time, the optimal control ~u∗(t) will
minimize the control theory Hamiltonian:

~u∗(t) = arg min
~u(t)

H(~x∗(t), ~C∗(t), ~λ∗(t), ~u(t)) (22)

The optimization problem becomes a two-point bound-
ary value problem (using (19)-(21)) with unknowns
(λ∗2(0), x∗2(T )) whose solution gives rise to the optimal
trajectory ~x∗(t) (from (15)) and the corresponding con-
trol ~u∗(t) that produces it [37–40]. We solve this problem
by standard numerical shooting type methods [40]. The
result is that the optimal controllers follow a bang-bang
schedule, taking on only the extreme values +1 or −1,
and not values throughout the interval [−1, 1].

III. RESULTS

In this section we show the results of solving the adap-
tive optimal control method to minimize and maximize
aggression at time T = 1, and then further at the end of
multiple cycles t = nT . Figure 3(a)-(i) shows the maxi-
mizing (blue) and minimizing (red) trajectories for nine
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initial conditions. The corresponding bang-bang sched-
ules that produce these trajectories are also shown in
each case. It is straighforward to prove that the optimal
schedules must be bang-bang since the controllers are
linear in the governing equations. In each case, we show
the uncontrolled (dashed curve) Hawk-Dove trajectory,
which ends in between the maximizer and minimizer as
expected.

Figure 4 shows the maximizing (blue) and minimizing
trajectories over n = 5 cycles. We obtain these adap-
tively, using the endpoint from the nth cycle to compute
the optimal schedule for the following (n + 1)st cycle.
Two special initial conditions are shown in figure 5. For
x1(0) = 0.08, the minimizing (red) trajectory shown in
figure 5(a) ends at x1(1) = 0.08, hence is periodic. This
value (and corresponding schedule) corresponds to an ab-
solute minimizer xmin

1 for aggression x1. By contrast, for
x1(0) = 0.79 shown in figure 5(b), the maximizing (blue)
trajectory ends at x1(1) = 0.79, hence is periodic. This
value (and the corresponding schedule) corresponds to
an absolute maximizer xmax

1 for aggression. These two
special initial conditions are shown in figure 6 over n = 5
cycles confirming the periodicity of the minimizing tra-
jectory (red) in figure 6(a) and the periodicity of the max-
imizing (blue) trajectory in figure 6(b). The sequence
of games that the system cycles through to achieve the
minimizing sequence is shown in figure 7, while the maxi-
mizing sequence is shown in figure 8. These are obtained
from eqn (3) and the four equations:

1. u1 = 1;u2 = 1: ẋ1 = x1(1− x1)(5− 13x1)

2. u1 = 1;u2 = −1: ẋ1 = x1(1− x1)(−3− 5x1)

3. u1 = −1;u2 = 1: ẋ1 = x1(1− x1)(5− x1)

4. u1 = −1;u2 = −1: ẋ1 = x1(1− x1)(−3 + 7x1).

In figure 9 we show the minimizing values and maxi-
mizing values of x1(T ) vs. x1(0) through the full range
0 ≤ x1(0) ≤ 1. Notice that at the endpoints, the two
values converge (since for the linear system, the sched-

ule does not matter, only the total ~CT ). Figure 9(b)
shows the ratio x1(T )/x1(0) − 1 (percentage increase or
decrease) vs. initial condition x1(0) through the full
range 0 ≤ x1(0) ≤ 1. When the maximizing (blue) curve
crosses x1(T )/x1(0)−1 = 0, (i.e. x1(0) = x1(T )) an abso-
lute maximizer is achieved (for x1(0) = x1(T ) = xmax

1 =
0.79), while when the minimizing (red) curve crosses
x1(T )/x1(0) − 1 = 0, an absolute minimizer is achieved
(for x1(0) = x1(T ) = xmin

1 = 0.08). In figure 10 we show
how xmax

1 and xmin
1 depend on the cycle-time T . Interest-

ingly, as T → 0, xmax
1 , xmin

1 → (a12−a22)
(a12+a21)−(a11+a22)

= 1/3

which is the ESS for the uncontrolled Hawk-Dove sys-

tem. For T ≥ (a12+a21)−(a11+a22)
(a12−a22)

= 3, xmax
1 → 1 and

xmin
1 → 0 showing that for large enough cycle times we

can drive either of the sub-populations to extinction or
to fixation.

IV. DISCUSSION

Our goal in this manuscript is to lay out a mathemati-
cal framework for determining optimal dynamic incentive
schedules (time-dependent payoff schedules) that maxi-
mize/minimize certain behaviors in an evolutionary game
theory setting using the 2 × 2 replicator dynamical sys-
tem with a Hawk-Dove payoff matrix as our baseline. By
changing the payoff entries in a time-dependent manner,
subject to constraints, we are altering the payoff-reward
structure of the Hawk-Dove interaction as the popula-
tions evolve, which is equivalent to selecting a sequence
of 2 × 2 evolutionary games in such a way that an op-
timum is achieved after a fixed passage of time. The
determination of these schedules requires a balance be-
tween the timescale on which the payoffs change, and the
timescale of the underlying replicator dynamical system
in such a way that the Pontryagin maximum/minimum
principle is satisfied.

As mentioned earlier, there are many settings in which
dynamic payoffs can be used to achieve a certain out-
come (developing chemotherapeutic schedules that man-
age chemo-resistance, antibiotic scheduling to avoid and
even reverse antibiotic resistance in microbial popula-
tions, or the introduction of economic incentive packages
to guide behavior). One of the more compelling potential
applications of the methods developed in this paper in
the context of social dilemmas, is to frame people’s atti-
tudes towards vaccination acceptance as a social contract
[42–44] and to devise dynamic incentive methods to en-
courage vaccination acceptance as well as to explore their
theoretical limitations. Our method uses the Pontryagin
maximum/minimum principle along with the 2× 2 repli-
cator dynamical system, with contraints, to determine
schedules over one cycle time T , then we extend the re-
sults adaptively over multiple cycles nT . We show this
leads to the identification of an absolute maximizer and
minimizer (xmax

1 , xmin
1 ) for the aggressor population ,

both of which are functions of the cycle time T . We
believe the framework layed out in the paper can be ex-
tended to N × N replicator systems, as well as discrete
(stochastic) models for the interaction of a finite num-
ber of partcipants using a frequency-dependent Moran
process.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Maximizing (solid-blue) and minimizing (dashed-red) trajectories for nine initial conditions. Also shown is the (dashed-
black) curve for the uncontrolled Hawk-Dove trajectory which lands in between the max and min at T = 1. Top bar (dark
blue) corresponds to u1 = 1, with white indicating u1 = −1. Second bar (light blue) corresponds to u2 = 1, with white
indicating u2 = −1 associated with the maximizing control schedule; Third bar (dark red) corresponds to u1 = 1, with white
bar indicating u1 = −1. Fourth bar (light red) corresponds to u2 = 1, with white indicating u2 = −1 associated with the
minimizing control schedule. All schedules are bang-bang. (a) x1(0) = 0.01; (b) x1(0) = 0.05; (c) x1(0) = 0.1; (d) x1(0) = 0.3;
(e) x1(0) = 0.5; (f) x1(0) = 0.7; (g) x1(0) = 0.9; (h) x1(0) = 0.95; (i) x1(0) = 0.99.
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(a)

(b)

FIG. 5. Maximizing (solid-blue) and minimizing (dashed-
red) trajectories for the two special initial conditions x1(0) =
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FIG. 8. Maximizing sequence of four games (Prisoner’s Dilemma; Leader; Deadlock; Game 9) associated with initial condition
x1(0) = 0.79 that produces the absolute maximizer. Unfilled dots show starting point, filled dot shows ending point.
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(a) (b)

FIG. 9. (a) Hawk initial condition x1(0) versus Hawk frequency at final time x1(T ) for maximizing (solid blue) and minimizing
(dashed red) schedules. Vertical dashed line at x1(0) = 0.65 marks the maximum difference between the minimizer and the
maximizer; (b) Change in Hawk frequency as a function of initial condition. Points above the line x1(T )/x1(0)−1 = 0 represent
an increase over time and points below this line represent a decrease over time. The two intersection points x1(0) = 0.08 and
x1(0) = 0.79 mark the absolute minimizer and maximizer initial conditions for T = 1.

FIG. 10. xmax
1 (solid-blue) and xmin

1 (dashed-red) as a function of cycle-time T . Dashed horizontal line at x1 = 1/3 is the ESS
for the uncontrolled Hawk-Dove system where the two curves meet as T → 0.
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