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We identify a neutron-flux “skin effect” in the context of neutron-transport theory. The skin
effect, which emerges as a boundary-layer at material interfaces, plays a critical role in a correct
description of transport phenomena. A correct accounting of the boundary-layer structure helps
bypass computational difficulties reported in the literature over the last several decades, and should
lead to efficient numerical methods for neutron transport in 2D and 3D.

The physical character of the neutron fluxes within
and around heterogeneous materials, for given sources,
has been the subject of significant literature over the last
seventy years [1–7]. Much of this literature has been
devoted to unraveling the complex interactions that re-
sult from the combined effect of neutron collision and
transport phenomena [2–5]. This paper describes and
analyzes a previously unrecognized physical observable,
namely, a neutron-flux “skin effect” near physical bound-
aries, wherein sizeable neutron fluxes exist for incoming
directions nearly parallel to the boundary even in cases
in which the exterior region is a source-free vacuum. The
skin effect impacts in a significant way the simulation of
nuclear reactors, and, as it concerns neutron fluxes that
are nearly tangential to the boundary (which can eventu-
ally cross curved boundaries), it provides a useful system
state indicator affecting reactor shielding and control as
well as design and optimization [8, 9].

The boundary skin effect under consideration arises as
neutrons may travel for relatively long distances near the
material-vacuum boundary along paths approximately
parallel to the boundary, and can thus create signifi-
cant neutron fluxes for incoming directions at material
points arbitrarily close to the boundary—even when, for
the vacuum-enclosed systems considered, the incoming
fluxes at the material boundary vanish exactly. The ge-
ometrical context can be easily visualized in Fig. 1 for
the flat-boundary case considered in this paper, but such
long neutron-paths exist near curved boundaries as well.

Mathematically the skin effect is encapsulated in sharp
“boundary-layer” structures of the type described in [10,
Ch. 9] and detailed below. Albeit present in e.g. eigen-
function solutions for neutron transport problems in
one dimensional [2, Ch. 4] or separable configura-
tions [6], these boundary-layer transitions, which lead to
unbounded gradients arbitrarily close to interface bound-
aries, have not previously been correctly accounted for
or even fully recognized. A mathematical reformulation
of the neutron-transport problem via a combination of
changes of variables for the spatial and angular variables
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is presented in this paper, which facilitates the skin-effect
analysis. In particular, this approach enables accurate
modeling of neutron fluxes at arbitrarily small distances
from the domain boundary, and, therefore, everywhere
in the combined angular-spatial domain.

FIG. 1. One-dimensional finite “slab” geometry: ξ = cos(θ).

The equation for time-independent neutron transport
in a one-dimensional plane-parallel geometry (Fig. 1),
with isotropic scattering and vacuum boundary condi-
tions, is given by [9, 11]

ξ
∂

∂x
u(x, ξ) + µt(x)u(x, ξ) =

µs(x)

2

∫ 1

−1
u(x, ξ′)dξ′ + q(x, ξ),

u(x = 0, ξ) = 0 ∀ξ > 0,

u(x = 1, ξ) = 0 ∀ξ < 0.

(1)

Here, letting ξ = cos(θ) (Fig. 1), and calling µs(x), µa(x)
and µt(x) = µa(x) + µs(x) the macroscopic scattering,
absorption, and total transport coefficients, respectively,
u(x, ξ) denotes the neutron flux at point x in the direction
θ. The integral term accounts for the angular redistribu-
tion of neutrons due to scattering, q(x, ξ) is a neutron
source, and the vacuum boundary conditions model the
absence of particles entering the spatial domain through
its boundary. It is worthwhile noting that Eq. (1) also
governs the transport of photons and other neutral par-
ticles, and it therefore impacts upon a wide range of im-
portant disciplines [2, 3, 6, 12–23].
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Noting that the coefficient ξ of the highest order deriva-
tive in (1) tends to zero as θ → π/2, the existence of
unbounded spatial gradients at points (x, ξ) near (0, 0)
and (1, 0) in the solution u(x, ξ) may be expected [10,
Ch. 9]. Such “boundary-layer” structures, which are
caused by the existence of a spatial boundary condition
in conjunction with a vanishingly small coefficient for the
highest order differential operator, only take place for the
incoming directions ξ > 0 (resp. ξ < 0) for points close
to x = 0 (resp. x = 1)—since it is for such directions
that boundary conditions are imposed in Eq. (1).

Following [10, Ch. 9], in order to characterize the
boundary layer structure around e.g. x = 0 we con-
sider the function U(X, ξ) = u(ξX, ξ) and, more pre-
cisely, its lowest-order asymptotics U0(X, ξ) as ξ → 0+

in a small neighborhood of the boundary (the bound-
ary layer around x = 1 can be treated analogously). The
function U0(X, ξ) (the inner solution in the nomenclature
of [10, Ch. 9]) satisfies the constant coefficient equation

∂U0(X, ξ)

∂X
+ µt(0)U0(X, ξ) =

µs(0)

2

∫ 1

−1
U0

(
ξX

ξ′
, ξ′
)
dξ′ + q(0, ξ),

(2)

and boundary conditions induced by (1). Eq. (2) tells us

that the derivative ∂U0(X,ξ)
∂X remains bounded as ξ → 0+,

and, therefore, that the function U0(X, ξ) characterizes
the boundary layer structure in the solution u(x, ξ) via
the relation

u(x, ξ) ∼ u0(x, ξ) = U0(x/ξ, ξ) as (x, ξ)→ (0+, 0+). (3)

Utilizing an integrating factor in (2) and letting

I(x, ξ) =

∫ x

0

e
µt(0)y
ξ

[
µs(0)

2

∫ 1

−1
u0(y, ξ′)dξ′ + q(0, ξ)

]
dy

the lowest-order boundary-layer approximation

u(x, ξ) ∼ u0(x, ξ) =
e−µt(0)x/ξ

ξ
I(x, ξ) (4)

is obtained. This equation explicitly exhibits the expo-
nential boundary-layer character of the solution. The
argument can be extended to two and three-dimensional
problems, and to include time-dependence and curved
boundaries. In such cases, a boundary layer occurs, with
unbounded normal derivatives near the boundary, for in-
coming directions nearly parallel to the domain interface.

The boundary layer structure can be visualized by con-
sidering the exact solution of Eq. (1) that is obtained
for the scattering-free case (µs(x) = 0) with constant-
coefficients. The resulting solution

u(x, ξ) =


q

µa

[
1 − e−µax/ξ

]
∀ξ > 0,

q

µa

[
1− e−µa(x−1)/ξ

]
∀ξ < 0,

(5)

FIG. 2. Scattering-free solution (Eq. (5)). The boundary
layers in the ξ and x directions are clearly emphasized by the
superimposed blue (along the ξ direction) and red (along the
x direction) coordinate curves.

presented in Fig. 2, clearly displays a boundary layer
structure as (x, ξ)→ (0+, 0+).

The skin effect significantly impacts the mathematical
modeling of neutron transport processes. The foremost
two numerical methods used in the area, namely, the
Spherical Harmonics Method [2, Ch. 8] and the Discrete
Ordinates Method [3, Ch. 3, 4], do not properly resolve
the conflicting manifestations of the skin effect in the an-
gular and spatial variables [5, pp. 65, 66.], leading to
significant degradations in accuracy, [24–26], [27, p. 51].
Most conspicuously, [4, p. 40] shows that different nu-
merical differentiation schemes may lead to different nu-
merical solutions. It has been demonstrated that, for sep-
arable geometries, a degree of accuracy can be obtained
for certain spatial “region averages” of the “angular av-
erage” of the neutron flux [6, 7, 12]; naturally, however,
general domains are not separable, and, in addition, the
full neutron flux (not just such multiply averaged quan-
tities) is generally required for detector response calcula-
tions [3, 1-13, p. 60], [28, Sec. 6.4.3].

A combination of spatial and angular changes of vari-
ables can be used to eliminate the difficulties posed
by the dual spatial/angular boundary layers. To in-
troduce the angular change of variables we rely on the
Gauss-Legendre method as an underlying quadrature
rule, but other quadrature methods could alternatively
be used. In view of the expression [29, p. 77], the
`-point Gauss-Legendre quadrature error decreases like
32V/15πj(2` + 1 − j)j provided the j ≤ 2` derivative
of the integrated function is bounded by the constant
V > 0. Introducing the change of variables ξ′ = rp in
the integral in (1) we thus seek a bound V on the j-th
derivative of the resulting integrand. Using an integrated
version of (1), similar to (4), combining two exponential
terms and using the fact that for each non-negative inte-
ger k the integral

∫∞
0
tke−tdt is finite, we find that∣∣∣∣ ∂j∂rj [u(x, rp)rp−1

]∣∣∣∣ ≤Wrp−j−1 (6)
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for some constant W (even as (x, r)→ (0+, 0+)); setting
V = Wrp−j−1 yields the desired bound, which, impor-
tantly, is uniform for all relevant values of x and r (as
long as p ≥ j + 1).

Splitting the integral on the right hand side of Eq. (1)
at the boundary-layer point ξ = 0 and using the proposed
change of variables yields∫ 1

0

u(x, ξ)dξ ∼
M/2∑
i=1

wiu(x, ξi), (7)

with a similar expression for the integral between −1 and
0. Here, letting ri and wGLi denote the Gauss-Legendre
quadrature abscissas and weights in the interval [0, 1],

we have set ξi = rpi and wi = p × rp−1i × wGLi /2. A

10 100 1000

M

1×10
-16

1×10
-12

1×10
-8

1×10
-4

1×10
0

E
(M
)

p=5.0
p=3.2
G-L

FIG. 3. Error of numerical against analytic integral,
E(M) = max0≤x≤1|

∑M
i=1 wiu(x, ξi) − Ian(x)| for u given by

Eq. (5). The errors are presented for the quadrature rule (7)
(circles and diamonds) and the plain Gauss-Legendre (G-L)
quadrature (triangles).

suitable power p = 3.2 was used, which provides excellent
convergence (Fig. 3) for the integral in the ξ variable
while limiting the sharpness of the numerical boundary
layer in the x variable.

The logarithmic spatial change of variables v =
log( x

1−x ), in turn, is used to resolve the spatial boundary
layer, which gives rise to points x extremely close to the
boundary (without detriment to the integration process,
in view of the uniform r-derivative bounds (6)), leading
to high order precision in both the ξ and x variables. If
the change of variables ξ′ = rp were not introduced, then
finer and finer angular discretizations, without bound on
the number of angular discretization points used, would
be necessary to yield a fixed prescribed accuracy as the
spatial point x approaches a boundary point. Similarly,
the logarithmic change of variables allows for the resolu-
tion of the rapid changes in the angular flux arising from
the spatial boundary layer near the boundaries.

The transport equation is solved in a computa-
tional spatial domain [vmin, vmax], with [x′min, x

′
max] =

[ evmin

evmin+1 ,
evmax

evmax+1 ], and with boundary conditions at x′min

and x′max obtained by enforcing the asymptotic re-
lation (4) with u0(y, ξ′) replaced by u0(x′min, ξ

′) and

u0(x′max, ξ
′), respectively. Using the new variables the

time dependent transport problem

∂

∂t
u(v, ξ, t)+ξ(2 + 2 cosh(v))

∂

∂v
u(v, ξ, t)+

µtu(v, ξ, t) =
µs
2

∫ 1

−1
u(v, ξ′, t)dξ′ + q,

u(v, ξ, tmin) = 0,

u(vmin, ξ, t) = u0(x′min, ξ, t) ∀ξ > 0,

u(vmax, ξ, t) = u0(x′max, ξ, t) ∀ξ < 0

(8)

results. The time propagation is performed implic-
itly by means of a third order backward differentia-
tion formula (BDF). The collisional term is obtained
by means of the third-order polynomial extrapolation
ũn+1
j =

∑2
κ=0(−1)κ

(
3

κ+1

)
un−κj [30, Eq. (12)], to avoid

the inversion of large matrices at each time step. Us-
ing the identity operator 1̂ and the Fourier Continuation
(FC) spectral differentiation operator D̂ [31–33], the re-
sulting discrete version of Eq. (8), which amounts to an
implicit version of the FC-DOM method [33], thus reads[

1̂+ β∆tξj(2 + 2 cosh(v))D̂+ β∆tµt1̂
]
un+1
j =

2∑
k=0

αku
n−k
j + β∆t

µs
2

M∑
i=1

wiũ
n+1
i + β∆tqn+1,

(9)

where un+1
j ∼ u(v, ξj , t

n+1), tn+1 = n∆t, and where αk
and β are the coefficients for the third order BDF for-
mula. (The FC method enables representation of general
smooth non-periodic functions by Fourier-series while
avoiding the well-known Gibbs ringing phenomenon, with
applicability to solution of partial differential equations
in general multi-dimensional spatial domains with high
accuracy and negligible numerical dispersion [31–33].)

Fig. 4 demonstrates the excellent convergence proper-
ties of the algorithm, for µs = µa = q = 1. The error was
computed via comparison with the solution obtained on
a finer grid. This high order of convergence clearly sug-
gests that the changes of variables used in the x and ξ
variables lead to adequate simultaneous grid resolution
of the two boundary layers involved.

In what follows the numerical algorithm is utilized to
explore and demonstrate the skin effect. For definiteness,
in the rest of this paper we restrict attention to time-
independent solutions, obtained by means of the time-
dependent solver, relaxed for long time (as described in
[33]). The resulting steady-state solutions are depicted
in various forms in Figs. 5 through 7; similar boundary
layer structures are of course present for all times in the
time-dependent solutions.

Fig. 5 displays the skin-effect boundary-layer struc-
tures in the x and ξ variables with µs = µa = q = 1
(numerical parameter values N = 250 and M = 40 were
used in these figures, with −vmin = vmax = 25). As can
be seen in Fig. 5, as ξ decreases towards zero, steeper
and steeper boundary layers result, over shrinking spa-
tial regions, as expected from the proposed boundary
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FIG. 4. Convergence properties of the proposed algorithm for
(a) the time discretization, (b) the spatial discretization and
(c) the number of discrete ordinates employed. In circles, the
error E(∆v,M,∆t) = maxx,ξ|u(x, ξ) − uc(x, ξ)| is displayed
for various grids, where uc(x, ξ) denotes the converged solu-
tion.

layer analysis—thus giving rise to large nearly boundary-
parallel incoming neutron fluxes in close proximity to
boundaries.

Fig. 6 demonstrates the persistence of the boundary
layer in presence of high scattering coefficients (with
µa = q = 1 fixed). The case ξ = ξmin ' 10−6 is con-
sidered in the figure, with parameter values N = 200,
M = 20 and −vmin = vmax = 20. Clearly, even though
diffusive problems (large µs) tend to be more regular
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FIG. 5. Boundary layers near x = 0, obtained by solving
Eq. (8) with µa = µs = q = 1 for various values of ξ and x,
with 0.84 > ξi > ξi+1 > 10−7 and 10−2 > xi > xi+1 > 10−6.
Panel (a) shows the boundary layer along the x variable for
various values of ξ, and panel (b) shows the boundary layers
along the ξ variable for various values of x. The neutron
flux u(x, ξ) does not vanish on the boundary for the outgoing
directions −1 ≤ ξ < 0, and, therefore, no boundary layer
exists at x = 0 for such directions (not shown).

over the ξ variable—owing to the strong averaging and
smoothing induced by the large scattering coefficient—,
the boundary layers that arise in the spatial variable with
increasing µs lead to even larger slopes as x→ 0+.
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FIG. 6. Boundary layers obtained by solving Eq. (8), with
µa = q = 1 and different values of µs. Solutions for the
direction ξ = ξmin ' 10−6 are shown. Note the large µt-
dependent slopes of the transport solution as x → 0+ (cf.
Eq. (4), where µt = µs + µa).

There have been many attempts to understand un-
physical oscillations associated with the widely used Di-
amond Difference scheme (DD) for the transport equa-
tion [4, 34, 35]. The recent paper [24] avoids this
problem by using only directions ξ away from ξ = 0.
References [4, 34] attribute this type of oscillations to
anisotropic boundary conditions, non diffusive boundary
layers and/or high absorption; the present paper, which
demonstrates existence of boundary layers even in the
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isotropic case and for all values of the scattering and
absorption coefficients, presents a starkly contrasting in-
terpretation: exponential boundary layers are triggered
by the boundary condition and vanishing ξ values.
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FIG. 7. DD and FC-DOM approximations of u(x, ξ15) for
µt = µs = 1000, q = 0.1 and ξ15 ' 10−3. The boundary-
layer oscillations resulting from the DD scheme are clearly
visible. N = 400 and N = 10000 discrete points were used in
the spatial variable for the FC and DD methods, respectively.
Note the high near-boundary resolution that results, in view
of the exponential spatial change of variables used, from the
N = 400 FC-DOM discretization.

For example, reference [34] treats a diffusive trans-
port problem (Problem 1 in that reference) which, un-
der rescaling, can be reformulated as in Eq. (1) with
µs = µt = 1000, and q = 0.1. This is an extremely
diffusive problem with isotropic boundary conditions for
which [34, pp. 317] states: “...since the leading order
term in the asymptotic expansion of the analytic trans-
port equation is itself isotropic, this term in these prob-

lems does not contain a boundary layer.” In contrast,
Fig. 7 shows that boundary layers are present in this
problem. The FC-DOM solution displayed in this figure
was obtained by means of M = 40 discrete directions
and N = 400 points in the spatial variable. In contrast,
N = 10000 were used in the DD-scheme solution pre-
sented in Fig. 7—which clearly displays the spurious os-
cillations produced by the DD scheme in this context.

The skin-effect boundary-layer structure described in
this paper, which was not previously reported in the liter-
ature, constitutes a physical effect which was overlooked
for nearly seventy years [1, p. 360], [34, pp. 317], and
which, as demonstrated in Fig. 7 and throughout this
paper, has a significant impact on the physics and the
numerical simulation of transport phenomena. In par-
ticular, this work provides a sound theoretical basis for
the development of new, accurate and efficient methods
for the numerical solution of neutron-transport and other
neutral particle-transport problems in general 2D and 3D
domains and it leads to valuable state indicators concern-
ing reactor dynamics.
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