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This paper investigates evanescent waves in one-dimensional nonlinear monatomic chains using
a first-order LindstedtPoincar approach. Perturbation approaches applied to traveling waves in
similar chains have predicted weakly nonlinear phenomena such as dispersion shifts and amplitude-
dependent stability. However, nonlinear evanescent waves have received sparse attention, even
though they are expected to serve a critical role in nonlinear interface problems. To aid in their
analysis, the nonlinear evanescent waves are categorized herein as either complete or transitional
evanescent waves. Complete evanescent waves, including linear evanescent waves, attenuate to
zero amplitude in the far-field. Transitional evanescent waves, only occurring in softening systems,
attenuate to a non-trivial amplitude in the far-field, regardless of the initial amplitude, resulting in
a saturation effect. For both cases, the presented perturbation approach reveals that the imaginary
wavenumber in the evanescent field is a function of space, rather than a constant value as in its
linear counterpart. It also reveals that hardening and softening nonlinearity slow and accelerate
the near-field decay, respectively. The predictions obtained from the perturbation approach are
verified using numerical simulations with both initial-condition (IC) and boundary-continuous (BC)
excitation, documenting strong agreement.

I. INTRODUCTION

The study of wave propagation in linear periodic struc-
tures has a long history due to its relevance in a wide
range of physical systems [1, 2] and broad applications
in science and engineering [3–7]. Recently, extensive
research has focused on nonlinear periodic structures
as nonlinearity can introduce amplitude-dependency,
PT-symmetry breaking, bifurcation phenomena, extra-
harmonic generation, subharmonic bandgaps, and other
behavior missing from linear systems [8–13]. A sig-
nature behavior of nonlinear periodic structures is
amplitude-dependent dispersion and frequency correc-
tions (or ‘shifts’), usually discussed in relation to nonlin-
ear band structure. Nonlinear band structure for propa-
gating waves in a variety of systems has been computed
using the harmonic balance method [14–16], homotopy
analysis [17, 18], and a variety of perturbation approaches
[19–25]. In weakly nonlinear systems, perturbation ap-
proaches are preferred since they yield closed-form, an-
alytical expressions for the band structure. Using the
LindstedtPoincar and multiple scales methods to uncover
amplitude-dependent band structure in discrete systems,
researchers have uncovered the same frequency correc-
tions using either method [20–22]; however, the multiple
scales method enables solution of a broader class of prob-
lems, including propagation of multiple plane waves and
their time-dependent interactions [21, 26, 27]. Very re-
cently, Jiao et al. [28] showed that for boundary excited
waves, the dispersion shift occurs for both frequency and
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wavenumber.

Compared to numerous studies on nonlinear disper-
sion and band structure associated with travelling waves,
sparse attention has been paid to nonlinear evanescent
waves. Narisetti et al. [20] briefly considered nonlin-
ear evanescent waves in a larger study on propagating
waves, and used the propagating solutions to inform an
approximate frequency correction for evanescent waves.
Khajehtourian et al. [29] employed a transfer matrix
method and plotted amplitude-dependent band struc-
ture for both travelling and evanescent waves. In ad-
dition, authors in [30] documented a waveform transi-
tion phenomenon in a softening nonlinear system, where
an evanescent wave evolves into a traveling wave. The
majority of these research efforts emphasize the nonlin-
ear effect as shifted dispersion curves in the imaginary
wavenumber domain, and only provide qualitative pre-
dictions on the attenuation envelope. These features are,
however, vital to certain problems such as wave propa-
gation through linear-nonlinear and nonlinear-nonlinear
material interfaces, where evanescent waves are needed
to match the displacement and stress at interfaces [31].

Motivated by the need for a rigorous analytical treat-
ment of nonlinear evanescent waves, for use in the afore-
mentioned interface problems and others, we develop
an evanescent-specific perturbation approach for predict-
ing amplitude-dependent imaginary wavenumber and at-
tenuation envelopes focusing firstly on weakly nonlin-
ear monatomic chains. We employ the LindstedtPoincar
method to the first-order, and describe the imaginary
wavenumber as a function of space (vis-à-vis a constant).
Hence, we show that in lieu of the conventional disper-
sion diagram, tracking the spatially-dependent imaginary
wavenumber and attenuation envelope accurately pre-
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dicts the spatial profile of nonlinear evanescent waves.
Based on their frequency location relative to nonlinear
and linear stopband, we categorize the nonlinear evanes-
cent waves as one of two types: (i) complete evanescent
waves and (ii) transitional evanescent waves. For transi-
tional evanescent waves, we analyze the wave transition
phenomenon and discover an amplitude-saturation effect.
We then conduct numerical simulations to verify the an-
alytical results. Lastly, we discuss the effect of different
excitation methods (initial versus boundary excitation)
on the resultant evanescent waves, and document the sat-
uration amplitude difference induced by the wavenumber
band-clipping effect.

II. SYSTEM DESCRIPTION

We consider a one-dimensional monatomic chain with
adjacent masses coupled by an elastic spring with linear
k1 and cubic k3 stiffness, as depicted in Fig. 1. The
equations of motion are given as,

müj+k1(2uj − uj−1 − uj+1)

+εk3(uj − uj−1)3 + εk3(uj − uj+1)3 = 0 (1)

where j is the index of an arbitrary mass and uj its dis-
placement. The parameter ε represents a small quantity
denoting weak nonlinearity, which also serves as book-
keeping device [32] in the subsequent perturbation ap-
proach. A positive coefficient εk3 corresponds to a hard-
ening nonlinear system, while a negative one corresponds
to a softening one. Note that the quadratic nonlinearity
is not considered in this study since its effect on dis-
persion shifts does not occur until higher orders in the
analysis [24].

The monatomic system we study herein not only serves
as a cornerstone to understand the nonlinear evanescent
field, but arises in a multitude of physical systems at
varying scales. In anharmonic three-dimensional crys-
tals, the monatomic system represents acoustic wave
propagation in the [100], [110] and [111] directions. In
electromagnetics, the nonlinear monatomic system gov-
erns waves in macroscale media where cubic terms arise
from the Kerr nonlinearity [22, 33, 34], and in acoustics
where weak cubic stiffness can arise from material or ge-
ometric nonlinearity [35, 36].

FIG. 1. The schematic of the studied nonlinear monatomic
system

III. PERTURBATION ANALYSIS

We briefly review the nonlinear dispersion shift for
traveling waves in the monatomic chain, and then present
the analysis for nonlinear complete evanescent waves and
transitional evanescent waves.

Introducing nondimensional time τ = ωt, linear natu-
ral frequency ωn =

√
k1/m, and normalized cubic stiff-

ness Γ = k3/k1, Eq. (1) can be rewritten as,

ω̄2 d
2uj
dτ2

+(2uj − uj−1 − uj+1)

+εΓ(uj − uj−1)3 + εΓ(uj − uj+1)3 = 0, (2)

where ω̄ = ω/ωn denotes nondimensional frequency.
According to the Lindstedt-Poincar approach [32], we

introduce asymptotic expansions for the displacement
and frequency,

uj = u
(0)
j + εu

(1)
j +O(ε2), (3)

ω̄ = ω0 + εω1 +O(ε2). (4)

Updating Eq. (2) yields an expanded equation of motion,

ω2
0

d2u
(0)
j

dτ2
+ ε(ω2

0

d2u
(1)
j

dτ2
+ 2ω0ω1

d2u
(0)
j

dτ2
) =

−(2u
(0)
j − u

(0)
j−1 − u

(0)
j+1)− ε(2u(1)j − u

(1)
j−1 − u

(1)
j+1)

−εΓ[(u
(0)
j − u

(0)
j−1)3 + (u

(0)
j − u

(0)
j+1)3] +O(ε2) = 0. (5)

We next separate the expanded equation into orders of ε
up to the second-order,

ε0 :

ω2
0

d2u
(0)
j

dτ2
+ (2u

(0)
j − u

(0)
j−1 − u

(0)
j+1) = 0, (6)

ε1 :

ω2
0

d2u
(1)
j

dτ2
+ (2u

(1)
j − u

(1)
j−1 − u

(1)
j+1) = −2ω0ω1

d2u
(0)
j

dτ2

−Γ[(u
(0)
j − u

(0)
j−1)3 + (u

(0)
j − u

(0)
j+1)3]. (7)

A. Travelling Waves

For traveling waves, with real wavenumber µ, the 0th-
order equation, Eq. (6), admits a plane wave solution

u
(0)
j =

A

2
eiµje−iτ + c.c, (8)

where herein c.c denotes the complex conjugate of all pre-
ceding terms, and A the complex wave amplitude. Sub-
stituting Eq. (8) into Eq. (6) yields the 0th-order (linear)
dispersion relation,

ω0 =
√

2− 2cos(µ). (9)
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Next, updating the 1st-order equation, Eq. (7), with
the 0th-order solution, and eliminating secular terms on
the right-hand side, yields an expression for the corrected
frequency ω1, and ultimately, the nonlinear dispersion
relationship,

ω̄(µ;A) =
√

2(1− cos(µ))

+ ε
3Γ|A|2(cos(2µ)− 4cos(µ) + 3)

4
√

2(1− cos(µ))
+O(ε2),

(10)

where the second term on the right-hand side captures
the amplitude-dependent nonlinear correction (or shift).
Further derivation details can be found in [20]. We note
that at small amplitudes, the cutoff frequency of the non-
linear passband is given by,

ω̄cutoff ≡ ω̄(µ ≡ π) = 2 + 3εΓ|A|2. (11)

As illustrated in Fig. 2, a hardening nonlinearity
broadens the passband by shifting dispersion branches
upwards, resulting in a nonlinear passband extension
(NPE), while a softening one lessens the passband by
shifting branches downwards, resulting in a nonlin-
ear stopband extension (NSE). Note that the shifts in
the schematic are amplified for graphical illustration.
Above the (nonlinear) cutoff frequency, the wavenum-
ber contains an imaginary component which generates an
amplitude-decaying evanescent field. In a linear system,
this imaginary component is only a function of frequency
and remains constant as the wave propagates [37]. How-
ever, in a nonlinear system, the amplitude attenuation
will generate a spatially-dependent dispersion correction,
which in turn will influence the local attenuation.

We categorize two types of evanescent waves, namely
complete evanescent waves and transitional evanescent
waves. The former, to include linear evanescent waves,
denotes an evanescent wave which asymptotically ap-
proaches zero amplitude in the far-field, while the latter
denotes a nonlinear waveform transition resulting in a fi-
nite amplitude in the far-field. As suggested in Fig. 2’s
embedded table, a complete evanescent wave occurs when
a signal’s frequency is above both linear and nonlin-
ear cutoff frequencies, whereas a transitional evanescent
wave, only occurs in softening systems, when the fre-
quency falls in the NSE, below the linear cutoff frequency.
These two types of evanescent waves will be discussed in
detail in the following two subsections.

B. Complete Evanescent Waves

First we discuss complete evanescent waves resulting
from excitations in the mutual bandgap of linear and
nonlinear system.

Without loss of generality, we study an arbitrary sec-
tion of the evanescent field composed of three consec-
utive masses. Assuming the amplitude attenuation in
this section is relatively small such that the imaginary

FIG. 2. Nonlinearly shifted dispersion for propagating waves
(i.e., real wavenumbers) in a monatomic chain, with ampli-
tude |A| = 0.5. Blue, red and yellow curves represent the
linear, hardening, and softening nonlinear dispersion, respec-
tively. The corresponding cutoff frequencies are marked on
the vertical axis. The nonlinear passband extension (NPE)
and nonlinear stopband extension (NSE) are indicated to the
right. Three example signal frequencies and their correspond-
ing waveforms in each system are presented in the embedded
table.

wavenumber does not vary locally, we again seek a plane
wave solution satisfying Eq. (6),

u
(0)
j+κ =

A

2
ei[κµ−τ ] + c.c κ = −1, 0, 1 (12)

where µ = µr + iµi denotes the complex wavenumber
at the considered section, and the complex amplitude
A is associated with the jth mass. Note that Eq. (12)
is identical to Eq. (8) for the three masses considered
with the exception of a complex wavenumber. Substitut-
ing Eq. (12) into Eq. (6) yields the complete evanescent
wave’s 0th-order dispersion relationship,

ω0 =
√

2− ei(µr+iµi) − e−i(µr+iµi). (13)

To ensure the frequency is real, the real component
µr must equal either 0 or π. For the monatomic chain’s
acoustic branch, µr equates to π at the right edge of the
Brillouin zone and maintains this value throughout the
bandgap [37]. Thus, Eq. (13) can be re-written as,

ω0 =
√

2 + 2cosh(µi). (14)

Note that if a grounded monatomic chain, or a chain with
multiple degrees of freedom per unit cell, is considered,
the real wavenumber component may take on the value
of 0 in at least one of the bandgaps.

Next, we update Eq. (7) with the 0th-order solution
and eliminate secular terms, yielding

ω0ω1 −
3ΓAA

4
(
3

2
e−µi +

3

2
e−2µi +

1

2
e−3µi + 1 +

3

2
eµi +

3

2
e2µi +

1

2
e3µi) = 0. (15)
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The first-order frequency correction term then follows,

ω1 =
3Γ|A|2(e3µi + 1)(eµi + 1)3

8ω0e3µi
. (16)

The nonlinear frequency correction is an even function
of imaginary wavenumber µi, indicating reciprocity due
to geometric symmetry. Note that the obtained solution
is fundamentally different from the results one might ob-
tain by inserting µ = µr + iµi into the traveling wave
solution, Eq. (10), as done in [20] to obtain an approx-
imate evanescent solution. Such an approach conflicts
with an assumption made early in the perturbation anal-
ysis that the wavenumber is strictly real (since the focus
was on travelling waves) and thus the complex conjugate
of eiµ is e−iµ, which is violated for complex µ.

Combining Eq. (16) and Eq. (14) yields the full expres-
sion of the first-order perturbation result for the complete
evanescent wave,

ω̄ =
√

2 + 2cosh(µi) + ε
3Γ|A|2(e3µi + 1)(eµi + 1)3

8
√

2 + 2cosh(µi)e3µi

.

(17)

This equation specifies the frequency for a given ampli-
tude and imaginary wavenumber component at the jth

mass.
Alternatively, for a given frequency and amplitude,

Eq. (17) provides the imaginary wavenumber component
at the section of interest such that Eq. (12) can then
be employed to find the amplitudes of the neighboring
masses (i.e., for κ = −1, 1). We pursue this approach
to compute the entire evanescent wave field, as follows.
Once the neighboring mass amplitudes are determined,
we shift the section location by one unit, such that, for
example, the neighboring mass, j+1, becomes the center
of the new section. The amplitude of the j + 2 is com-
puted using Eqs. (17) and (12) with A now representing
the amplitude of the j + 1 mass. Repeating this proce-
dure yields the entire attenuation envelope. Due to the
validity of the perturbation approach requiring small am-
plitudes, we only follow this procedure in the evanescent
(or downstream) direction since the opposite direction
yields monotonically increasing amplitudes. We present
results from this procedure next.

In Fig. 3 we compare evanescent quantities for nonlin-
ear monatomic systems, corresponding to hardening and
softening nonlinearity, with those for a linear monatomic
chain. Figures 3a and 3c feature a hardening nonlinearity
(εΓ = 0.1) with an excitation amplitude of 0.5 operating
at a frequency of 2.1, above the nonlinear cutoff frequency
specified by Eq. (11). This frequency choice is repre-
sented by Excitation Frequency A” in Fig. 2. Figures
3b and 3d consider a softening nonlinearity (εΓ = −0.1)
with the same excitation amplitude as the hardening case
but at a frequency of 2.01 to ensure small initial atten-
uation. This frequency choice is represented by Excita-
tion Frequency B” in Fig. 2. In both cases, the linear
system’s imaginary wavenumber components are posi-
tive constants indicated by red straight lines in Figs. 3a

FIG. 3. Results for nonlinear and linear complete evanes-
cent waves. The top row depicts the evolution of imaginary
wavenumber along the downstream direction, while the bot-
tom row translates the imaginary wavenumber into a discrete
attenuation envelope; the left column corresponds to a hard-
ening nonlinear system, and the right column to a softening
system.

and 3b, resulting in exponentially-decaying dash-line en-
velopes in Figs. 3c and 3d. In contrast, as the nonlin-
ear systems’ evanescent waves (blue lines) progress along
the chain, as expected, their amplitudes decrease and
their imaginary wavenumber components gradually ap-
proach the linear system’s constant value. Since the
frequencies considered in both hardening and softening
systems are above the linear cutoff frequency, the imag-
inary wavenumber components approach non-zero, con-
stant values, resulting in complete amplitude decay in
the far-field. Hence we choose to term these ‘complete
evanescent waves.’

The presence of nonlinearities fundamentally alters the
evanescent wave dynamics. As seen in Figs. 3a and 3c,
the nonlinear imaginary component of the wavenumber
in a hardening system begins with a lower value, and thus
a slower amplitude decay in the near-field, compared to
its linear counterpart. The softening nonlinear system,
as seen in Figs. 3b and 3d, results in a higher initial
imaginary wavenumber component than its linear coun-
terpart, which induces a rapid drop in the near-field am-
plitude. We note further that the attenuation envelope
of a nonlinear complete evanescent wave deviates from
an exponential.

C. Transitional Evanescent Waves

In addition to complete evanescent waves, softening
systems exhibit a second evanescent wave for frequencies
lying in the NSE. This type of evanescent wave attenuates
in the near-field, but maintains a finite amplitude in the
far-field. We therefore choose to term it a ‘transitional
evanescent wave.’

A transitional evanescent wave occurs at frequencies
in the NSE, as represented by Excitation Frequency C in
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Fig. 2. In the near-field, such a wave attenuates due to
its location in the nonlinear bandgap. However, as the
wave amplitude decreases, the corresponding nonlinear
shift of the travelling wave dispersion also decreases such
that the dispersion curve rises from its initially shifted
position. In this process, the NSE region shrinks until
the lower boundary of the NSE aligns with the excita-
tion frequency; or equivalently, the excitation frequency
intersects the travelling wave dispersion curve at the right
edge of the Brillouin zone. At this diminished wave
amplitude, which we term the ‘saturation amplitude,’
the imaginary wavenumber component reaches zero, and
therefore the wave maintains its amplitude from this lo-
cation onward.

For a given monatomic chain, the saturation ampli-
tude, Asat, is a sole function of the excitation frequency
and is independent of the excitation amplitude. It can
be calculated by equating the nonlinear cutoff frequency
to the excitation frequency, ωcutoff = ω̄, in Eq. (11),

Asat =

√
ω̄ − 2

3εΓ
. (18)

Note that the saturation amplitude is only valid in soft-
ening systems (i.e., εΓ < 0).

For the saturation envelope, the perturbation result
in Eq. (17) yields accurate results for the transitional
evanescent wave when the saturation amplitude is small
– see Figs. 7a,b in Appendix. When the saturation am-
plitude is considerably larger, however, the imaginary
wavenumber component changes rapidly in the near-field
such that the local imaginary component of wavenumber,
µi, cannot be treated as a constant for three consecutive

masses, as done earlier. Consequently, Eq. (17) gener-
ates overestimated imaginary wavenumbers, such that
the amplitude of the next neighboring mass may drop
below the saturation value – see Figs. 7c-h in Appendix.

To address this issue, we modify the 0th-order solution
form such that the wave amplitude admits a local expo-
nential decay in any three consecutive masses considered.
We thus seek a solution ansatz of the form Eq. (19),

u
(0)
j+κ =

1

2
[(|A| −Asat)e−κζ +Asat]e

i[θ+κµr−τ ] + c.c,

κ = −1, 0, 1 (19)

where ζ denotes the local decay factor at the section cen-
tered at the jth mass, and complex amplitude A is ex-
pressed in the polar form |A|eiθ. This ansatz ensures the
wave amplitude in the field is strictly greater than the
saturation amplitude. We determine ζ after the nonlin-
ear dispersion expression is derived. We note that the
0th-order solution sought for complete evanescent waves
(i.e., Eq. (12) in Sec. III. B) can be treated as a special
case of Eq. (19) by setting Asat to zero and ζ to µi.

Substituting Eq. (19) into Eq. (6) with µr = π
yields the 0th-order dispersion relationship for transi-
tional evanescent waves,

ω0 =

√
2

|A|
(|A|+Asat + cosh(ζ)(|A| −Asat)) (20)

We next update Eq. (7) with Eq. (19) and Eq. (20). By
eliminating the secular terms in this updated equation,
we can derive the nonlinear correction ω1 as a function
of amplitude |A| and decay factor ζ, such that the full
expression of the first-order perturbation result for tran-
sitional evanescent waves is,

ω̄ =

√
1

|A|
(2|A|+ α+ β) + ε

3Γ

8
√
|A|(2|A|+ α+ β)

(2|A|3 + 3|A|2(α+ β) + 3|A|(α2 + β2) + α3 + β3), (21)

where

α = (|A|−Asat)eζ +Asat, (22)

β = (|A|−Asat)e−ζ +Asat. (23)

Similar to Sec. III. B, at a given signal frequency ω̄
and starting amplitude A, we find the local decay factor
ζ via inversion of Eq. (21). Once the local decay factor ζ
is obtained for the initial triplet of masses, we compute
the amplitude of the downstream neighboring mass in
Eq. (19), and shift the section location by one unit. The
computed neighboring mass’s amplitude is now at the
center of the new section where we calculate its corre-
sponding local decay factor ζ. Repeating this procedure
yields the entire transitional evanescent wave envelope in
the downstream direction.

We present the results for an example transitional

evanescent wave in Figs. 4a-b where the initial ampli-
tude equals 0.5 and the frequency ω̄ equals 1.95. For
numerical reference, the saturation amplitude at this fre-
quency is Asat = 0.408 according to Eq. (18). To assist in
interpreting the nonlinear behavior, we derive an equiv-
alent imaginary wavenumber component at each mass
by comparing its amplitude to its downstream neighbor,

µeqi (j) ≡ ln( A(j)
A(j+1) ), and also plot it in Fig. 4a.

In Fig. 4a, we observe the decay factor ζ and the
equivalent imaginary component of the wavenumber µeqi
steadily decrease as the wave progresses. Compared to
the slow decrease in ζ, µeqi experiences a rapid decrease.
It is this rapid change that necessitated the need to mod-
ify the 0th-order solution approach. Further, we observe
the local decay factor ζ converges to a constant value in
the far-field. This convergence indicates that when the
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FIG. 4. Perturbation results for transitional evanescent
waves. (a) The evolution of the local decay factor ζ and
the equivalent imaginary wavenumber component µeq

i in the
downstream direction. (b) The nonlinear attenuation enve-
lope and the saturation amplitude. (c) Attenuation envelopes
initiated at varying amplitudes. The solid and dashed curves
represent envelopes obtained from a spatially-varying ζ and
an uniform exponential index ζ∗ computed from the conver-
gence, respectively.

wave amplitude approaches the saturation value, as plot-
ted in Fig. 4b, the local decay factor can be treated as a
constant, and the attenuation is essentially an exponen-
tial decay to the saturation amplitude. This convergence
value can be derived by introducing a small perturbation
to the amplitude in Eq. (21) such that it lies just above
the saturation amplitude, i.e., |A| = Asat + δ, where δ
denotes a small positive perturbation. Taylor expanding
the updated Eq. (20) around δ yields,

ω̄ =2 + 3εΓA2
sat + (

2cosh(ζ)− 2

4Asat
+

3AsatεΓe
−ζ(5e2ζ + 6eζ + 5)

8
)δ +O(δ2) (24)

We note that Eq. (18) allows us to eliminate the 0th-order
terms of the expansion and the left hand-side of Eq. (24).
Thus we can further simplify the expression to,

(
2cosh(ζ)− 2

4Asat
+

3AsatεΓe
−ζ(5e2ζ + 6eζ + 5)

8
)δ

+O(δ2) = 0 (25)

For this expression to hold to the leading order in δ,
the coefficient of the first-order term must equal zero,
yielding the convergence value,

ζ∗ = ln(
4
√
−9A4

sat(εΓ)2 − 6A2
sat(εΓ) + 2− 9A2

sat(εΓ)

15A2
sat(εΓ) + 2

)

(26)

For the chosen parameter set, ζ∗ is found to be 0.664,
agreeing closely with the results in Fig. 4a (i.e, at ap-
proximately mass index 7 and beyond). Therefore, one
may approximate a transitional wave’s envelope via an
exponential-decay envelope with uniform index ζ∗ and
offset Asat if the wave amplitude is close to the satura-
tion value.

In Fig. 4c, we present attenuation envelopes initiated
at varying amplitudes starting at the first mass, and com-
pare the envelopes obtained via a spatially-varying decay
factor ζ found using Eq. (21) to those via a constant de-
cay factor ζ∗ from Eq. (26). We observe that at initial
amplitudes close to the saturation amplitude, the approx-
imation using a ζ∗ envelope is highly accurate.

IV. NUMERICAL VERIFICATION

To numerically verify the attenuation envelopes for the
two types of nonlinear evanescent waves identified, we
construct a sufficiently long monatomic chain and sim-
ulate the dynamics using scripts written in MATLAB.
Solutions to the governing equations, Eq. (2), are com-
puted via direct numerical integration using the MAT-
LAB function ODE45. Two types of excitation are con-
sidered: initial-condition (IC) excitation and boundary-
continuous (BC) excitation. The former excitation spec-
ifies the initial displacement and velocity for each mass
based on values derived from the perturbation solution.
The latter excites a quiescent system by prescribing con-
tinuous harmonic oscillation at the boundary mass iden-
tified by j = 0.

We first consider the IC excitation, with the initial
conditions of each mass, j ≥ 1, following Eq. (27),

uj = A(j)sin(jµr)

u̇j = A(j)ω̄cos(jµr) (27)

where A(j) denotes the amplitude of the jth mass accord-
ing to the predicted attenuation envelope. The bound-
ary mass j = 0 has a prescribed displacement Asin(ωt)
to remove the edge effect of the finite system. We con-
fine our attention to the time-evolution of the wave near
the boundary j = 0. If the waveform specified by the
initial conditions persists for ten periods, we confirm the
perturbation-predicted result is a valid and stable solu-
tion to the problem.

Fig. 5 depicts numerical results for the IC excitation
for both complete evanescent waves (Figs. 5a-d) and tran-
sitional evanescent waves (Figs. 5e-f). The transitional
evanescent wave solution here adopts the perturbation
results in Eq. (21) with a spatially-varying ζ. Note that
the character of these solutions differ significantly from
linear evanescent waves (i.e., the zeroth-order solutions),
which have exponentially decaying envelopes. Overall,
we observe good agreement between the qualitative shape
and quantitative predictions of the perturbation results
and numerical simulations for hardening and softening
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complete evanescent waves in Figs. 5a and 5c. The sat-
uration effect shown in Fig. 5e also matches closely with
the numerical results. Despite the transient behavior
at the start of Fig. 5b, the three time-history responses
(Figs. 5b, 5d and 5f) converge to their initial states, illus-
trating that the perturbation results on the left are suf-
ficiently close to those generated by the governing equa-
tions.

FIG. 5. Numerical verification of complete and transitional
evanescent waves for initial-condition excitation. (a),(c) and
(e) Comparison between perturbation-predicted (red dashed
line), numerically-simulated (blue solid line) and linear (green
dash-dotted line) amplitude envelopes for hardening nonlin-
earity (ω̄ = 2.1), softening nonlinearity (ω̄ = 2.01), and soft-
ening nonlinearity (ω̄ = 1.95) with saturation effect. The
numerical time responses of the first five masses in the sys-
tem are plotted on the right in (b), (d) and (f). The color of
each curve in (b),(d) and (f) is associated with the color of
the mass identified on the left.

We note that, compared to the linear amplitude enve-
lope (green), the perturbation results (red) correctly pre-
dict the direction of the nonlinear shift. The small quan-
titative differences between perturbation results (blue)
and numerical simulations (red) in Figs. 5a and 5c mainly
arise from the amplitude assumption in Eq. (12), where
the imaginary wavenumber component is considered uni-
form across the triplet of masses - this assumption is
relaxed in Fig. 5e, where performance improves. As ob-
served in the figures, this assumption provides very good
approximations in the far-field, but may generate small
errors at the initial amplitude in the near-field. Near-field
improvements can likely be achieved by carrying-out the
perturbation analysis to higher orders.

For practical applications, the boundary-continuous
excitation may be more appropriate as it appears in a
large class of physical systems, such as encountered when
studying interface problems. In Fig. 6 we present nu-
merical simulation results using a BC excitation. For
complete evanescent waves, the BC excitation results in

roughly the same attenuation envelope as the IC exci-
tation, depicted in Figs. 6a and 6b. Therefore, we con-
firm the perturbation solutions are capable of predicting
complete evanescent waves excited from the boundary.
For transitional evanescent waves, however, we observe a
strong time-dependency on the attenuation envelope and
a lower saturation amplitude in Figs. 6c and 6d.

In Fig. 6c, the attenuation envelope rises in amplitude
as the simulation time increases, and the rise is more
pronounced in the far-field than in the near-field. This
phenomena is due to the small group velocity at the ex-
citation frequency close to the edge of the Brillouin zone.
A small group velocity suggests a slow energy propaga-
tion, and thus a longer time for energy to accumulate
at each mass. In fact, the time to achieve the steady-
state envelope increases for masses further away from
the boundary excitation, as depicted in Fig. 6d. Despite
the strong time-dependency, we observe a clear conver-
gence tendency for the attenuation envelope in Fig. 6c.
The converging saturation amplitude is approximately
A = 0.3, as highlighted by the red dashed line.

Of note in Fig. 6c is a discrepancy between the satu-
ration amplitude observed in numerical simulations (red
dashed line) versus that predicted by the perturbation
analysis (blue dashed line). This discrepancy arises
only in transitional evanescent waves under boundary-
continuous excitation (and not under initial-condition
excitation), and can be explained via the wavenumber-
space band clipping phenomenon identified in [28] for
nonlinear travelling waves excited at a boundary. Specifi-
cally, they noted that a boundary-excited harmonic wave
in a weakly nonlinear system generates both a frequency
shift and a wavenumber clipping near the edge of the
Brillouin zone, as reproduced in Fig. 6e. This plot of
travelling waves is generated using their iteration-based
method at the observed saturation amplitude A = 0.3. In
the zoomed-in view, we focus on the region near the cut-
off frequency where the two nonlinear dispersion curves of
travelling waves detach. We observe the dispersion curve
from BC excitation (yellow) ends before reaching µ = π,
and exhibits a lower cut-off frequency than that of the IC
excitation dispersion (red). As discussed in Sec. III. C.,
at a saturation amplitude, the excitation frequency meets
the cutoff frequency of the system. In Fig. 6e, we observe
the excitation frequency (green dashed line) lies close to
the end of the BC excitation dispersion, which suggests
the saturation amplitude for the system is approximately
0.3 with the wavenumber-clipping effect, agreeing with
the numerical simulation results in Fig. 6c. Since the
system has softening nonlinearity, a larger amplitude is
required to shift the IC excitation dispersion curve down-
wards to intersect the excitation frequency at µ = π,
which indicates a higher saturation amplitude for the IC
excitation. Hence, we illustrate that the BC excitation
results in a lower saturation amplitude, and that this
value can be calculated using the presented perturbation
approach together with the band clipping method pro-
posed in [28].
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FIG. 6. Numerical verification with boundary-continuous ex-
citation. (a) Numerical attenuation envelopes of a complete
evanescent wave in a hardening system resulting from BC
and IC excitation. (b) The numerical attenuation envelopes
of a complete evanescent wave in a softening system resulting
from BC and IC excitation. (c) The numerical attenuation
envelope with selected simulation time (measured in excita-
tion period T ) for amplitude A = 0.5. The blue and red
dashed lines indicate the saturation amplitude predicted from
initial-condition excitation and boundary-continuous excita-
tion, respectively. (d) Time responses of selected masses for
A = 0.5. (e) Band-clipping effect on the studied system for
A = 0.3. The green dashed line in the zoomed-in view denotes
the excitation frequency.

V. CONCLUDING REMARKS

We investigated nonlinear evanescent waves in a cubic
weakly nonlinear monatomic chain via a first-order Lind-
stedtPoincar perturbation approach. The perturbation
results reveal that the wavenumber’s imaginary compo-
nent is as a function of space. For frequencies higher
than the linear cutoff frequency, the perturbation solu-
tions predict a complete evanescent wave with a slower
(hardening system) or faster (softening system) decay
rate than found in the linear system. For frequencies
located in the NSE of a softening system, a transitional
evanescent wave emerges with an amplitude saturation

phenomenon – i.e., regardless of initial amplitude, the
far-field amplitude converges to a finite value. The per-
turbation solution also suggests the envelope of such a
system can be modeled as a exponential decay with a
saturation amplitude offset. Direct numerical simulation
of the governing equations verify the perturbation results
and the saturation effect. We show that initial-condition
and boundary-continuous excitation lead to the same re-
sults for complete evanescent waves, but different satura-
tion amplitudes for transitional evanescent waves. This
phenomenon is qualitatively explained by a wavenumber
clipping phenomenon.

While the presented method generates quantitative re-
sults agreeing with numerical simulations, it also has re-
strictions inherent in the LindstedtPoincar method. The
method limits the analysis to a frequency shift and does
not yield evolution equations for amplitude and phase,
such as found in averaging and multiple scales analy-
sis. For the special case of BC-excited waves excited
near the edge of the Brillouin zone, the presented anal-
ysis cannot directly capture clipping in the wavenumber
domain. Follow-on work is suggested which uses more
advanced analysis tools to directly analyze these special
cases. Lastly, we note that the developed perturbation
analysis is broadly applicable and can be employed to
study evanescent waves in a variety of discrete, nonlinear
periodic structures.
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VI. APPENDIX

We present in Fig. 7 the imaginary wavenumber and
attenuation envelopes derived from the perturbation so-
lution, Eq. (17), and the modified solution, Eq. (21).
We observe that when the saturation amplitude is low,
as shown in Figs. 7a and b, the standard and modi-
fied solutions yield similar imaginary wavenumber com-
ponents and attenuation. However, as the saturation
amplitude increases, the perturbation approach initially
developed for complete evanescent waves predicts over-
estimated imaginary wavenumber components that de-
crease the wave amplitude below the saturation ampli-
tude. In addition, the higher the saturation amplitude,
the less accurate this perturbation solution becomes. In
the last column, Figs. 7g and h, Eq. (17) predicts an over-
estimated imaginary wavenumber component four times
larger than that predicted by Eq. (21).
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FIG. 7. The saturation effect derived from standard and modified perturbation results. Each column features the resultant
imaginary wavenumber component (top row) and attenuation envelope (bottom row) for selected frequencies. In each sub-
figure, blue solid curves denote the result from the modified perturbation result, and red solid lines the standard perturbation
result. A round marker refers to a valid result, and a cross marker suggests an invalid once since the amplitude at this point
is below the saturation amplitude indicated by the gray dashed line.
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