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Odd materials feature antisymmetric response to perturbations. This anomalous property can
stem from the nonequilibrium activity of their components, which is sustained by an external energy
supply. These materials open the door to designing innovative engines which extract work by
applying cyclic deformations, without any equivalent in equilibrium. Here, we reveal that the
efficiency of such energy conversion, from local activity to macroscopic work, can be arbitrarily
close to unity when the cycles of deformation are properly designed. We illustrate these principles
in some canonical viscoelastic materials, which leads us to identify strategies for optimizing power
and efficiency according to material properties, and to delineate guidelines for the design of more
complex odd engines.

The aim of engine design is not only practical, but
also conceptual: Studying thermal engines was pivotal
for the development of equilibrium thermodynamics [1].
The design of minimal cycles, whose performances can
be computed exactly, has led to recipes that optimize
more complex engines in terms of universal observables
(i.e., power and efficiency). Indeed, the seminal Carnot
cycle, which places a simple bound on the efficiency of
any thermal engine [2], still serves today as a testbed to
guide challenges in modern research, such as the design
of micrometer-scale engines [3–6].

Materials which evade equilibrium constraints offer
opportunities to devise innovative engines with un-
precedented performances. Active matter encompasses
nonequilibrium systems where every unit has internal
machinery powering its motion [7–9]. Active systems are
either living (e.g., bacterial swarms [10, 11]), social (e.g.,
animal groups [12]), or synthetic (e.g., catalytic colloids
in fuel bath [13, 14]). Each unit can be regarded as a
microscopic engine converting the energy fuel stored in
the environment (e.g., nutrients feeding bacteria) into au-
tonomous motion. A natural question, which has already
received extensive attention [15–25], is how to exploit in-
dividual self-propulsion to design macroscopic active en-
gines: How to harvest particle-based, disordered motion
to produce macroscopic, sustained motion?

In most active systems, the metabolic rate character-
izing microscopic fuel conversion is constant, and active
units are always self-propelling. In such liquid materials,
the energy stemming from fuel conversion sustains self-
propulsion and becomes dissipated in the surrounding
thermostat, with negligible contribution to macroscopic
work extraction. As a consequence, active fluids natu-
rally yield engines with very low efficiency [22]. However,
in principle, units need not always be actively moving, in-
stead their activity may be modulated in proportion to
external perturbations.

In search for materials with such adaptive units, the
motivation is to design protocols by minimizing the indi-
vidual dissipation and maximizing the macroscopic work.
Importantly, this approach focuses on optimizing the

macroscopic energy conversion irrespective of the details
of microscopic fuel conversion. We ask: How does one
properly interface with active constituents given minimal
assumptions on their individual dynamics?

Odd materials are novel nonequilibrium systems with
antisymmetric relations between stress and strain, see
Fig. 1. Their components can either be subject to con-
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FIG. 1. Schematic of odd engines at microscopic and macro-
scopic scales. (a) A ball-and-spring microscopic model. The
restoring and dissipative forces on the spring are captured by
the typical (even) part of the complex modulus G∗e . Analo-
gously, the transverse (odd) forces are captured by the odd
complex modulus G∗o. The sign of the odd and even forces
depends on whether the spring is extended (middle) or com-
pressed (bottom). (b) Continuum descriptions of odd engines.
For a macroscopic material composed of springs in part (a),
G∗e describes the viscoelastic response of passive materials,
whereas the odd response G∗o couples, for example, a shear
stress to a different shear strain.
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stant torques (e.g., colloids rotating with an external
magnetic field [26, 27]), or trigger active internal forces
under external perturbations (e.g., metabeam made
of piezoelectric patches with electronic feedback [28]).
These materials then acquire some anomalous mechan-
ical properties: Odd viscosity (equivalently, Hall viscos-
ity [29, 30]) has been reported in models of spinning par-
ticles [31, 32]; Odd elasticity has been studied in models
of elastic networks, whose bonds yield local transverse
forces upon compression and/or extension [33, 34]. In
both cases, the response non-reciprocally couples differ-
ent changes in shape, which can lead, for instance, to
compression as a result of applied torque [30, 33].

For our purpose, odd elasticity stands out as the key
ingredient in designing efficient engines. Indeed, this re-
sponse typically arises in assemblies of transducers, act-
ing as both sensors and actuators, which adapt their ac-
tivity to external cues [28, 33, 34]. Such materials have
been used to design nonequilibrium engines with slow
cyclic deformations [33]. The engines exploit the fact that
the work now depends on the whole path of deformations
(i.e., not only on initial and final points), in contrast to
thermal engines [1]. A remaining challenge is to explore
whether these engines indeed fulfill the promise of effi-
cient and powerful energy conversion from local activity,
leading to macroscopic work extraction.

In this paper, we examine how to optimize the per-
formances of odd engines using a continuum theory of
odd materials. We address solids that are well modeled
by a linear viscoelastic response: The elasticity and vis-
cosity tensors both depend on the frequencies of applied
perturbation. In general, we show that (i) if odd elas-
ticity is strong at low frequencies, then slow cycles are
always advantageous, in which case there is a trade-off
between power and efficiency analogously to thermal en-
gines, whereas (ii) if the elasticity dies out at low frequen-
cies, then fast cycles are advantageous. These cases are
exemplified by canonical models imported from materi-
als science, such as the Kelvin-Voigt solid, the standard
linear solid, and the power-law solid. For each model,
we explore how the cycle needs to be tailored to material
specificities to optimize power and/or efficiency. Overall,
our results provide intuition for how to best exploit odd
properties, and illustrate some concrete guidelines for the
design of more complex engines.

We consider a linear viscoelastic material [35–37],
whose constitutive relation between stress σ and strain
u (or, more generally, displacement gradient) is given in
the Fourier domain in terms of the dynamic modulus G∗:

σ̃ij(ω) = G∗ijkl(ω) ũkl(ω), (1)

where ω is the frequency, and we use implicit summa-
tion over repeated indices throughout. The storage (G′)
and loss (G′′) moduli correspond, respectively, to the real
and imaginary parts of G∗. The (novel, antisymmet-
ric) odd parts Go and the (standard, symmetric) even

parts Ge of each modulus obey Go,ijkl = −Go,klij and
Ge,ijkl = Ge,klij , see Fig. 1. For a protocol varying the
strain u periodically, the workW produced during a cycle
of period τ reads

W = −
∫ τ

0

σij(t)u̇ij(t)dt. (2)

Within our convention, work is extracted from the ma-
terial when W > 0. Combining (1-2), the work can be
written in terms of the strain Fourier coefficients ûn as

W = 4π
∑
n>0

n û−n,ij ûn,kl
[
iG′o,ijlk(ωn)−G′′e,ijlk(ωn)

]
,

(3)
where ωn = 2πn/τ , and we have used the fact that G′

is even (and G′′ is odd) with respect to ω. The power is
the work per cycle period, P =W/τ , and the quasistatic
workWqs follows from Eq. (3) by taking the limit of large
τ (i.e., ωn → 0). The dissipated energy D is defined as
the part of the work associated with the loss modulus:

D = 4π
∑
n>0

n û−n,ij ûn,klG
′′
e,ijlk(ωn), (4)

and, inspired by previous works on monothermal proto-
cols [25, 38], we use the following measure of efficiency:

E =
W

W +D
. (5)

Interestingly, energy-conserving features (i.e., odd vis-
cosity and even elasticity) affect neither efficiency nor
power. Since D must be positive to ensure material sta-
bility, E lies in the range (−∞, 1]. For strictly dissipative
materials (W +D = 0), any cycle has E = −∞, whereas
for other materials, cycles can support E close to 1 when-
ever dissipation becomes negligible (W � D). Note that
our definition of efficiency addresses how the energy in-
put due to odd features can be transduced into extracted
work, without taking into account the underlying mi-
croscopic mechanisms which sustain this energy input.
When dissipation arises from collisions with molecules
of the surrounding thermostat, D is the heat absorbed
by the thermostat [39, 40]. In other contexts, such as
in granular materials with non-elastic collisions between
system components [41], or in epithelial tissues with dry
friction due to the substrate [42, 43], D can be distinct
from heat.

With the definitions in Eqs. (3–5), the sum of work and
dissipated energy, W +D, does not reduce to the bound-
ary term [σijuij ]

τ
0 , as would be the case in the absence of

any energy source [40]. Instead, the sum W + D is gen-
erally non-zero, even if the protocol is periodic, due to
the odd storage modulus G′o. This illustrates that some
energy must be supplied externally to the material [39]
to sustain its odd properties [33]. This situation is rem-
iniscent of engines composed of self-propelled particles,
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where the energy balance W + D includes explicitly the
cost of microscopic self-propulsion [25]. Yet, in contrast
with self-propelled particles, some odd materials behave
as static solids, which do not dissipate any energy when
they are at rest. As we shall see, this distinction can lead
to nominal increases in E , when the cycle is appropriately
designed, with respect to previous active engines [22, 25].

In what follows, for simplicity, we consider cases where
G∗ reduces to a matrix in the two-dimensional strain sub-
space {ua, ub}:

G∗ =

[
ig′′ g′

−g′ ig′′

]
+G′e + iG′′o , (6)

where g′ embodies the odd components of the storage
modulus, and g′′ the even components of the loss modu-
lus. Although minimal, this choice captures the essential
ingredients at play in odd materials. Decomposing the
strain protocol as (see Figs. 2(a-b))[

ua, ub
]

=
∑
n>0

an
[

cos(ωnt), sin(ωnt)
]
, (7)

we deduce power and efficiency from Eqs. (3–5) and (7):

P =
∑
n>0

ωna
2
n(g′− g′′)(ωn), E =

P∑
n ωna

2
ng
′(ωn)

. (8)

Work can be extracted (P > 0) only if the material be-
haves as an odd solid (g′ > g′′, i.e., storage greater than
loss) in a finite range of frequencies. This criterion allows
one to rule out some systems, such as the chiral fluid de-
scribed in Ref. [41], as unfit for work extraction. For cy-
cles with a single harmonic (an ∝ δn,α), the correspond-
ing frequency ωα must satisfy g′(ωα) > g′′(ωα), which
defines the appropriate frequency range for work extrac-
tion. The efficiency reduces to 1 − g′′(ωα)/g′(ωα) and
can get arbitrary close to unity by increasing the ratio
of odd storage to even loss moduli. In general, combin-
ing several harmonics can potentially help ensure work
extraction and increase efficiency at any cycle time τ , by
selecting the values an according to material parameters.

Equipped with the expressions (8), we now proceed
by analyzing some familiar types of rheology. First, we
address the case of odd Kelvin-Voigt (KV) solids:

g′(ω) = K, g′′(ω) = iωη, (9)

where K is the odd elastic modulus, and η the viscosity
(see inset of Fig. 2(c)). These materials behave as even
viscous fluids at short times and odd elastic solids at long
times. Such a material could be constructed from an elas-
tic network of active bonds embedded in a viscous fluid,
with cycles in the space of shear strains [33, 44]. The
associated power and efficiency have simple expressions:

E =
τP
Wqs

= 1− τ̄

τ
, Wqs = 2K

∫∫
duadub. (10)

The engine extracts work at all times larger than τ̄ ,
where τ̄ depends on an and τr = η/K. The power
has a non-monotonic behavior with peak value at 2τ̄
and vanishes at long times, see Fig. 2(c), analogously to
thermal engines [45, 46] and monothermal cyclic engines
with self-propelled particles [22]. Interestingly, the max-
imum power P̄ is proportional to the ratio of the squared
area in strain space {ua, ub}, namely (

∫∫
duadub)

2, over∫ 1

0
(u̇2a+u̇2b)ds, where u̇a = dua/ds. For a givenWqs, opti-

mizing P̄ then requires minimizing the perimeter at fixed
area: This is achieved for a circular protocol. Adding any
higher harmonics systematically reduces both efficiency
E for all times and maximum power P̄, see Figs. 2(c-
d). If ua and ub are associated with different viscosi-
ties, respectively ηa and ηb (e.g., for rotation and dila-
tion [33]), the optimal protocol now describes an ellipse:
[ua, ub] ∝ [c cos(ω1t), c

−1 sin(ω1t)] where c = (ηb/ηa)1/4.
In addition, all these results still hold for non-linear elas-
ticity, namely whenWqs = 2

∫∫
K(ua, ub)duadub, as long

as the even loss modulus remains purely viscous.
The efficiency of KV solids increases monotonically

with the cycle time and converges to unity (see Fig. 2(d)),
in contrast with both cyclic active engines, where E van-
ishes at long times [22], and thermal engines, where E
is bounded by the Carnot efficiency [2]. This illustrates
how odd engines typically outperform other engines, ei-
ther thermal or active, when they behave purely as odd
elastic solids (at long times for KV solids). As for thermal
engines [45, 46], there is a trade-off in KV solids between
achieving either maximal power (at intermediate times)
or high efficiency (at long times). Surprisingly, the effi-
ciency at maximum power is universal for KV solids and
always equals 1/2 independently of both material prop-
erties (K, η) and cycle details (an).

In search of odd materials achieving simultaneously
maximal power and high efficiency, we now address odd
standard linear (SL) solids. For simplicity, we consider
that g′ and g′′ are related by (see inset of Fig. 2(e))

g′(ω) + ig′′(ω) = K
1 + iωτr

1 + iλωτr
, (11)

where τr is a relaxation time, and the dimensionless pa-
rameter λ obeys 0 < λ < 1. The odd SL solids behave
as odd elastic solids at both short and long times. In
general, considering a schematic representation of a ma-
terial with dampers and springs, each one being either
odd or even, g′ and g′′ can be expressed in terms of sep-
arate viscosities and elastic moduli [44]. SL solids with
even moduli correspond, for instance, to the mechanics
of vertex models [47], which describe epithelial tissues as
a dense assembly of self-propelled particles [42, 43]. Odd
components might arise in such a model when consider-
ing self-propelled particles with chirality [48].

The quasistatic work is analogous to that of odd
KV solids (10); P and E directly follow from Eqs. (8)
and (11), see footnote [49]. For λ > 3−2

√
2, we get from
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FIG. 2. Performances of odd materials under various protocols. (a-b) Three cyclic protocols in strain space {ua, ub} with same
quasistatic work (Wqs = 2πK

∑
nna

2
n): (1) circular protocol, an = δn,1, (2) non-circular protocol, an = (1/2)(δn,1 + δn,3), and

(3) non-circular protocol, an = (1/5)(3
√

2δn,1 +δn,7), see Eq. (7). (c-h) Power and efficiency, respectively P and E , as functions
of the cycle time τ , where τr is a relaxation time scale and P0 =Wqs/τr is a reference power. We compare these metrics {P, E}
for three materials subject to the protocols in (a-b). The material mechanics is characterized by the odd storage modulus
g′ and even loss modulus g′′ (see Eq. (6)): (c-d) odd Kelvin-Voigt (KV) solid (Eq. (9)), (e-f) odd standard linear (SL) solid
(Eq. (11)), and (g-h) odd power-law (PL) solid (Eq. (12)). The insets display some schematic representations of each material
in terms of even/odd dampers and springs. (c-d) KV solids exhibit a trade-off between power (maximum at intermediate τ)
and efficiency (maximum at large τ). The efficiency at maximum power is always 1/2 independently of the protocol details, see
dotted lines. Non-circular protocols systematically reduce both the efficiency at all times and the maximum power. (e-f) SL
solids have diverging power at small τ , and maximum efficiency at both small and large τ . The engine cannot extract work
in an intermediate regime of τ (where P < 0 and E < 0) for circular protocols (blue line), yet it can extract work at all τ for
some non-circular protocols (red line). (g-h) PL solids have either diverging power at small τ (when α < 1/4), or maximum
power at intermediate τ (when α > 1/4). The efficiency is always maximum at large τ . Parameters: K = 1, τr = 1, λ = 0.1.

Eq. (11) that g′ > g′′ at all frequencies, so that the power
is always positive (see Eq. (8)): The cycle extracts work
for any cycle time τ . In contrast, for λ < 3−2

√
2, consid-

ering protocols with a single harmonic leads to an inter-
mediate range of τ without work extraction. Yet, com-
bining several harmonics can still yield work extraction
at all times, see Figs. 2(e-f). For any λ, the power van-
ishes at long times, and it diverges as τ−1 at short times
toward large positive values. The efficiency converges to
unity at short and long times, since odd SL solids behave
as odd elastic solids in these regimes. Therefore, in con-
trast with odd KV solids, the engine can now produce
high P with E arbitrary close to unity, when operated
at very short times: There is no longer any trade-off be-
tween power and efficiency. Interestingly, a similar be-
havior is observed for materials which act as odd solids
at short times, without necessarily being solids at long
times, such as odd Maxwell liquids [44].

As a final illustration, we consider odd power-law (PL)
solids, which combine features of KV and SL solids:

g′(ω) + ig′′(ω) = K
[
1 + (iωτr)

α
]
, (12)

where 0 < α < 1/2. Such materials behave as odd elas-
tic solids at long times, and reduce to odd KV solids
when α = 1/2. When α < 1/4, although these materials

are not purely odd elastic solids at short times, the stor-
age modulus is still larger than the loss. PL mechanics
(without any odd component) are observed when prob-
ing the intracellular environment of some living systems
with microrheology [50–53]. In general, power-law behav-
ior emerges when considering a large assembly of parallel
dampers and springs [54], see inset of Fig. 2(g), so that
the power-law relaxation is approximated by a series of
exponential relaxations, known as the Prony series [55].

The quasistatic work is the same as for odd KV and
SL solids, see Eq. (10). We straightforwardly deduce P
and E from Eqs. (8) and (12), see footnote [56]. The ex-
ponent α controls the transition between when the PL
solid behaves like an odd KV solid (at large α) and when
it behaves like an odd SL solid (at small α), see Figs. 2(g-
h). For α < 1/4, the mechanics in Eq. (12) is such that
g′ > g′′ for all ω, yielding work extraction at any cycle
time τ , and the power diverges at short times as for odd
SL solids. For α > 1/4, work is extracted at times larger
than a threshold value, which depends on the parame-
ters τr, an, and α, and the power has a non-monotonic
behavior analogous to odd KV solids. In both cases, E
is monotonic and converges to unity at large times, as
for odd KV solids, yet the efficiency at maximum power
for α > 1/4 is no longer universal, in contrast with odd
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KV solids. Although engines with mechanics in Eq. (12)
cannot reach simultaneously both high power P and effi-
ciency E close to unity, this combination may be achieved
by considering independent PL behaviors for g′ and g′′.

In this paper, we put forward a systematic framework
to predict and optimize the power and efficiency of odd
engines. We consider a series of canonical odd materi-
als and compare their performances to illustrate some
generic features. Thus, we reveal that the efficiency gets
arbitrarily close to unity when materials behave as odd
elastic solids. The crucial difference compared to cyclic
engines made of dilute self-propelled particles, whose ef-
ficiency is very low [22], is that solids do not dissipate
energy at rest. Consequently, operating the cycle slowly
is always a good strategy for efficient work extraction
when the materials behave as odd static solids. Since the
power vanishes at long times, there is typically a trade-
off between efficiency and power, which is reminiscent of
thermal engines [45, 46], although it can be circumvented
if materials behave as odd solids at short times.

Importantly, our efficiency does not account for any
dissipation due to the underlying active components that
give rise to odd elasticity, which would reduce the overall
efficiency. For instance, the transverse forces of active
bonds in elastic networks can stem from internal pro-
pellers, activated under compression/extension [33]. In-
terestingly, optimizing the conversion of some energy re-
source (e.g., local battery) into odd elasticity is an issue
separate from the engine optimization addressed here. In
that respect, our results already provide some insightful
perspectives on how to best convert odd elasticity into
useful work. Our framework is directly relevant to guide
the design of future odd materials, with a view to ex-
tracting work at maximum power and efficiency.
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