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Reconnection and turbulence are two of the most commonly observed dynamical processes in
plasmas, but their relationship is still not fully understood. Using 2.5D kinetic particle-in-cell
simulations of both strong turbulence and reconnection, we compare the cross-scale transfer of energy
in the two systems by analyzing the generalization of the von Kármán Howarth equations for Hall
magnetohydrodynamics, a formulation that subsumes the third-order law for steady energy transfer
rates. Even though the large scale features are quite different, the finding is that the decomposition
of the energy transfer is structurally very similar in the two cases. In the reconnection case, the
time evolution of the energy transfer also exhibits a correlation with the reconnection rate. These
results provide explicit evidence that reconnection dynamics fundamentally involves turbulence-like
energy transfer.

Introduction: Many naturally occurring and man-
made plasmas are observed to be in a turbulent state
[1–6] driven at large scales, either externally or by an en-
ergy reservoir. Nonlinear couplings subsequently transfer
energy from large scales to smaller kinetic scales. Mag-
netic reconnection [7, 8], frequently observed in these sys-
tems, is itself a nonlinear process, though largely studied
independently of turbulence. In many cases, turbulence
is either a consequence or driver of the reconnection pro-
cess [7, 9–11]. In recent literature, one finds numerous
studies of the properties of reconnection that emerge in a
turbulent environment in both three dimensions [12, 13]
and two dimensions [14]. Such studies often focus on
spectra, dimensionality and reconnection rates [15, 16] or
on more subtle issues such as violations of flux freezing
[17, 18] in turbulence with implication for reconnection.
Similar characterizations apply to studies of turbulence
properties, typically spectral and correlation properties
[19, 20] that emerge in standard reconnection. Recon-
nection is also studied as a process subsidiary to tur-
bulence, either by diagnosing reconnection occurring in
turbulence [7, 11, 21–23] or studying how reconnection
modifies small scale energy transfer [24–31]. Turbulence
also emerges in association with reconnection-related in-
stabilities [20, 24, 32–35]. To our knowledge previous
works have not directly examined energy transfer in a
standard reconnection problem, nor have they compared
such transfer to that of homogeneous turbulence.

Recent kinetic particle-in-cell (PIC) simulations show
that laminar reconnection in 2D and 3D exhibits a Kol-
mogorov −5/3 magnetic spectrum [19, 20, 33, 36], rais-
ing intriguing questions: “How do the properties of en-
ergy transfer in reconnection and turbulence compare ?
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Does the similarity of their spectra indicate a similarity
of spectral transfer in the two cases?” Here we examine
the properties of energy transfer in reconnection and tur-
bulence by a parallel analysis of energy transfer budgets
employing the von Kármán Howarth equations general-
ized to Hall-MHD [37, 38], and written in terms of struc-
ture functions. This formulation encompasses the famous
MHD cascade law [37] including the Hall effect [38–40].
The analysis employs 2.5D kinetic PIC simulations of
both strong turbulence and laminar reconnection, each
initialized in a regime expected to be close to incom-
pressibility. Details of energy transfer in both simulations
are found to be structurally very similar, with majority
of the energy transfer occurring through incompressive
channels. This provides evidence that reconnection dy-
namics involves energy transfer akin to standard turbu-
lence. Consistent with this, we find that the time evo-
lution of the energy transfer correlates with the recon-
nection rate. Since cross scale coupling is arguably the
defining characteristic of turbulence [41], we find an even
greater similarity of reconnection and turbulence than
has been previously reported.

Simulations: To study the energy transfer in recon-
nection, we use two fully-kinetic 2.5D PIC simulations
- a strong turbulence case (Simulation A) and a lami-
nar reconnection case (Simulation B); see Table I. Time
is normalized to the inverse ion cyclotron frequency
(wci = (eB0/mic)), where B0 is the normalizing mag-
netic field. Length is normalized to the ion inertial length
di =

√
c2mi/(4πn0e2), where n0 is the normalizing num-

ber density. Speed is normalized to the ion Alfvén speed
(vA = di ωci) and temperature to T0 = miv

2
A. Following

standard turbulence notation [2, 42, 43] magnetic field
(b ≡ B/

√
4πmin0) and current (j ≡ J/ne) are normal-

ized to vA.

The undriven turbulence simulation is initialized with
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TABLE I. Simulation details: Size of the simulation (Lbox), grid spacing (∆x), guide field (Bg), temperature (T ), mass (m),

ions/electrons (i/e), the root mean square value (rms) δbrms =
√
〈|b− 〈b〉r|2〉r, and the fluctuation (turbulence) amplitude

δZ =
√

(δbrms)2 + (δurms)2.

Run Type Lbox[di] grids ∆x[di] Bg Ti/Te mi/me nb δbrms δurms δZ

A Turbulence 149.6 40962 0.036 1 0.3/0.3 25 1 1/
√

10 1/
√

10 1/
√

5

B Reconnection 91.59 40962 0.022 0 0.05/0.01 25 1 1/
√

5 0 1/
√

5
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FIG. 1. Left panel: Evolution of the mean square current
(solid), change in magnetic (δEB) (dashed), and ion-flow
(δEif ) energy per unit mass (dash-dot) for simulations A
(top) and B (bottom); the vertical line denotes: (sim A) max-
imum rms J at tωci = 163 or (sim B) late quasi-steady re-
connection at tωci = 1045.6. Right panel: Jz of simulation A
(top) and B (bottom).

Fourier modes k ∈ [2, 4]× 2π
149.6 with average wave number

kav ≈ 3 2π
149.6 = 0.126; see [44]. The reconnection simu-

lation is initialized with a double Harris current sheet (
with kav ≈ 2π/91.59 = 0.068 ). Reconnection is triggered
by a small magnetic perturbation; see [36]. To facilitate
comparison, simulation B normalization values are mod-
ified from [36] as B0 → 1√

5
B0 and n0 → 5n0. With

this modification simulations A and B have the same
background density nb and the same initial fluctuation
amplitude δZ, as defined in Table I.

Fig. 1 provides an overview. In the turbulence simu-
lation A, an initial Alfvénic exchange of energy occurs
between the ion-flow and magnetic field. The fluctuation
energy (Eif + EB) decreases monotonically, as electrons
and ions are heated [44]. For simulation B, EB decreases,
as reconnection transfers most of the energy to thermal
energy and a small fraction to Eif . The mean square
current peaks during the quasi-steady phase of reconnec-
tion and falls as δEB decreases. The energy decay rate
becomes significant after reconnection onset, and peaks
during the late quasi-steady phase (twci = 1045.6). The
energetics and the currents have a very different evolution

in the two cases. On this basis one might expect that re-
connection and turbulence would both exhibit dissimilar
inertial ranges when energy transfer is quantified.
Energy transfer rate: To quantify the energy transfer

rates in the simulation, we employ a form of the Hall-
MHD von Kármán Howarth equation, which for steady
state high Reynolds numbers reduces to the third-order
cascade law [37]. Formally appropriate for incompressible
MHD, this representation is expected to be a good ap-
proximation in weakly compressive MHD [45] and kinetic
plasma [46] turbulence, understanding that at sub-proton
scales, non-MHD effects dominate. In isotropic hydro-
dynamic turbulence, the third-order law gives an exact
relationship between energy decay rate and a third-order
structure function [47]. Hellinger et. al. [38] examined
the decomposition of the MHD von-Kármán Howarth
equations [37] for Hall-MHD, which will be referred as
the Hellinger formulation.

Following standard theory [48], the von Kármán
Howarth equations may be rewritten in terms of incre-
ments δu(r, l) ≡ u(r+ l)− u(r) and δb(r, l) ≡ b(r+ l)−
b(r), where r is a vector in real space and l is the
spatial lag, corresponding roughly to the inverse spec-
tral wavenumber k/k2. Second-order structure func-
tions are mean square values of these increments, e.g.
Su(l) = 〈|δu(r, l)|2〉r, where 〈. . . 〉r is a spatial average
over r. Typically, structure functions are averaged over
lag directions, giving Su(l) ≡ 〈 〈|δu(r, l)|2〉r 〉Ωl , where
〈. . . 〉Ωl denotes averaging over solid angle [49]. Physi-

cally, 1
4 S(l) = 1

4 S(l) = 1
4 (Su(l) + Sb(l)) is the energy

(flow + magnetic) inside a lag space sphere of radius
l = |l|.

To study the energy transfer we employ the Hellinger
formulation hereafter called simply the “third-order law”
for convenience [38, 50, 51]:

1

4

∂S(l)

∂t
+

1

4
∇l ·Y(l) +

1

8
∇l ·H(l) =

1

2
D(l)− ε, (1)

where ∇l is the lag space gradient. The MHD trans-
fer term [37] Y(l) = 〈δu|δu|2 + δu|δb|2 − 2δb(δu · δb)〉r
and the Hall transfer term [38] is H(l) = 〈2δb(δb · δj)−
δj|δb|2〉r are mixed third-order structure functions gen-
eralizing the hydrodynamic Yaglom flux [52]. Similarly,
ε is the total dissipation rate and D(l) is a lag depen-
dent dissipation term that vanishes (by definition) out-
side the dissipation range. These are both normalized
to ωciv

2
A. In collisionless plasma simulations [53], the
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exact functional of these terms are not known. In a sys-
tem with kinematic viscosity ν and resistivity η, dissipa-
tion is explicitly ε = ν〈(∇u : ∇u)〉r + η〈∇b : ∇b〉r and
D(l) = ν∇2

l Su(l) + η∇2
l Sb(l).

Physically, the second and third terms in Eq. 1 are
the energy transfer rates through the surface of a lag
sphere of radius l due to the MHD and Hall nonlineari-
ties, respectively; positive (negative) is out of (into) the
spherical surface.

In adopting Eq. 1 as the basis for our comparison
of turbulence and reconnection, we choose to focus on
incompressive energy transfer, which underlies the most
basic Sweet Parker reconnection analysis, while providing
the baseline theory of turbulence as applied to systems
such as the solar wind. With these approximations, Eq.
1 is a complete description of energy transfer and does
not involve the involve the issue of locality or nonlocal-
ity (e.g., [54]). We note that recent progress has devel-
oped Yaglom-like relations for compressible (Hall) MHD
[39, 40, 55, 56]. However, we opt to work with incom-
pressible form represented by Eq. 1, a choice partially
justified when we find below that incompressive chan-
nels account for the majority of energy transfer. Further
study including the compressive transfer channels is de-
ferred to a later study.

To study the energy transfer, we compare the left-hand
side terms in Eq. 1 calculated from the simulations. For
each time, the second and third-order structure functions
are calculated as a function of lag vector (lx, ly) at each
spatial grid point[49]. The divergence is computed in lag
space, and 1D forms are obtained using the angle aver-
aging technique [57], yielding omni-directional estimates

S(l), ∇l ·Y(l), and ∇l ·H(l). Therefore, the 1D form of
the Hellinger formulation can be written as:

1

4

∂S(l)

∂t
+

1

4
∇l ·Y(l) +

1

8
∇l ·H(l) =

1

2
D(l)− ε, (2)

We emphasize that each term in Eq. 2 is averaged over
direction in lag-space and is therefore exact even for non-
isotropic systems [57]. Furthermore, because of the pe-
riodicity of the simulations, each term in Eq. 2 is inde-
pendent of position, i.e. the simulations are effectively
homogeneous.

For both simulations, the terms of Eq. 2 are time-
averaged over an interval (∆tωci) centered on the vertical
red lines in Fig. 1 (sim A: ∆tωci ≈ 20; sim B: ∆tωci =
22.4). The average rate of change of S(l) over this inter-
val is ∂S(l)/∂t. The average rate of change of EB + Eif
from Fig. 1 gives an estimate ε∗ = ∂(EB+Eif )/∂t for the

decay rate. ∇l ·Y(l), and ∇l ·H(l) are averaged over 5
(sim A) and 3 (sim B) evenly spaced times in this inter-
val.

The results are shown in Fig. 2. For the turbulence
run (left panels), the energy containing range and the

inertial range are dominated by ∂S(l)/∂t and ∇l ·Y(l),
respectively. In the “kinetic/Hall” range the Hall term

∇l ·H(l) is & the other terms. Notably, at large length

scales (l & di), the sum of the terms are constant and ap-
proximately equal to ε∗. Constancy of the energy transfer
rate suggests the existence of quasi-steady energy cas-
cade [58]. S(l) in Fig. 2 exhibits an approximate slope
of 2/3 for the range of lags where the sum of the terms
is constant. The results are consistent with similar anal-
ysis in hybrid simulations [38]. At late times when the
mean square current decreases (tωci & 250 ), all the con-
tributions diminish (not shown). However, the region of
dominance of each term persists, resulting in a roughly
constant MHD scale transfer. Similar to the abbreviated
inertial range seen in Fig 2, it is not unusual for simu-
lations evaluating the Yaglom law to find a very limited
range of applicability, due to limited scale separation; see
e.g, [51, 57]).

The reconnection simulation (Fig. 2 (middle and
right)) exhibits results similar to the turbulence simula-

tion. In the energy containing range ∂S(l)/∂t dominates
and is roughly constant, while the MHD energy trans-
fer term ∇l ·Y(l) dominates and flattens in the inertial

range; ∇l ·H(l) becomes significant approaching the ki-
netic range. Reconnection displays a wide inertial range
during the early quasi-steady phase tωci = 824.3 (middle

panel in Fig. 2), where the Yaglom flux term (∇l ·Y(l))
dominates most of the energy transfer. However, as the
system reaches the mid-quasi steady phase tωci = 1045.6
(right panel in Fig. 2), the inertial range narrows and

∂S(l)/∂t takes over. A feature different from the turbu-
lence case is that the sum of terms exhibits two plateaus,
with the energy containing range sum larger than the in-
ertial range value. Also, the structure function S(l) does
not show a clear 2/3 slope, although it does exhibit a
Kolmogorov-like −5/3 slope in the magnetic spectrum
[36]. Note that it was previously shown [33, 36] that dif-
fusion/exhaust/separatrix region (DES) and the island
region make comparable contributions to S(l).

To strengthen the characterization of a constant en-
ergy transfer rate in reconnection, in Fig. 3 we trace the
time evolution of ∇l ·Y(l) and ∂S(l)/∂t. As reconnec-
tion initiates, the MHD transfer term develops a full iner-
tial range for l > di. The growth of ∂S(l)/∂t lags behind
the MHD transfer term and becomes significant only af-
ter the inertial range is fully populated; the time delay
between the onset of these two terms is comparable to the
delay (Fig. 3 (bottom)) between the onset of reconnec-
tion rate dΨ/dt (red), where Ψ is the magnetic flux and
the increase in spectral energy density EB(k) at kdi ∼ 1
(dash-dot). The MHD transfer term continues to domi-
nate the quasi-steady phase until about tωci ≈ 950 when
it changes sign.

In Fig. 3 (top) for large lags, the MHD transfer term
oscillates in sign for a substantial period after recon-
nection onset. However these reversals are offset by
an anti-correlated oscillation of the ∂S(l)/∂t term (mid-
dle panel). These oscillations are certainly related to
the well-known sign-indefinite character of insufficiently-
averaged third-order correlators, as they can be removed
by additional time-averaging (as in [57]). But there is
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FIG. 2. Third-order law analysis for (left) turbulence simulation when rms current is peaked (tωci = 163 ), (middle)
reconnection simulation during early quasi-steady phase (tωci = 824.3 ), and (right) reconnection simulation during mid
quasi-steady phase (tωci = 1045.6 ). Top: Terms from the left hand side of Eq. 2 and their sum, normalized to ε∗. Bottom:
Total second-order structure function S(l) with a dashed line of slope 2/3 drawn for reference. Approximate regions of the
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TABLE II. Dissipation and energy transfer rate comparisons
of simulations. Left to right: correlation scale λ; average dis-
sipation rate ε∗ during ∆tωci examined in Fig. 2; von Kármán
energy dissipation rate using initial δZ; von Kármán constant
Cvk (defined through d(δZ2)/dt = −Cvk δZ3/λ ≈ 2 ε∗).

Run λ = 1
kav

[di] ε∗[
v3A
di

] δZ3

λ [
v3A
di

] Cvk = 2 ε∗

δZ3

λ

A 8 1.7× 10−4 0.011 0.031
B 14.7 6.4× 10−5 0.006 0.021

also a tendency for 2.5D systems to inherit the large
scale inverse transfer that occurs in a pure 2D MHD state
[9, 59–61]. Large scale Alfvénic exchange between flow
and magnetic energy, a familiar feature of MHD turbu-
lence simulation corresponds to the observed oscillation
period, which is roughly 90 tωci, about three times the
global nonlinear time of the system τnl = Lbox/(2π δZ) ≈
33ω−1

ci .

Following the quasi-steady reconnection period
(t ωci & 1170) in Fig. 3, the MHD scale energy transfer
rate decreases as suggested by the reduction in both
∇l ·Y(l) and ∂S/∂t, as well as the decline of their sum
for l ≈ 9 di. The correlation of MHD energy transfer
(solid) and reconnection rate (dashed), evidenced by
their near simultaneous decrease, indicates a strong
connection between the two processes.

Conclusions: Using kinetic PIC simulations, we have
cross-compared the behavior of the third-order law in

strong turbulence and laminar reconnection, which al-
lows a direct measure of the energy transfer rate. We
find a significant level of structural similarities in the lag
dependence of the various terms of Eq. 2. Notably, both
simulations exhibit an inertial range signified by a rela-
tively constant and dominant MHD energy transfer term,
a signature of a turbulent system. Both systems have an
energy containing range wherein ∂S(l)/∂t dominates and
a kinetic range where the Hall term becomes important.
These similarities provide evidence that the dynamics of
reconnection proceeds through energy transfer similar to
that seen in turbulence. Supporting this idea is the cor-
relation between the reconnection rate, the sum of the
MHD terms in Eq. 2, and the spectral energy density at
kdi ∼ 1 observed in Fig. 3 (bottom).

A complimentary analysis of the reconnection and tur-
bulence simulations is an estimate of the dissipation rate
using the energy δZ2 at the correlation scale λ; this es-
timate is based on the similarity decay theory of von
Kármán and Howarth [62]. Table II gives the results of
this analysis for the simulations and compares them to
the dissipation rate ε∗ and the MHD energy transfer rate
ε. The von Kármán constant Cvk is the ratio of the ac-
tual energy dissipation to the estimated rate. While the
turbulence simulation exhibits a Cvk similar to previous
PIC turbulence simulations [63], the reconnection Cvk
is about 2/3 of the turbulence value. This reduction is
likely associated with the reconnection initial condition,
having an energy-containing scale that is nearly at the
maximum size permitted by the periodic box. This locks
a fraction of the mean square magnetic potential in the
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and −1
4εav

(∇l ·Y(l) + ∂S(l)/∂t) at l ≈ 9 di (solid), with the

energy density EB(k) at k di ∼ 1 (dash-dot). EB(k) is plot-
ted with respect to the axis on the left and normalized to
(EB(k))max. The black star denotes dΨ/dt at tωci = 1045.6.

largest scales, reducing the energy available to drive a
direct transfer. This is the effect responsible for selec-
tive decay in 2D MHD [64] and is analogous to Taylor
relaxation in 3D MHD. [65]. This weakens the transfer
of energy in reconnection, but only fractionally.

We should also mention in passing that the energy
transfer terms that we do include sum rather accurately
to the total energy decay, scale by scale, supporting find-
ings that MHD transfer is mainly local [66, 67], and with
the majority of the transfer through incompressible chan-
nels (see fig. 2). We did find some suggestion of tran-
sient back-transfer (not shown here) to long wavelengths,
which is a basic property of 2D MHD [64, 68], but we see
no evidence for non-local pumping of small scales by large
scales as suggested by [23].

On balance, the detailed study of reconnection from
the perspective of energy transfer theory that we have
presented here leads to what is perhaps a remarkable
conclusion – that although one might not suspect that
reconnection follows many of the assumptions of energy
transfer theories such as the von Kármán Howarth equa-
tions for incompressible MHD, it exhibits energy transfer
similar to that of standard turbulence. This does not di-
minish the importance of the special features of reconnec-
tion and especially its ramifications for kinetic physics.
However, understanding that turbulence and reconnec-
tion are very closely related can only lead to a better
understanding of each of these fundamental processes.
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