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The hierarchical organization and self-similarity in river basins have been topics of extensive
research in hydrology and geomorphology starting with the pioneering work of Horton in 1945. De-
spite significant theoretical and applied advances however, the mathematical origin of and relation
among Horton laws for different stream attributes remain unsettled. Here we capitalize on a recently
developed theory of random self-similar trees to elucidate the origin of Horton laws, Hack’s laws,
basin fractal dimension, power-law distributions of link attributes, and power-law relations between
distinct attributes. In particular, we introduce a one-parametric family of self-similar critical Toku-
naga trees that includes the celebrated Shreve’s random topology model and extends to trees that
approximate the observed river networks with realistic exponents. The results offer tools to increase
our understanding of landscape organization under different hydroclimatic forcings, and to extend
scaling relationships useful for hydrologic prediction to resolutions higher that those observed.

I. INTRODUCTION

In a pioneering study “of streams and their drainage
basins”, Robert E. Horton [1] introduced the concept of
river stream order and formulated two fundamental laws
of the composition of stream-drainage nets. The Law
of Stream Numbers postulates a geometric decay of the
numbers NK of streams of increasing order K, with the
exponent RB . The Law of Stream Lengths postulates a
geometric growth of the average length LK of streams of
increasing order K, with the exponent RL. During the
20th century, geometric dependence on the stream order
has been documented for multiple stream attributes, in-
cluding upstream area, magnitude (number of upstream
headwater channels, also called sources), the total chan-
nel length, the longest stream length, link slope, mean
annual discharge, energy expenditure, etc. [2]; all such
relations are also referred to as Horton’s laws. Despite
their elemental role in describing the key regularities in
river stream networks (such as fractal dimension, Hack’s
law, etc.), Horton’s laws remain an empirical finding and
their origin and apparent ubiquity remain unsettled [3].

The first attempt at a rigorous explanation of Horton
laws was made by Ronald L. Shreve [4] in the 1960s, who
examined a “topologically random population of channel
networks”, where all topologically distinct networks with
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given number of first-order streams are equally likely.
This model is equivalent to the celebrated critical bi-
nary Galton-Watson branching process with a given pop-
ulation size [5, 6]. Shreve’s calculations imply that in
this model the Horton law of stream numbers holds with
RB = 4. Although not attempted by Shreve, it can
be shown [5] that the law of stream lengths also holds
here with RL = 2 under the assumption of constant or
identically distributed link lengths. Albeit insightful and
mathematically tractable, the random topology model
deviates from observations, which became apparent with
the development of improved methods for extracting river
networks [7, 8]. This called for developing alternative
modeling approaches for river networks.

It has proven challenging to find a model that would
be mathematically tractable and flexible enough to re-
produce the Horton exponents and other scaling laws ob-
served in river basins. One end of the modeling spectrum
is occupied by conceptual approaches, such as Peano frac-
tal basin ([2], their Sect. 2.4; [1], their Fig. 25) or Schei-
degger’s lattice model [9, 10]. These models provide an
invaluable insight into the origin of the observed scalings;
they however lack realistic dendritic patterns and values
of scaling exponents. On the other end are simulation ap-
proaches that can generate visually appealing networks
that closely fit selected exponents, but can be analyt-
ically opaque. The Optimal Channel Network (OCN)
model [11–16] is a well-recognized simulation technique.
Following the energy expenditure minimization principle,
the model creates random drainage basins on a planar
lattice (or more general graphs). We refer to [2] for a
comprehensive discussion of these and other models.

Despite the progress achieved by the modeling efforts
of the 20th century, the following essential questions
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remain unanswered: What are sufficient conditions for
Horton laws? What are the values of the Horton expo-
nents for river basins? How are the Horton exponents
for different stream attributes related to each other and
to other basin parameters? There is a consensus that
Horton’s laws are connected to the self-similar structure
of a basin [2, 8, 17, 18], which is informally understood as
invariance of basin’s statistical structure under changing
the scale of analysis (zooming in or out) [19]. However, a
commonly accepted mathematical definition of tree self-
similarity is still lacking. Three alternative definitions
have been proposed: the Toeplitz property of the Toku-
naga coefficients [8, 20]; the invariance of a tree distri-
bution with respect to the Horton pruning (cutting the
source streams) [5]; and statistical self-similarity of basin
attributes [17, 21]. The unsettled questions are: How are
the alternative definitions related? and Is self-similarity
(any version) sufficient for selected Horton laws? These
questions are relevant in other areas beyond hydrogeo-
morphology where Horton laws and related scalings have
been reported, including computer science [22, 23], sta-
tistical seismology [24–27], vascular analysis [28], brain
studies [29], ecology [30], and biology [31].

We answer the above questions within a self-consistent
mathematical theory of random self-similar trees recently
developed by the authors [32]. In particular, we propose
a concept of tree self-similarity that unifies the alterna-
tive existing definitions, rigorously explains the appear-
ance and parameterization of Horton laws, and offers a
novel approach to modeling a variety of dendritic sys-
tems. The goal of this paper is to adapt and extend the
theory to the studies of river networks. Most notably,
we show that two fundamental and practically appealing
properties – coordination and Horton prune invariance
– result in trees that enjoy a wealth of scaling laws ob-
served in landscape dissection. Furthermore, we propose
a new one-parametric family of critical Tokunaga trees,
which reproduces multiple Horton laws and related scal-
ings reported in river network studies, with realistic val-
ues of the respective parameters. The critical Tokunaga
family yields rigorous relations among scaling exponents
that have been empirically documented in multiple ear-
lier studies, and serves as a useful analytic and modeling
tool for further analysis of river network structure and
dynamics. Our results also offer a computationally effi-
cient algorithm of generating self-similar trees with arbi-
trary parameters (Horton exponents, fractal dimensions,
etc.), which facilitates ensemble simulations.

We represent a stream network that drains a sin-
gle basin (watershed, catchment) as a rooted binary
tree. The basin outlet (point furthest downstream) cor-
responds to the tree root, sources (points furthest up-
stream) to leaves, junctions (points where two streams
meet) to internal vertices, and links (stream segments
between two successive nodes) to edges. This graph-
theoretic nomenclature provides a link to the probability
and combinatorics literature on the topic. We assume
that all examined trees belong to the space L of finite

binary rooted planted trees with positive edge lengths
[32]. Recall that a tree is called planted if the tree root
has degree 1 (the most downstream link goes to an ocean
or another large water body instead of merging with an-
other stream). The space L includes the empty tree φ
comprised of the root vertex. We also consider the space
T of combinatorial projections of trees from L, that is
trees with the same combinatorial structure but no edge
lengths.

II. RESULTS

A. Review of Horton laws and implied scaling
relationships

The Horton-Strahler orders for river streams have been
discussed extensively in the literature and nicely reviewed
and summarized in [2]. In this section we introduce the
orders through the viewpoint of Horton pruning – this
streamlines our exposition and prepares the reader for
material that follows. We also discuss Horton’s laws and
their implications.

Consider the map R : L → L that removes the source
links from a tree T ∈ L. The Horton-Strahler order of
a tree T [1, 33, 34] is the minimal number of Horton
prunings that completely eliminates it:

ord(T ) = min
{
k ≥ 0 : Rk(T ) = φ

}
. (1)

The Horton pruning and Horton-Strahler orders are il-
lustrated in Fig. 1 (see Appendix IV A for details and an
alternative computational definition).

Horton’s Law of Stream Numbers [1] postulates a geo-
metric decay of the stream counts NK of increasing order
K with Horton exponent RB ≥ 2:

NK ∝ R−KB or
NK
NK+1

= RB . (2)

The notation x ∝ y stands for x = Const. × y. The
lower bound on RB follows from the definition of Horton-
Strahler orders, since it takes at least two streams of
order K to create a single stream of order K + 1 (see
Appendix IV A). The value of RB reported in large river
basins is close to 4.5 [2, 4, 17, 19, 21, 33, 35–39]. Figure
2A (cyan circles) shows the Horton law for stream num-
bers in the stream network of Beaver Creek of Fig. 1;
here RB ≈ 4.6.

Horton’s Law of Stream Lengths [1] postulates a ge-
ometric growth of the average length LK of streams of
increasing order K with exponent RL:

LK ∝ RKL or
LK+1

LK
= RL. (3)

The value of RL in river networks is around 2.5 [2].
Figure 2D (magenta squares) shows the Horton law for
stream lengths in the Beaver Creek network of Fig. 1;
here RL ≈ 2.3.
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FIG. 1. Horton pruning of the stream network of Beaver creek, Floyd County, KY. Streams of orders K = 2, . . . , 6 are shown
by different colors (see legend on the right). Streams of order 1 (source streams) are not shown for visual convenience. (A) The
first Horton pruning, after eliminating streams of order K=1. (B)-(E) Second to fifth consecutive Horton prunings. The sixth
pruning completely eliminates the network. The channel extraction is done using RiverTools software (http://rivix.com).

Similarly to the laws (2),(3) discussed above, a geomet-
ric scaling of any average stream attribute ZK with order
K, is also called Horton’s law, and the respective expo-
nent is called Horton exponent [8, 20]. Horton laws are
documented for multiple physical and combinatorial at-
tributes, including upstream area, magnitude (number of
upstream sources), total upstream channel length, length
of the longest channel to the divide, etc. [2]. Figure 2
illustrates Horton laws for seven stream attributes of the
Beaver Creek that is shown in Fig. 1. We use a con-
vention that the Horton exponent is greater than unity,
which always can be achieved by selecting the sign of the
exponent K in the Horton law (e.g., Eqs. (2),(3)).

Horton’s laws imply power-law frequencies of link at-
tributes and power-law relations between the average val-
ues of distinct attributes. Suppose that stream attributes
Z and Y satisfy Horton’s law with Horton exponents RZ
and RY , respectively. Using each of the laws to express
the channel order K and equating these expressions, we
find

ZK ∝ Y αK , with α =
logRZ
logRY

. (4)

Equation (4) is a punctured (by discrete orders) version
of a power-law relation Z ∝ Y α that is abound among
hydrologic quantities. A well-studied example is Hack’s
law that relates the length L of the longest stream in
a basin to the basin area A via L ∝ Ah with h ≈ 0.6
[40, 41]. Equation (4) suggests that the parameter h is
expressed via the exponents RL and RA of the Horton
laws for length L and area A as:

h =
logRL
logRA

. (5)

Next, consider the value Z(i) of an attribute Z cal-
culated at link i in a large basin. Assuming Horton’s
laws for NK and SK with exponents RB and RS , respec-
tively, and considering a limit of an infinitely large basin

we approximate the distribution of link attributes as (see
Appendix IV B)

∣∣i : Z(i) ≥ z
∣∣ ∝ z−β , β =

logRB − logRS
logRZ

, (6)

where |A| denotes the number of elements in a set A.
Such power laws are documented for the upstream con-

tributing area, length of the longest channel to the divide,
water discharge, or energy expenditure. For example,
analyses of river basins (e.g., [14, 42, 43]) extracted from
digital elevation models (DEM’s) suggest∣∣i : A(i) ≥ a

∣∣ ∝ a−βA , βA ≈ 0.43 (7)

and ∣∣i : Λ(i) ≥ l
∣∣ ∝ l−βΛ , βΛ ≈ 0.8, (8)

where A(i) is the area upstream of link i and Λ(i) is the
distance from link i to the furthest source (or, equiva-
lently, to the basin divide) measured along the channel
network.

Horton’s laws (e.g. Eqs. (2),(3)) and the implied scal-
ing relations (Eqs. (4),(6)) provide key observational con-
straints in modeling river networks [2, 12, 39, 42]. Our
work explains the appearance of Horton laws in terms
of tree self-similarity and offers a parametric toolbox for
the analysis and modeling of river networks and other
branching structures that exhibit such scaling relations.

B. Tree self-similarity and Tokunaga sequence

We introduce the concept of self-similarity for random
trees that encompasses the existing definitions and sat-
isfies practical intuitive expectations. The proposed def-
inition applies to a distribution of trees from a suitable
space such as T or L and combines two fundamental
properties – coordination and Horton prune-invariance.

http://rivix.com
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FIG. 2. Critical Tokunaga fit to the Horton laws in the stream network of Beaver creek. The stream network is shown in Fig. 1.
Symbols correspond to the values of the observed attributes. Lines and dots show the theoretical fit by the critical Tokunaga
model with c = 2.3. (A) Stream numbers NK . The model fit is given by (18); it has asymptotic slope − log10(2c) ≈ −0.66.
(B) Average stream magnitude MK (cyan circles) and average number of links SK (magenta squares). The fit for MK is given
by (19); it has asymptotic slope log10(2c) ≈ 0.66. The fit for SK is given by cK−1; it has theoretical slope log10 c ≈ 0.36. (C)
Average total contributing area AK (cyan circles) and average total upstream channel length Ltot

K (magenta squares). The
fitting lines, according to a combination of equations (19) and (52), have theoretical slope log10(2c) ≈ 0.66. (D) Average
stream length LK (magenta squares) and average length ΛK of the longest stream to the divide (cyan circles). The fitting lines,
according to equations (28) and (30), have theoretical slope log10(c) ≈ 0.36.

Coordination means that the (random) structure of a
river basin is determined by its order. For example, a
basin with outlet of order three and a sub-basin of or-
der three within a basin of order nine have, statistically,
the same structure. This assumption is at the heart of
analyses based on the Horton-Strahler orders; it has been
imposed, explicitly or implicitly, in the mainstream stud-
ies of river networks [1, 2, 4, 7, 8, 21, 36]. A distribution
that satisfies the coordination property is called coordi-
nated. We refer to [32] for a measure-theoretic definition
of coordination.

Horton prune-invariance formalizes the expectation
that the scaling laws of hydrology are (by and large) in-
dependent of the data resolution. The Horton pruning R
is a natural model for the change of resolution in a river
network. Indeed, better observations lead to detecting
smaller streams, which increases the basin order. Prun-
ing a basin by order is roughly equivalent to decreasing

the resolution of stream detection. The Horton prune-
invariance requires that the statistical structure of trees
remains the same after zooming in or out.

Definition 1 (Self-similar tree). A coordinated distri-
bution µ on the space T of combinatorial trees is called
self-similar if it is invariant with respect to Horton prun-
ing [5, 44]:

µ
(
R−1(T )|T 6= φ

)
= µ(T ) for any T ∈ T . (9)

Recall that φ denotes an empty tree. Equation (9)
states that, for any non-empty tree T , the total proba-
bility assigned by µ to the collection of trees that result
in T after pruning – these trees are denoted by R−1(T )
– is the same as the probability of T . Informally, con-
sider a forest of trees generated by measure µ, where each
tree T occurs multiple times according to its probability
µ(T ). The forest is self-similar if after pruning each tree
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by R we obtain the same forest. This definition can be
extended to trees with edge lengths from space L; see
Def. 9 in [32]. In that case, we allow the edge lengths to
scale after pruning by a multiplicative scaling constant
ζ > 0. We use a conventional abuse of terminology by
saying that a tree T is self-similar meaning that T is a
random tree drawn from a self-similar distribution µ.

A measure-theoretic Definition 1 might be not appeal-
ing for practical analyses that oftentimes involve only a
handful of finite basins. A bridge from this definition
to easily computed stream statistics is provided by the
Tokunaga sequence.

Definition 2 (Tokunaga coefficients [5, 8, 32, 47, 52]).
Fix a coordinated measure µ on T and denote by ni,j
the random number of streams of order i per a randomly
selected stream of order j with respect to µ. For any
pair i < j, the Tokunaga coefficient Ti,j = Ti,j(µ) is the
expected value of ni,j :

Ti,j = Eµ[ni,j ], (10)

where Eµ denotes the mathematical expectation with re-
spect to µ.

We can arrange the Tokunaga coefficients for trees of a
given order K in an upper triangular matrix

TK =


0 T1,2 T1,3 . . . T1,K

0 0 T2,3 . . . T2,K

0 0
. . .

. . .
...

...
...

. . . 0 TK−1,K

0 0 . . . 0 0

 . (11)

Theorem 1 (Tokunaga sequence [32]). Suppose µ is a
self-similar measure on T . Then the Tokunaga coeffi-
cients satisfy the Toeplitz property: Ti,i+k = Tk for any
positive integer pair i, k. In this case the Tokunaga ma-
trix becomes Toeplitz:

TK =


0 T1 T2 . . . TK−1

0 0 T1 . . . TK−2

0 0
. . .

. . .
...

...
...

. . . 0 T1

0 0 . . . 0 0

 . (12)

Proof. Consider the pushforward measure R∗(µ) induced
on T by the Horton pruning operator:

R∗(µ)(A) = µ
(
R−1(A)

)
, ∀A ⊂ T . (13)

Since Horton pruning decreases the order of every stream
by 1, the Tokunaga coefficients TRi,j computed on T
with respect to R∗(µ) satisfy TRi,j = Ti+1,j+1. The self-

similarity of µ implies TRi,j = Ti,j . Combining these re-
lations, we find Ti,j = Ti+1,j+1. This establishes the de-
sired Toeplitz property of the Tokunaga coefficients.

The proof of Theorem 1 shows that in coordinated trees
both prune-invariance and Toeplitz property take the
same algebraic form Ti,j = Ti+1,j+1. This leads to the
following corollary.

Corollary 1 (Prune-invariance vs. Toeplitz). Suppose µ
is a coordinated measure on T . Then the Toeplitz prop-
erty Ti,i+k = Tk and Horton prune-invariance of Eq. (9)
are equivalent (i.e., both hold or do not hold at the same
time).

We refer to the elements Tk of the Tokunaga sequence
as Tokunaga coefficients, which creates no confusion with
the original double-indexed coefficients Ti,j . According
to Theorem 1, each self-similar measure µ corresponds to
a unique non-negative sequence of Tokunaga coefficients
Tk such that

Tk = Ti,i+k = Eµ[ni,i+k] for all i, k > 0. (14)

The Tokunaga coefficients Tk provide a fundamental pa-
rameterization of a self-similar tree and constitute the
main tool of respective applied analyses.

Our Definition 1 of tree self-similarity unifies the alter-
native definitions used in the literature. Burd et al. [5]
define self-similarity in Galton-Watson trees as the Hor-
ton prune-invariance; this is a special case of our defini-
tion since the Galton-Watson trees are coordinated [32].
Peckham [8] and Newman et al. [20] define self-similarity
as the Toeplitz property for Tokunaga coefficients; this is
equivalent to our definition in coordinated trees (Corol-
lary 1). The coordination assumption is further justi-
fied in [32] by showing that the Toeplitz property alone,
without coordination, allows for a multitude of obscure
measures that are hardly useful in practice. Gupta and
Waymire [17] and Peckham and Gupta [21] suggested a
concept of statistical self-similarity that requires a ran-
dom stream attribute Z to have distribution that scales
with order. It can be shown (Sect. 7 in [32]) that (i)
statistical self-similarity for some attributes (e.g., for any
discrete attribute) may only hold asymptotically, and (ii)
multiple attributes, including stream length, magnitude,
and total basin length, are statistically self-similar in a
limit of infinitely large basin that is self-similar according
to our Definition 1.

C. Horton laws for stream numbers, magnitudes in
self-similar trees

We now capitalize on the concept of tree self-similarity
introduced above to establish a key emergent property of
self-similar trees – Horton’s laws for stream numbers and
magnitudes, conveniently parameterized by the Toku-
naga sequence.

Consider the mean number

Ni[K] = Eµ[Ni(T ) | ord(T ) = K]
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of streams of order i in a basin of order K and the mean
magnitude (number of upstream sources) Mi of a stream
of order i. Observe that for a fixed K the stream counts
Ni[K] form a decreasing sequence in i, and the sequence’s
first term N1[K] increases with K. At the same time, the
average magnitudes Mi form an increasing sequence in i;
its first elements M1, . . . ,Mj are independent of basin
order K for any K ≥ j. This explains the notational de-
pendence on K in the average stream counts and absence
of such in the average magnitudes. The definition implies
NK [K] = M1 = 1 and N1[K] = MK for any tree distri-
bution. Moreover, in self-similar trees the two sequences
are deterministically related as [8, 44]

NK−j+1[K] = N1[j] = Mk for any 1 ≤ j ≤ K. (15)

Consider the generating function T (z) =
∞∑
k=1

Tkz
k of

the Tokunaga coefficients and define

t̂(z) = −1 + 2z + T (z). (16)

Theorem 2 (Horton’s law for stream numbers, magni-
tudes in self-similar tree [32, 44]). Consider a self-similar
tree T with Tokunaga sequence Tk and suppose that

lim sup
k→∞

T
1/k
k <∞. (17)

Then, the stream numbers Ni[K] and the magnitudes Mi

obey Horton laws:

lim
K→∞

(
N1[K]R−KB

)
= M <∞, (18)

lim
i→∞

(
MiR

−i
M

)
= M <∞. (19)

The Horton exponents are given by

RB = RM = 1/w0, (20)

where w0 is the only real root of the function t̂(z) in the
interval (0, 1/2] and M is a positive real constant given
by

M = − 1

w0
lim
z→w0

z(z − w0)

t̂(z)
. (21)

Proof is based on the analysis of generating functions for
the sequences Ni[K] and Mi (Appendix IV C); it is given
in Appendix IV D.

Theorem 2 implies that Horton’s laws for mean stream
numbers Ni[K] and magnitudes Mi hold in almost any
self-similar tree. More specifically, the theorem shows
that the validity of the laws is determined by the Toku-
naga sequence Tk, and not the whole distribution µ. Fur-
thermore, the only restriction on the admissible Toku-
naga sequences is given by Eq. (17), which prohibits
super-exponential growth of Tk, such as Tk = k! or
Tk = kk. The theorem establishes a strong form of the

Horton’s law (Eqs. (18),(19)), which implies a weaker
version that is often reported in applied literature:

lim
K→∞

Ni[K]

Ni+1[K]
= RB for any i, and

lim
i→∞

Mi+1

Mi
= RM . (22)

Theorem 2 emphasizes the existence of a multitude
of self-similar measures with the same Horton exponent.
Assume we fix RB and hence the root w0 of t̂(z) according
to Eq. (20). Equation (16) readily asserts that there is an
infinite number of Tokunaga sequences that correspond
to an arbitrary w0 within (0, 1/2]. For example, if RB =
4, then w0 = 1/4 and one needs T (z) = 1/2. This can be
achieved by selecting any of Tk = {2, 0, . . .}, {1, 4, 0, . . .},
{0, 8, 0, . . .}, {2k−1}, etc., where “. . .” denotes trailing
zeros.

We observe that Horton’s law of stream numbers in
Theorem 2 (Eqs. (18)) is an asymptotic statement, dif-
ferent from the ideal Horton law for stream numbers
(2) which is commonly used in the literature. This is
not a mathematical peculiarity – the ideal Horton law
is merely a convenient approximation to the actual be-
havior of stream counts. Its approximate nature is not
related to the finite size of the observed basins – the
ideal Horton’s law rarely holds in theoretical trees of ar-
bitrarily large size. Formally, we show in Appendix IV E
that the ideal Horton’s law for stream numbers in a self-
similar tree holds if and only if Tk = 0 for k > 1. Re-
alistically, Horton’s laws are asymptotic statements of
different strength. The strongest form of Horton’s law
for stream numbers is that of Eq. (18), which implies a
weaker version of Eq. (22). Accordingly, the power re-
lations among different stream attributes (4) and power-
law frequencies of link attributes (6) that we have derived
from the ideal Horton’s law of Eq. (2) remain heuristic.
A formal analysis based on actual Horton’s laws (like
those in Eqs. (18) and (19)), which will be presented
elsewhere, confirms the results of Eqs. (4) and (6) and
reveals additional solutions with oscillatory tail behavior.

The asymptotic nature of Horton’s laws triggers a nat-
ural question of whether one can observe them in finite
trees. The most general approach to answering this ques-
tion is given by the implicit form of the average branch
counts [32]:

N1[K + 1] = −
(̃

1

t̂

)
(K), (23)

where we write

f̃(k) =
1

2πi

∮
|z|=∆

f(z)

zk+1
dz = ak (24)

for an analytic function f(z) represented by a power se-

ries f(z) =
∞∑
k=0

akz
k in a nonempty disk |z| ≤ ∆ (see

Appendix IV C). Informally, the rate of convergence in
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the Horton’s law for stream numbers is determined by
how well the only real zero of t̂(z) within (0, 1/2] is sep-
arated from other zeros. A comprehensive treatment of
this issue, including estimation of the convergence rates
in general case can be found in [32, Sect. 4].

In many cases the sequence Ni[K] can be found ex-
plicitly. For example, consider the Tokunaga sequence
Tk = (c−1)ck−1 with c > 1; it corresponds to the critical
Tokunaga tree discussed below in Sect. II E. Kovchegov
and Zaliapin [32, Sect. 7.6.3] have shown that in this case
RB = 2c and

NK−j+1[K] =
RjB +RB − 2

2(RB − 1)
, j = 1, . . . ,K.

Accordingly, with c = 2.3 (which we suggest in this work
as a suitable value for the observed river basins) the se-

quence N1[K]R−KB takes the form

0.217, 0.156, 0.143, 0.140, 0.139, . . .

with all later terms being equal to the theoretical limit
value of 0.139, all values being rounded to the third signif-
icant digit. In other words, the Horton’s law asymptotic
(18) is closely attained starting from K ' 3. This fast
convergence is typical in Horton’s laws.

Horton’s laws for other stream attributes may or may
not hold depending on additional assumptions about Tk
and other details of basin organization. A comprehen-
sive treatment is possible using the generating function
approach outlined in Appendix IV C. Most importantly,
further analysis often requires specifying a concrete self-
similar distribution µ, not only its Tokunaga sequence
Tk. Below we examine a particularly useful family of
distributions.

D. Random Attachment Model (RAM) of
self-similar trees

According to Theorem 1, every self-similar measure
corresponds to a unique Tokunaga sequence Tk. At the
same time, a multitude of self-similar measures can be
constructed for a given Tokunaga sequence. Here we in-
troduce a particularly symmetric random tree (tree dis-
tribution) for a given Tokunaga sequence and establish its
key properties. We use Poisson attachment construction
within exponential segments; this ensures that the link
lengths have exponential distribution and the attachment
of streams of lower orders to a given stream of a larger
order is done in uniform random fashion. We refer to this
construction as Random Attachment Model (RAM).

The RAM specifies a tree distribution on L by a non-
negative Tokunaga sequence Tk, the order distribution
πK = P(ord(T ) = K), and the distribution of stream
lengths. The model assumes that the lengths of streams
of order j are independent exponential random variables
with rate λj . Hence, the model is specified by three non-
negative sequences:

{Tk}, {λj}, and {πK}.

Each sequence specifies a particular attribute of a random
tree: the Tokunaga coefficients Tk specify the combinato-
rial structure of a tree of a given order; the probabilities
πK specify the frequencies of trees of different orders; and
the rates λj specify the link lengths.

A random tree is constructed in a hierarchical fashion,
starting from the stream of the highest order and adding
side-tributaries of consecutively smaller orders. The tree
order K is selected according to the distribution πK . At
the first step we generate the main stream that will have
order K in the final tree; its length is an exponential
random variable with rate λK . At each of the remaining
K − 1 steps, we add streams of lower orders to the exist-
ing tree by a Poisson attachment procedure. The streams
added at step m will have order i(m) = K − m + 1 in
the final tree. The lengths of the newly added streams
are independent exponential random variables with rate
λi(m). The new streams are added in two steps. First,
we consider the existing tree as a one-dimensional metric
space (union of link segments) and generate a collection
of points on this space according to a homogeneous Pois-
son process. The process intensity depends on the order
of a link within the final tree. Specifically, within every
link added at step K−j+1 (that will have order j in the
final tree) the Poisson intensity is λjTj−i(m). A single
stream is then attached to each Poisson point. Second,
we add two new streams to each source stream of the
current tree (except the sources just added during this
step). The first part of this procedure (Poisson attach-
ment) ensures that the tree has Tokunaga coefficients Tk,
and the second part (adding stream pairs) increases the
tree order by one at each step.

The trees generated by RAM can be equivalently rep-
resented as trajectories of a continuous-time multitype
Hierarchical Branching Process, with time evolving from
the root upstream and member types corresponding to
the stream orders. This approach, explored by the au-
thors in [32], yields the joint distribution of the orders
K1 < K2 of subtrees that share a common root of order
K:

P (K1 = j,K2 = m|K) =

{
S−1
K if j = m = K − 1,

TK−jS
−1
K if j < m = K.

(25)
We now use this result to propose a computationally ef-
ficient recursive construction of RAM trees. A tree of
order 1 is a stream of exponential length with rate γ. To
create a tree of order K > 1 we first generate a link of
exponential length with rate λKSK , where

SK = 1 +

K−1∑
i=1

Ti. (26)

To this link we attach two conditionally (conditioned on
the order K) independent trees whose orders are drawn
from Eq.(25). Each of these trees is generated according
to the same recursive procedure. This algorithm gener-
ates trees with up to 106 edges within seconds, providing
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FIG. 3. Examples of critical Tokunaga trees (special case of RAM). The trees are generated by the critical Tokunaga process
with c = 2.3 and Horton-Strahler order K = 5. The line width is proportional to the contributing area. The figure accurately
represents the tree combinatorial structure; the edge lengths are scaled for a better planar embedding. We notice that the
RAM generates trees with no planar embedding. The current figure uses an ad-hoc embedding; accordingly, the related purely
geometric properties, such as junction angles or spacing between channels, are not a part of the model.

a flexible computational framework for ensemble simu-
lations based on independent statistical realizations of a
tree with fixed parameters. Examples of RAM stream
networks are shown in Fig. 3.

Another useful result of the branching process theory
establishes the necessary and sufficient conditions for a
RAM tree to be self-similar according to Definition 1.
These conditions explicitly parameterize the probabilities
πK and stream length rates λj for an arbitrary Tokunaga
sequence Tk. This emphasizes the richness of self-similar
family.

Theorem 3 (Self-similar RAM; [32, Thm. 11]). Suppose
T is a random tree generated by the RAM with param-
eters {Tk}, {λj}, and {πK}. Then T is a coordinated
tree. Tree T is self-similar with scaling constant ζ > 0
(see Definition 1 and its discussion) if and only if

πK = p(1− p)K−1 (K ≥ 1) and

λj = γ ζ1−j (j ≥ 1) (27)

for some parameters p ∈ (0, 1), γ > 0 and ζ > 0 (and
any Tokunaga sequence Tk).

Corollary 2 (Horton law for the stream lengths). Con-
sider a self-similar RAM tree with parameters given by
Eq. (27). Then the average length Lj of a stream of order

j satisfies

LjR
−j
L =

1

ζγ
<∞ with RL = ζ. (28)

The proof is given in Appendix IV F. We notice that the
Horton law holds here in an exact form, without a limit
in order j.

We show below that the two well-known empirical
properties of self-similar river basins – fractal dimension
and Horton law for the longest stream length – formally
hold in a self-similar RAM tree.

Theorem 4 (Fractal dimension of a self-similar tree).
Consider a self-similar RAM tree with Tokunaga se-
quence Tk and other parameters given by Eq. (27). Let
w0 be the only real root of the function t̂(z) (Eq. (16))
in the interval (0, 1/2]. Then, the fractal dimension of
the tree in the limit of infinite order and after a suitable
length rescaling, is given by

d = max{1,d0}, d0 = − logw0

log ζ
=

logRB
logRL

. (29)

Proof is given in Appendix IV H.

Equation (29) coincides with the expression first ob-
tained by La Barbera and Rosso [45] using a heuristic
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assumption of a basin with an ideal Horton law of stream
numbers. Figure 4A shows a map of d as a function of
the Horton exponents RB and RL.

Theorem 5 (Horton law for the length of the longest
stream). Consider a self-similar RAM basin with param-
eters given by Eq. (27). Let Λk denote the average length
of the longest stream in a basin of order k. Then

lim
k→∞

ΛkR
−k
Λ = Const. <∞ with RΛ = ζ. (30)

Proof is given in Appendix IV I.

E. Critical Tokunaga tree and emergent scaling
relations

Observations on river networks have supported a basic
constraint that the link length distribution is indepen-
dent of the position of the link within a basin [2, 46]. This
motivates one to describe a family of trees that respect
this property. Surprisingly, this leads to a one-parameter
family of critical Tokunaga trees that satisfy multiple ad-
ditional symmetries and include the celebrated Shreve
model [4, 5] as a special case.

The length of a link of order K in the RAM model is an
exponential random variable with rate λKSK , which is a
direct consequence of using Poisson attachment along ex-
ponentially distributed streams. The order-independent
link length implies λKSK = Const. Using the general
form of λK in a self-similar RAM tree (27), one can se-
lect γ such that SK = ζK−1. This corresponds to the
unique form of the Tokunaga sequence in a self-similar
RAM tree with identically distributed link lengths:

Tk = (c− 1) ck−1 (k ≥ 1), c = ζ ≥ 1. (31)

Definition 3 (Critical Tokunaga tree). A self-similar
RAM with p = 1/2 and Tokunaga sequence of Eq. (31) is
called critical Tokunaga tree or critical Tokunaga model.
By Theorem 3, for this model we have πK = 2−K and
λj = γ ζ1−j .

Figure 3 shows three examples of critical Tokunaga
trees of order K = 5 with parameter c = 2.3, which
gives a close approximation to the observed river net-
works (see Table I). Equation (31) is a special case of the
two-parameter sequence Tk = ack−1 introduced by Eiji
Tokunaga [47] to approximate river basin branching; this
sequence has been examined in detail in [8, 19, 20, 38, 44].
The one-parameter sequence of Eq. (31) appears in the
random self-similar network (RSN) model of Veitzer and
Gupta [48], which uses a purely combinatorial algorithm
of recursive local replacement of the network generators
to construct random trees. A theoretical underpinning of
this constraint is revealed via the prism of branching pro-
cess analysis. Kovchegov and Zaliapin [49] have shown
that a random tree T generated by the critical Tokunaga
model is critical and time-invariant in both combinato-
rial and metric forms [32]. In particular, the condition

p = 1/2 is necessary and sufficient for criticality. More-
over, the Geometric Branching Process (that generates
the combinatorial part of a RAM tree) is time invari-
ant if and only if it corresponds to the critical Tokunaga
model. Recall that criticality means that a branching
process has unit average population size after an arbi-
trary but fixed time advancement (in both discrete and
continuous versions). Time-invariance means that the
frequency of orders of subtrees that survive after a given
time advancement coincides with the initial order distri-
bution.

It is natural to assume that the local contributing area
of a link (area that contributes to the link directly, and
not via its descendant joint) is a function of the link
length. This allows us to examine the average total con-
tributing area Ai of a stream of order i. In particular, the
order-independent link lengths imply order-independent
local areas. The following result establishes Hack’s law
in a critical Tokunaga tree.

Theorem 6 (Hack’s law in a critical Tokunaga tree).
Consider a critical Tokunaga tree (Definition 3). Then
the average lengths Λi of the longest stream and the av-
erage total contributing area Ai of a basin are related as

Λi ∼ Const.×
(
Ai
)h
, where

h = d−1= − log ζ

logw0
=

logRL
logRB

. (32)

Proof is given in Appendix IV F.

The Hack’s law of Eq. (32) also holds in more gen-
eral self-similar RAM trees (which may not be critical
Tokunaga) as is shown in Appendix IV H. Figure 4B
shows a map of h as a function of the Horton exponents
RB and RL. The critical Tokunaga case corresponds to
RB = 2RL = 2c and hence d = logc(2c) and h = log2c c;
this case is depicted by green line in Fig. 4.

Combining our results, we obtain the following sum-
mary of the Horton exponents in a critical Tokunaga tree.

Corollary 3 (Horton exponents in a critical Tokunaga
tree). The Horton exponents in the critical Tokunaga
model are given by

2c = RB = RM = RA > RS = RL = RΛ = c. (33)

Proof is given in Appendix IV F.
Corollary 3 reveals that the essential Horton exponents

in critical Tokunaga trees only assume two distinct values
(c and 2c). The inequality RS < RB , which is a part of
Eq. (33), has been conjectured by Peckham [8] for trees
with a well-defined Tokunaga sequence.

Notably, the critical Galton-Watson process with ex-
ponential edge lengths [6], which is equivalent to Shreve’s
random topology model after conditioning on the basin
magnitude, is a special case of critical Tokunaga model
with c = 2 [32, Thm. 15]. In other words, the critical
Tokunaga model offers a natural extension of the criti-
cal binary Galton-Watson process to a similarly versatile
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(A) (B)

FIG. 4. Fractal dimension d (panel A) of equation (29) and Hack’s exponent h = d−1 (panel B) of a self-similar RAM tree
in the limit of infinite size as a function of the Horton exponents RB and RL. Selected levels of d and h are shown by marked
black lines. Green thick lines correspond to the critical Tokunaga process (Definition 3, Eq. (31)) for which RB = 2RL. Blue
dots depict the pairs (RB , RL) estimated in nine real river basins by [42], see also [2, Table 2.1].

family of processes with a wide range of Horton expo-
nents, fractal dimensions, Hack’s exponents, and other
parameters. As such, this model may be useful for mul-
tiple fields beyond hydrology.

Results of Chunikhina [50, 51] imply that the critical
Tokunaga model with c = 2 maximizes the entropy rate
among the trees that satisfy the Horton law of stream
numbers, and that the critical Tokunaga model with a
fixed c maximizes the entropy rate among the trees that
satisfy the Horton law for stream numbers with RB = 2c.

Some additional scaling properties of the critical Toku-
naga trees are collected in Appendix IV G.

F. Critical Tokunaga model closely fits
observations

The critical Tokunaga model provides a very close fit
to the data and scaling relations reported in river studies
over the past decades. Table I summarizes the values of
the key scaling exponents in the critical Tokunaga model
and compares them with exponents in river network ob-
servations and the well-established OCN model [12]. The
table uses the results of Corollary 3, Eq. (33) (Horton
exponents), Theorem 4, Eq. (29) (fractal dimension d),
Theorem 6, Eq. (32) (Hack’s exponent h), and Eq. (6)
(scaling exponents βΛ and βA).

The critical Tokunaga model’s fit to the observed data
is further illustrated in the Beaver Creek basin of Fig.
1. Figure 2 shows seven Horton laws fit by the critical
Tokunaga model with c = 2.3. Specifically, we consider
the following stream attributes averaged over streams of
order K = 1, . . . , 6: the stream number NK (panel A),
the average magnitude MK and the average number SK
of links in a stream (panel B), the average total con-
tributing area AK and the average total upstream chan-
nel length LtotK (panel C), and the average stream length

LK and the average length ΛK of the longest channel to
the divide (panel D). The fitting lines correspond to the
critical Tokunaga model predictions, which impressively
agree with observations of all examined stream attributes
(see figure caption).

III. DISCUSSION

A solid body of observational, modeling, and theoret-
ical studies connects Horton laws, power-law distribu-
tions of and power-law relations among river stream at-
tributes to the self-similar structure of stream networks
[2, 5, 8, 17–19, 21, 36, 37, 39, 48, 52–55]. We suggest
a rigorous treatment of the appearance and parameteri-
zation of Horton laws in river networks using a recently
formulated theory of random self-similar trees [32]. The
proposed framework unifies the existing results and con-
tributes to explaining the ubiquity of Horton laws in den-
dritic systems of arbitrary origin.

The main technical contribution of our work is a rigor-
ous treatment of the appearance of Horton laws in self-
similar trees (Eqs. (18),(19),(22),(28),(30)). We show
that the two fundamental properties – coordination and
Horton-prune invariance – necessarily lead to the Horton
laws for stream numbers and magnitudes (Theorem 2).
Additional mild assumptions, like those in the Random
Attachment Model (RAM), yield the Horton laws for
multiple other attributes (Theorem 5; Corollaries 2,3),
which in turn imply basin fractal dimension (Theorem
4), Hack’s law (Theorem 6), and other power-law scaling
relations (Eqs. (4),(6)). Our results can be easily ex-
tended to other stream attributes such as stream slope,
width, depth and velocity, which are known to be pro-
portional to a power of the upstream magnitude [2, 17].
The developed framework may also facilitate analysis of
the width function [56] or scaling of hydrologic fluxes
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[18, 57] in self-similar basins. Such analyses can be done
either analytically, or using ensemble simulation that is
facilitated by a fast simulation algorithm for RAM trees.

The self-similarity is defined here (Definition 1) as
invariance of a coordinated tree distribution with re-
spect to the operation of Horton pruning, which is in
accord with the empirical and modeling evidence of the
past decades [5, 8, 20, 34, 44, 48]. This approach uni-
fies three seemingly distinct definitions of self-similarity
that existed in the literature [5, 8, 17, 20]. Impor-
tantly, each self-similar tree distribution corresponds to
a unique Tokunaga sequence Tk that quantifies merging
of branches of distinct orders (Theorem 1, Corollary 1).
This provides a fundamental connection between an ab-
stract measure-theoretic prune-invariance property and
the tangible Tokunaga coefficients that can be statisti-
cally estimated in a single tree.

The family of self-similar distributions (Definition 1)
rigorously reproduces the key geomorphic scalings discov-
ered and reconfirmed during the past 80 years for river
basins and summarized by [2, 14, 18, 19, 52], with a close
fit to the examined exponents (Table I, Fig. 2). Inter-
estingly, this fit is achieved within a one-parameter fam-
ily of critical Tokunaga trees (Definition 3, Eq. (31)).
Although trees that satisfy Eq. (31) (and commonly
referred to as Tokunaga trees) have been known for a
long time [8, 47, 48], only very recently a rigorous under-
standing has been gained of the theoretical importance of
this constraint within the general framework of branching
processes [32, 44, 49]. In addition, neither the order dis-
tribution nor link lengths distribution (specified by πK
and λj of Eq. (27)) have been examined in Tokunaga
trees. This justifies our reference to the critical Toku-
naga tree as a novel model. The critical Tokunaga model
provides a natural parametric extension of the critical
binary Galton-Watson branching process (and includes
it as a special case with c = 2), which proved to be an
indispensable model in many areas and remains at the
forefront of theoretical and applied research nearly 150
years after its discovery [58, 59]. This hints at deep and
not fully understood symmetries in the structure of river
networks. The theory of random self-similar trees ex-
plains the mathematical origin of these symmetries and
offers tools for future exploration.

The presented results might advance applied statisti-
cal analysis of river stream attributes, via mapping all
quantities of interest to a single master parameter c of
Eq. (31). Statistical estimation of this parameter can
be designed more effectively than that for a range of
distinct yet possibly related quantities (e.g. multiple
Horton exponents). This in turn facilitates global map-
ping of river network features and studying possible ef-
fects of hydroclimatic variables on landscape dissection.
Corollary 3 shows that multiple Horton laws examined
in this work hold with only two distinct Horton expo-
nents: RB = RM = RA = 2c and RL = RS = RΛ = c.
This substantial reduction of observed quantities is well
supported by data (Table I, Fig. 2) and might inform a

range of modeling and theoretical efforts.

The critical Tokunaga model presents an ultimately
symmetric class of trees characterized by coordination,
Horton prune-invariance, criticality, time-invariance,
identically distributed link lengths, and identically dis-
tributed local contributing areas. Despite these multiple
constraints, this class is surprisingly rich, extending from
perfect binary trees (c = 1) to the famous Shreve’s ran-
dom topology model (c = 2) to the structures reminiscent
of the observed river networks (c ≈ 2.3) and beyond.
While offering a convenient theoretical and modeling
paradigm, the critical Tokunaga model is merely a sub-
class of a much broader family of self-similar trees that
might better accommodate for various problem-specific
data features. For instance, Fig. 4 suggests that the ob-
served stream networks tend to cluster around the critical
Tokunaga line RB = 2RL in the (RB ,RL) space. An ap-
plied study can use the self-similar theory to either focus
on the symmetries of the critical Tokunaga family, or ex-
plore deviations from this stiff parameterization, both of
which may have physical underpinnings.

Multiple properties of the critical Tokunaga family are
well justified by the empirical evidence. We already men-
tioned that the coordination means that the basin struc-
ture is determined by its Horton-Strahler order, and the
Horton prune-invariance implies that the fundamental
scaling laws remain the same after changing data reso-
lution. Criticality ensures that the stream networks uni-
formly fill the space, instead of exploding (supercritical
case) or rapidly fading off (subcritical case). The time-
invariance (invariance of basin order frequencies at dif-
ferent distances to the outlet) might reflect a physical
process of formation of a stream network from sources
downstream, so that a link only “knows” the informa-
tion about the upstream part of the basin, yet remains
unaware of how far it is from the outlet. Deviations from
this invariance might point out to anthropogenic changes
in a basin by which various downstream alterations (dam
construction, sediment aggradation, etc.) impose up-
stream changes that deviate from the natural organiza-
tion of a left-alone erosional landscape. In the same vein,
it would be interesting to find a hydrogeomorphological
explanation for the joint distribution of the merging sub-
basins (25).

The understanding of the hierarchical organization and
scaling in convergent (tributary) river networks gained
here can be extended to other geomorphological pro-
cesses. Important examples include dynamic reorgani-
zation of landscapes and stream networks [60–62] and
scaling of peak flows [63]. Our results can also be ex-
tended to study the divergent (distributary) networks of
river deltas that are commonly represented by a directed
acyclic graph [64] – a next step in complexity after trees
examined in this work. Quantifying the structure, self-
similarity, and scaling of such graphs contributes to a
still-missing unifying theory explaining how deltaic river
networks self-organize to distribute water and sediment
fluxes to the shoreline [65].
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The self-similar family extends beyond the hydrolog-
ical constraints, allowing one to study self-similar trees
with edge lengths that depend on the position within
the hierarchy, arbitrary fractal dimension d > 1, and
arbitrary Horton exponents RB > 2 and RL > 1. For
instance, the RAM might be a suitable model for den-
dritic structures generated by Diffusion Limited Aggre-
gation (DLA). We recall that the geometric form of the
Tokunaga coefficients Tk ∝ ck with c ≈ 2.72 ± 0.22
has been known in DLA for a long time [20, 66]. It
is noteworthy that the independently estimated fractal
dimension of DLA clusters, d = 1.7 ± 0.05 [67], coin-
cides with the fractal dimension of a critical Tokunaga
tree with c = 2.72 ± 0.22 according to our Eq. (29):
d = logc(2c) = 1.7± 0.05.

In this work we examined a very particular class of
graphs justified by hydrogeomorphological applications
– reduced binary trees. Each internal vertex in such a
tree has a fixed degree 3, being connected to a single
downstream link and exactly two upstream links, while
the root and leaves have degree 1. The theory of random
self-similar trees, however, readily applies to trees with
multiple branching and extends to general loopy graphs
(networks).

For instance, all self-similar Galton-Watson (non-
binary) trees has been recently described in [68]. The
self-similar family includes the critical binary Galton-
Watson tree (using the terminology of this work – the
critical Tokunaga tree with c = 2), which is the only
member with a finite branching. All other family mem-
bers have a power-law degree distribution with tail∝ k−α
and index α spanning the interval (2, 3). Natural applica-
tions for non-binary self-similar trees include phylogenet-
ics [69] and statistical seismology, where trees represent
temporal evolution of earthquake clusters [24–27].

More generally, many observed and simulated networks
are known to preserve their key statistical properties un-
der coarse-graining – a renormalization group transfor-
mation that merges selected vertices of a network G ac-
cording to their proximity [70]. Such a transformation is
uniquely represented by a tree T (G) whose edges corre-
spond to mergers among the network’s nodes. The leaves
of T (G) correspond one-to-one to the nodes of G, inter-
nal vertices to the coarse-grained supernodes, and root
to the single ancestral supernode that represents the en-
tire network. Informally, coarse graining of a graph G
corresponds to cutting selected peripheral subtrees of its
merger tree T (G). Different rules of coarse graining cor-
respond to different types of tree pruning, for example
those discussed in [71, 72]. Horton pruning is an impor-
tant member of this larger class of tree reductions. Sta-
tistical invariance of a network G under coarse graining
suggests that the corresponding tree T (G) is invariant
with respect to the associated pruning. This assertion
is supported by numerical analysis of merger trees that
represents 2-dimensional site percolation [73].

IV. APPENDICES

A. Horton-Strahler orders and Horton pruning

The importance of links and junctions in the basin hi-
erarchy is measured by the Horton-Strahler order K ≥ 1
[1, 33]. Each link and its upstream junction have the
same order. The order assignment is done in a hierarchi-
cal fashion, from the sources downstream. Each source
is assigned order 1. When two links of the same order
K merge at a junction, the junction is assigned order
K + 1. When two links with different orders K1 > K2

merge at a junction, the largest order prevails and the
junction is assigned order K1. The connected sequence
of links and their upstream junctions of the same order
K is called a stream (branch) of order K. We denote by
NK = NK [T ] the number of streams of order K in a fi-
nite tree T . The Horton-Strahler order ord(T ) of a tree
T is the maximal order of its links (junctions, streams).
The Horton-Strahler ordering is illustrated in Fig. 1.

The Horton-Strahler orders are closely related to the
operation of Horton pruning R that removes the source
links from a basin. This relation has been first recognized
by Melton [34] and proved valuable in rigorous statisti-
cal analyses of tree self-similarity [5, 8, 21, 32, 44]. For-
mally, we consider the map R : L → L that removes the
source links from a tree T . This may create nonbranch-
ing chains of links connected by degree 2 junctions – ev-
ery such chain is merged into a single link. The Horton
pruning R reduces the order of each surviving stream,
and hence the basin order, by 1. Accordingly, the order
of a tree is the minimal number of Horton prunings that
completely eliminates it, as in Eq. (1). We emphasize
that the pruning cannot cut a stream in the middle – it
can only eliminate the entire stream after a finite number
of iterations [34]. Figure 1 illustrates the Horton prun-
ing for the stream network of Beaver Creek, KY – the
order of this basin is K = 6 because it is eliminated in
six Horton prunings.

B. Power law distribution of link attributes

Consider the value Z(i) of an attribute Z calculated
at link i in a large basin. The average number of links
of order K is given by NKSK , where SK denotes the
average number of links within a stream of order K. One
can heuristically approximate the frequencies of {Z(i)}
by using the same average value ZK for any link of order
K. Then, assuming Horton laws for NK and SK with
exponents RB and RS , respectively, and considering the
limit of an infinitely large basin we find

∣∣i : Z(i) ≥ RKZ
∣∣ ≈ ∞∑

j=K

NjSj ∝
∞∑
j=K

(
RS
RB

)j
∝
(
RS
RB

)K
.

(34)
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This is a punctured (by discrete order) version of a gen-
eral power law relation of Eq. (6).

C. Asymptotic behavior of a sequence: Generating
function approach

This section summarizes the basic facts about gener-
ating functions that are the main tool in establishing
asymptotic behavior of stream attributes in a self-similar
basin.

The generating function f(z) of a sequence ak ≥ 0,
k = 0, 1, . . . , of non-negative real numbers is defined as
a formal power series

f(z) =

∞∑
k=0

akz
k, z ∈ C. (35)

It is known [74] that there exist such a real number r ≥ 0
that the series in the right hand side of (35) converges
to the function f(z) for any |z| < r and diverges for any
|z| > r. The number r is called the radius of convergence
of the sequence ak; it provides notable constraints on the
asymptotic behavior of ak. The smaller the radius of
convergence, the faster the growth of the sequence coeffi-
cients. Informally, 0 < r < 1 implies that the coefficients
ak increase geometrically, r > 1 that the coefficients de-
crease geometrically, and r = 1 that the coefficient vary
at a rate slower than geometric (e.g., polynomially). The
values r = 0 and r = ∞ imply a faster than geometric
growth or decay, respectively.

The Cauchy-Hadamar theorem [74] expresses the ra-
dius of convergence in terms of the series coefficients:

1

r
= lim sup

k→∞
a

1/k
k . (36)

Often, the radius of convergence for ak can be easily
found from the explicit form of f(z). Specifically, if r > 0,
then the function f(z) is analytic within the disk |z| < r
and has at least one singularity on the circle |z| = r, that
is it has to diverge for at least one point on that circle
[76, Thm. 2.4.2]. Thus, the radius of convergence equals
to the modulus of a singularity closest to the origin. Fur-
thermore, recalling that ak ≥ 0 we have

|f(z)| =

∣∣∣∣∣
∞∑
k=0

ak z
k

∣∣∣∣∣ ≤
∞∑
k=1

ak |z|k = f(|z|), (37)

where the equality is only achieved for z = |z|. This
means that the singularity closest to the origin lies on
the real axis (although there might be other singularities
with the same modulus.) This makes the search for such
a singularity much easier: one can only consider the re-
striction of the function f(z) on the real axis. In other
words, despite the use of complex analysis in establish-
ing some of our results, the applied treatment of suitable
generating functions can be done in the real domain. Fur-
thermore, if the singularity of f(z) nearest to the origin

is a simple pole, then the coefficients ak asymptotically
form a geometric series, which we refer to as Horton law.

Proposition 1 (Horton Law for a Simple Pole Se-
quence). Suppose f(z) =

∑∞
i=1 akz

k is analytic in the
disk |z| < ρ except for a single pole of multiplicity one at
a positive real value r < ρ. Then the sequence ak obeys
Horton law

lim
k→∞

ak r
k = α (38)

for some 0 < α < ∞. Furthermore, if we define g(z) =
f(z)(z − r), then α = −g(r)/r.

Proof. We have, for any ∆ ∈ (0, r) [74]:

ak =
1

2πi

∮
|z|=∆

f(z)dz

zk+1
. (39)

By the Residue Theorem [74], we obtain, for any γ ∈
(r, ρ)

1

2πi

∮
|z|=γ

f(z)dz

zk+1
= Res

(
f(z)

zk+1
; 0

)
+ Res

(
f(z)

zk+1
; r

)
(40)

= ak + Res

(
f(z)

zk+1
; r

)
. (41)

Therefore,

ak =
1

2πi

∮
|z|=γ

f(z)dz

zk+1
− Res

(
f(z)

zk+1
; r

)
, (42)

where∣∣∣∣∣
∮
|z|=γ

f(z)dz

zk+1

∣∣∣∣∣ ≤ max|z|=γ |f(z)|
γk

= o
(
r−k

)
. (43)

Consider g(z) = (z − r)f(z). It is known that [74]

Res (f(z); r) = g(r), (44)

and hence

Res

(
f(z)

zk+1
; r

)
=
g(r)

rk+1
=
g(r)

r
r−k. (45)

Accordingly, we obtain

ak = −g(r)

r
r−k + o(r−k), (46)

which completes the proof.

Proposition 1 is used in Sect. IV I,IV J to establish Hor-
ton laws for Λk and Ak.
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D. Proof of Theorem 2

The average magnitude Mk is the mean number of
sources upstream of an order k stream. It can be rep-
resented as the sum of the magnitudes of two order k−1
streams that formed this stream, plus the magnitudes of
all its side tributaries. Hence M1 = 1, and

Mk = 2Mk−1 +

k−1∑
i=1

Mi Tk−i, for k > 1. (47)

The generating function for the average magnitudes Mk

is obtained by multiplying both sides in (47) by zk and
summing over k ≥ 1:

M(z) =

∞∑
k=1

Mk z
k = z + 2zM(z) +M(z)T (z).

Thus,

M(z) =
z

1− 2z − T (z)
= − z

t̂(z)
, (48)

where, according to Eq. (16) of the main text:

t̂(z) = −1 + 2z + T (z), T (z) =

∞∑
i=1

Tkz
k.

The function M(z) is analytic with the exception of ze-
roes and singularities of t̂(z). Observe that t(0) = −1,
and since Tk ≥ 0 we have t(1/2) = T (1/2) ≥ 0. Further-
more, since

d

dz
t̂(z) = 2 +

∞∑
k=1

kTk z
k−1 > 0 for all z ∈ (0,∞),

the equation t̂(z) = 0 has a unique real root w0 of multi-
plicity one in the interval (0, 1/2]. Let rT be the radius of
convergence for T (z), and hence for t̂(z). We notice that
rT > w0, so the radius of convergence of M(z) coincides
with the root of t̂(z) closest to the origin. We claim that
this root is w0. Assume otherwise, so there exists w ∈ C
such that t̂(w) = 0 and |w| < w0. Since w0 is the unique
real root of t̂(z) within (0, 1/2], w must have a non-zero
imaginary part. This means that the singulatiry of M(z)
closest to the origin is not on the real axis, which contra-
dicts (37). Hence the radius of convergence of M(z) is
w0, and w0 is a simple pole of M(z). Proposition 1 now
establishes the result.

E. Exact Horton law

Assume that the Horton law for stream numbers
N1[K], and hence for magnitudes MK , holds exactly (re-
call that M1 = 1):

MK = RK−1
M . (49)

Then,

M(z) =
z

1−RMz

which leads to

t̂(z) = − z

M(z)
= −1 +RMz and T (z) = (RM − 2)z.

This implies that the only self-similar model with exact
Horton law corresponds to the Tokunaga sequence

T1 = RM − 2, Tk = 0 for k > 1.

F. Proofs of Corollary 2, Theorem 6, Corollary 3

Proof of Corollary 2. By definition of RAM, the length
of a stream of order j is an exponential random variable
with rate λj . In a self-similar tree, the rate is given by Eq.

(31): λj = γ ζ1−j . This implies Lj = λ−1
j = γ−1 ζj−1,

which is equivalent to the statement of Theorem 6 (Eq.
(32)).

Proof of Theorem 6. Recall the Horton law for the
average magnitude (Theorem 2, Eq. (19)) that
holds in any tree with a tamed Tokunaga sequence

(lim sup
k→∞

T
1/k
k <∞) and the Horton law for the average

length of the longest stream (Theorem 5, Eq. (30)) that
holds in any self-similar RAM tree. These laws apply to
a critical Tokunaga tree of the current statement. Fur-
thermore, the asymptotic equivalence between the aver-
age basin contributing area and average basin magnitude
(Eq. (52)) implies the Horton law for the average basin
areas with Horton exponent RM . Finally, we use the
general result of Eq. (5) to establish the Hack’s law (Eq.
(32)) in a critical Tokunaga tree.

Proof of Corollary 3. Using the definition of t̂(z) (Eq.
(16)) and the geometric form of the Tokunaga coefficients
(Eq. (31)) we obtain t̂(z) = (1−2cz)(z−1)/(1−cz). The
only real root of t̂(z) within (0, 1/2] is w0 = (2c)−1. By
Theorem 2, Eq. (20) we have RB = RM = 2c, and Eq.
(26) implies SK = cK−1, which corresponds to RS = c.
The equality RS = RL follows from independence of
the distribution of link lengths of their position within
a basin. Finally, RΛ = c is established in Theorem 5, Eq.
(30).

G. Scalings in a critical Tokunaga tree

The critical Tokunaga model (Definition 3) satisfies
Horton’s law for the original stream counts Ni [32,
Cor. 5]:

Ni
Ni+1

p−→ RB as i→∞, (50)
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where
p−→ denotes convergence in probability [75]. This

result strengthens the statement of Theorem 2, Eq. (22)
that is formulated for the respective averages.

The weak law of large numbers holds for the tree or-
der. Formally, denote by T [K] a critical Tokunaga tree
of order K and write |T [K]| for the number of links in
this tree. Then [32, Cor. 6]

logRB
|T [K]|
K

p−→ 1 as K →∞. (51)

Informally, this means that the tree order grows as a
logarithm base RB of the tree size.

The identically distributed link lengths imply identi-
cally distributed local areas, which in turn establishes
the Horton law for Ai. Specifically, in a critical Toku-
naga tree we have (Appendix IV J):

Ai ∼ Const.×Mi, (52)

where xi ∼ yi stands for lim
i→∞

xi/yi = 1. The same ap-

proach shows that the asymptotic of Eq. (52) holds also
for the average total channel length Ltoti upstream of a
stream of order i, with different proportionality constant.
The asymptotic of Eq. (52) formalizes one of the key em-
pirical observations [2] that connects a physical (area Ai)
and a combinatorial (magnitude Mi) attributes of a river
basin. This asymptotic may not hold in a general self-
similar (not critical Tokunaga) tree.

H. Fractal dimension of a self-similar RAM tree

Consider a self-similar RAM tree T (Theorem 3) with

a Tokunaga sequence {Tk} satisfying lim supk→∞ T
1/k
k <

∞, and parameters γ > 0 and ζ > 1. Below we construct
a Markov tree process {ΥK}K=1,2,... corresponding to T
following [32] and use it to find the fractal dimension of
the resulting tree in the limit of infinite tree order. The
construction below closely reproduces that of the RAM
(see the main text), but scales the edge lengths so that
an infinitely large tree has a proper fractal dimension.

Let Υ1 be an I-shaped tree of Horton-Strahler order
one, with the edge length distributed as an exponential
random variable with parameter γ. Conditioned on ΥK ,
the tree ΥK+1 is constructed according to the following
transition rules. We attach new leaf edges to ΥK at the
points sampled by an inhomogeneous Poisson point pro-
cess with the intensity ρj,K = γζK−jTj along the edges
of order j ≤ K in ΥK . We also attach a pair of new
leaf edges to each of the leaves in ΥK . The lengths of all
the newly attached leaf edges are i.i.d. exponential ran-
dom variables with parameter γζK that are independent
of the combinatorial shape and the edge lengths in ΥK .
Finally, we let the tree ΥK+1 consist of ΥK and all the
attached leaves and leaf edges.

By construction, a branch of order j in ΥK becomes
a branch of order j + 1 in ΥK+1 after the attachment
of new leave edges. The length of order j branch in ΥK

(and therefore, the length of order j+1 branch in ΥK+1)
is exponential random variable with parameter γζK−j .
Therefore, in a tree ΥK+1, the number n1,j+1(K + 1) of
side-branches of order one in a branch of order j + 1 has
geometric distribution:

P
(
n1,j+1(K + 1) = r

)
=

γζK−j

γζK−j + ρj,K

(
ρj,K

γζK−j + ρj,K

)r
=

1

1 + Tj

(
Tj

1 + Tj

)r
(53)

for r = 0, 1, 2, . . ., with the mean value

E
[
n1,j+1(K + 1)

]
=

ρj,K
γζK−j

= Tj .

After i ≥ 1 rounds of attachments the mean number
ni,j+i(M) of side-branches of order i in a branch of order
j + i in a tree ΥM (where M = K + i and K ≥ j) is

E
[
ni,j+i(M)

]
= Tj .

Each tree ΥK is distributed as a self-similar RAM tree
[32] with Tokunaga sequence {Tk} and parameters (γ, ζ),
conditioned on its Horton-Strahler order being equal to
K, and with its edge lengths scaled by ζ1−K .

Observe that by construction ΥK ⊂ ΥK+1. Accord-
ingly, there exists the limit space

Υ∞ = lim
K→∞

ΥK =

∞⋃
K=1

ΥK .

The self-similarity of the RAM process suggests that
the limit space does not change its statistical proper-
ties after rescaling, which corresponds here to the Horton
pruning. Let d denote its fractal dimension. That the
limit space includes at least the root branch Υ1 implies
d ≥ 1. Assume that d > 1. Then, denoting the mean
d-dimensional volume of Υ∞ by vol, we have

vol =

∞∑
k=1

tk
vol

ζdk
. (54)

This equation is obtained by splitting a tree Υ∞ into the
subtrees attached to its highest-order branch Υ1. There
is an average of t1 = T1 + 2 subtrees distributed as Υ∞
scaled by ζ−1. In general, for each k, there will be an
average of tk subtrees distributed as Υ∞ scaled by ζ−k.
Scaling the lengths by ζ−k in the d-dimensional space
results in scaling the volume by ζ−dk. The vol term in
(54) can be cancelled out, yielding

t̂
(
ζ−d

)
= 0, (55)

and hence, ζ−d = w0 = R−1
B . This leads to (29).

I. Horton law for Λk

If T is the tree representing a stream network, then the
length of the longest stream is the height of the tree T ,
denoted by height(T ) [6, 32].
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Consider a tree T generated by a self-similar RAM with

a Tokunaga sequence {Tk} satisfying lim sup
k→∞

T
1/k
k < ∞,

and parameters γ > 0 and ζ > 1. Let

Λk = E
[
height(T )

∣∣∣ ord(T ) = k
]

(56)

that represents the mean length of the longest river
stream in a basin with the Horton-Strahler order k. No-
tice that, since height

(
R(T )

)
≤ height(T ),

ζ Λk−1 = E
[
height

(
R(T )

) ∣∣∣ ord(T ) = k
]

≤ E
[
height(T )

∣∣∣ ord(T ) = k
]

= Λk. (57)

Hence, since Λ1 = γ−1, we have Λk ≥ γ−1ζk−1. Next,
let

Y1, Y2, . . . , YN1[T ]

denote the leaf lengths in the tree T . Then, since

height(T ) ≤ height
(
R(T )

)
+ max
j=1,...,N1[T ]

Yj ,

we have,

Λk ≤ E
[
height

(
R(T )

) ∣∣∣ ord(T ) = k
]

+ E

[
max

j=1,...,N1[T ]
Yj

∣∣∣ ord(T ) = k

]

= ζ Λk−1 + γ−1E

N1[T ]∑
j=1

1

j

∣∣∣ ord(T ) = k


≤ ζ Λk−1 + γ−1E

[
1 + log

(
N1[T ]

) ∣∣∣ ord(T ) = k
]

≤ ζ Λk−1 + γ−1 + γ−1 log
(
E
[
N1[T ]

∣∣ord(T ) = k
])
(58)

by Wald’s equation, the Coupon Collector Problem, and
finally, the Jensen’s inequality. Recall (Theorem 2) the
Horton law for the leaf count in a self-similar process

N1[k] = Mk = M RkB + o
(
RkB
)
.

Hence, equations (57) and (58) imply

0 ≤ Λk − ζ Λk−1 ≤ γ−1k logRB + β

for some constant β, and

0 ≤ Λk
Λk−1

−ζ ≤ γ−1 k logRB + β

Λk−1
≤ k logRB + β

ζk−2
→ 0

(59)
as k →∞. Accordingly,

log Λk =

k∑
j=2

log

(
Λk

Λk−1

)
+ log Λ1

= (k − 1) log ζ +

k∑
j=2

log(1 + Ej)− log γ, (60)

where 0 ≤ Ej ≤ (k logRB + β)ζ1−k, and therefore,
∞∑
j=2

log(1 + Ej) converges to a constant. We therefore

conclude that the strong Horton law holds for Λk with
Horton exponent RΛ = RL = ζ:

Λk ∼ Const.× ζk. (61)

J. Horton law for Ak

Assume that the mean local contributing area of a link
of order k equals αk. Then the total mean contributing
area AK of a tree of order K ≥ 1 is

AK =

K∑
i=1

αiSiNi[K], (62)

where SkNk[K] is the mean number of links of order k
in a tree of order K. A convenient recursive expression
is obtained by noticing that A1 = α1 and

AK = 2AK−1 + αKSK +

K−1∑
i=1

Ai TK−i for K ≥ 2.

(63)
The generating function for Ak is given by

A(z) =

∞∑
k=1

Akz
k = 2zA(z) +

∞∑
k=1

αkSkz
k +A(z)T (z),

which yields

A(z) =

∞∑
k=1

αkSkz
k

1− 2z − T (z)
= −D(z)

t̂(z)
= M(z)

D(z)

z
. (64)

Here D(z) is the generating function for the mean local
contributing areas αk Sk of streams of order k. Suppose
that the radius of convergence of D(z) is larger than w0.
Then, by Prop. 1,

Ak ∼ Const.× w−k0 ∼ Const.×Mk. (65)

Consider the critical Tokunaga model. Here αk = α,
Sk = ck−1 and hence

D(z) =
α z

1− cz

whose radius of convergence c−1 coincides with that of
t̂(z). Observe that the radius of convergence of t̂(z) must
be greater than its zero, hence w0 < c−1, and so the
asymptotic of (65) holds.
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