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We address questions that arose from studying gas and oil production from hydrofractured wells.
Does past production predict the future? This depends on deducing from production as much as
possible about the plausible geometries of the fracture network. We address the problem through
a solvable model and use kinetic Monte Carlo and Green’s function techniques to solve it. We
have three main findings. First, at sufficiently long times, the production from all compact fracture
networks is described by a universal function with two scaling parameters, one of which is the
diffusivity of unbroken rock, α and the second of which is a parameter Vext with units of volume.
Second, for fracture networks where the power law distribution of fracture spacings falls below a
critical value (and this appears to be the case in practice), early-time production always scales as
one over the square root of time. Third, the diffusivity α that sets the scale for late-time production
is inherently difficult to estimate from production data, but the methods here provide the best hope
of obtaining it and thus can determine the physics that will govern the decline of unconventional
gas and oil wells.

I. INTRODUCTION

Hydrofracturing liberates gas and oil from mudstones,
often called shales, that form layers hundreds or thou-
sands of meters deep, and 30 to 100 meters thick [1, 2].
Hundreds of thousands of these “unconventional” wells
have now been drilled, and the US natural gas supply de-
pends upon them [3, 4]. The extraction process requires
creating a fracture network through a subsurface stimula-
tion process involving explosives, pressurized water, and
sand [5]. The resulting fracture networks extend over a
distance on the order of a kilometer in one direction, and
on the order of 200 meters in the perpendicular horizon-
tal direction. Gas diffusion in unfractured shales is very
slow; the diffusivity α is on the order of 10−8 m2/s [6].
However once gas reaches the fractures it travels rapidly
to a wellbore and from there up to the surface. We will
mainly refer to gas production throughout this article,
but the same physical picture and equations apply to oil
as well[7].

The shapes and connectivity of fracture networks that
lead to production are poorly known. Microseismic imag-
ing provides clues based upon acoustic emissions detected
during the fracturing process [8, 9], but the sound emis-
sion is not likely to provide an accurate map of the frac-
tures. Rapidly moving brittle fractures do not have to
generate strong acoustic emissions, and noise from the
grinding of rock faces in shear does not have to corre-
spond to an opening crack. More clues have come from
diagnostic wells [10] and from ingenious new acoustic
techniques [11]. These techniques are expensive, rarely
employed, and provide only partial geometrical informa-
tion.
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Figure 1. The geometry of the parallel plate model [6] consists
of a horizontal well with a uniform array of planar hydrofrac-
tures. The cuboid volume that contains the well and the
hydrofractures is known as the stimulated reservoir volume.
Gas transport in this model involves diffusion of gas pressure
in the interior of the stimulated volume and normal to the
hydrofractures. Gas transport from the exterior is neglected.

Despite the inevitable complexity of fracture networks
created underground, one can make a great deal of
progress by imagining that the fracture network adopts
the parallel plate geometry shown in Figure 1[6]. Two im-
portant quantities characterizing underground fracture
networks can be extracted from the time history of gas
production. These two quantities are M, the stimulated
original gas in place, and the interference time τ = d2/α,
where α is the diffusivity of gas and 2d is the spacing be-
tween the plates . The stimulated original gas in place is
the original gas density ρ0 times the stimulated reservoir
volume V . One of our goals here is to understand why
this model performs so well given that the geometry on
which it is based is so simple.

Our larger goal, however, is to find if the time-
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dependence of gas production contains enough informa-
tion that it is possible to extract details about the geom-
etry of the fracture network. At first the answer appears
to be yes. The time dependence of gas production is
given by a sum over exponential terms from the solution
of an eigenvalue problem. This operation can in principle
be inverted, the eigenvalues in principle extracted, and
these then in principle provide detailed signatures of the
geometry.

However the inverse problem that moves from pro-
duction history to network geometry is ill-posed. Large
changes in the network produce almost no change in
production. We demonstrate this not through a strict
mathematical method, but through careful physically-
motivated analysis in two different production regimes.

The first regime is the long-time regime. At sufficiently
long times, gas production for all compact fracture net-
works is described to very high accuracy by two numbers.
The first of these is the diffusivity α of unfractured rock,
which sets the physical scale. The second number Vext is
the volume within an equivalent absorbing square bound-
ary; all details about the network other than the volume
of the square become irrelevant.

The second regime is the early-time regime. Here the
situation is a little more complicated. Suppose the prob-
ability of finding a region where the spacing between
nearby fractures is d goes as P (d2) ∝ d−2β . For all net-
works where the exponent β is less than the critical value
of 1/2, the early-time behavior is the same as the par-
allel plate model in Figure 1. This condition applies to
all model systems we studied. Thus we obtain an expla-
nation for why the parallel plate geometry matches ex-
perimental data so well, but we also obtain discouraging
news about the prospects of deducing geometry from pro-
duction. At both early and late times information about
all networks collapses down into two early-time and two
late-time parameters. It is only during the crossover pe-
riod that some more information can be extracted. We
describe methods to do so, although even in idealized the-
oretical settings we have not gotten them to work as well
as we originally hoped. We show that by including the
power-law β in our models we can improve their ability
to fit production histories in ways that improve the mod-
eling accuracy according to standard statistical criteria.
This process may or may not withstand the test of use
with real noisy data. In any event, we believe our meth-
ods point to how to extract the most possible physically
reliable information from production data.

An obvious and vexing sign that the inversion problem
is ill-posed appears in the parallel plate model. The first
clue about geometry one ever sees in production data
is a cumulative production curve bending below a line
going as t1/2. In the parallel plate model, this happens
on the timescale τ = d2/α (Figure 1). The interference
time τ is the time it takes the pressure from neighboring
fracture planes to diffuse to the halfway point between
the fractures. The problem here is that τ is compatible
with an infinite number of values of d2 and α, so long as

their ratio is conserved. This degeneracy breaks down at
late times when flow is dominated by gas coming from
unbroken rock. But how long does one need to wait for
that late time information? How clear is the signal?

The setting in which we address all these questions is
an exactly solvable model. The expectation, as for other
simple models in physics, is that this will make it possi-
ble to understand qualitative ideas, that the conclusions
will have a universal character, and that the hosts of de-
tails we omit turn out not to make a large difference.
The particular model we define is similar to some that
have been studied before. At first it appears most similar
to diffusion limited aggregation [12], because it features
diffusive motion on a lattice, where walkers arrive at a
surface. However in our problem, the absorbing surface
is static and does not change as time progresses. There-
fore, there is actually a greater formal affinity with the
problem of electron transport in disordered solids, and
we will draw on the methods developed for that context
throughout this paper. We present two methods to solve
the model. The first method is a kinetic Monte Carlo
approach. This was the first method we tried. Then we
developed a second method that draws on lattice Green’s
functions to obtain exact time-dependent solutions, at
the cost of greater formal complexity. We have published
a preliminary account of the second method [13]. Here
we provide an improved formalism that delivers answers
around 100 times faster, we provide many more details of
how the method operates, and then we use the method
to answer the questions we have posed.

While our work here occurs in a completely idealized
setting, we were motivated by and will eventually return
to the application of these ideas to field data. A similar
version of this approach to long-time production behavior
was already applied to field data in [14, 15]. The fact that
using power-law distributions of fractures can improve
fits to data was found previously by [16]. To explore the
implications of single-well production models for field-
wide production estimates see [4] and references therein.

In Section II, we describe the kinetic Monte Carlo ap-
proach and the conclusions we drew from it. In Section
III, we summarize results from Green’s function methods
that permit exact solutions. In Section IV, we explore the
relation between fracture network geometry and produc-
tion. In the course of developing the applications, we
demonstrate universality of long-time production, show
how to extract information about the power-law struc-
ture of the fracture network, use it to make predictions
about future production, and show why this procedure is
ultimately unsatisfying. Section V summarizes our con-
clusions. Details concerning the Green’s function formal-
ism are found in four appendices.
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II. KINETIC MONTE CARLO

A. Model

The fracture network in hydrofractured shales is con-
tained in a finite region around the well commonly re-
ferred to as the stimulated reservoir volume. As sketched
in Figure 1, the length L of the well in the horizontal di-
rection is kilometers, while the heightH of the shale layer
is 30-100 m. This is why all the models in this paper are
defined in two dimensions. Some qualitative phenomena
might require a three-dimensional explanation, but we fo-
cus here on what can be learned from assuming that the
essential phenomena are contained in two dimensions.

Our first numerical experiments were carried out on
systems such as a 25 × 25 square lattice with periodic
boundaries shown in Figure 2. The bonds between adja-
cent lattice sites can be broken or left intact, to mimic
fracture or unbroken rock. The blue lines depict frac-
tures, and when gas located in the white space diffuses
to a fracture, it is absorbed and removed from the sys-
tem. The fractures are viewed as infinitely thin, and the
gas diffuses in a continuous plane.
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Figure 2. Geometry of our Monte Carlo model, with a stim-
ulated reservoir volume (fractures in blue) embedded in a
fracture-free matrix (white). The precise structure of the
fracture network comes from a geologically constrained per-
colation model described in detail in [17, 18]. In the model,
fracture length results from a power law probability distri-
bution characterized by the exponent e. The density of the
fracture network is controlled by the filling fraction p, defined
as the ratio of the broken lattice bonds to the total number
of bonds (color online).

Our fracture network comes from a lattice percolation
model based on observations of fractures in geological
formations [17]. Fractures in the model lie along two
primary orthogonal directions. In accord with a large
body of geological research, the length of the fractures is

distributed according to a power law of exponent e, such
that the cumulative density function for length l is given
by [19, 20]:

F (l) =
l−e − l−e

min

l−e
max − l−e

min

. (1)

Here, lmin and lmax are the minimum and maximum
lengths: lmin is the same as the lattice spacing; lmax is
infinite. In geological fracture systems, e has been shown
to vary typically between 0.8 to 2.2, with a mode at 1.2.
The geological data are for rocks fractured by natural
processes, which need not produce the same power laws
as hydrofracturing. However in the absence of better in-
formation we begin here. Fracture density in the model
is controlled by the filling fraction p, defined as the ra-
tio of broken lattice bonds to the total number of bonds.
Our fracture network is the spanning cluster for the per-
colation problem fully defined by e and p [17].

Given the network in Figure 2, we examine the diffu-
sion problem involving transport of ideal gas to an ab-
sorbing network of infinitely conductive fractures. Initial
gas saturation in the model is uniform and we assume
homogeneous transport properties for the unbroken lat-
tice. We are interested in the rate of mass transport to
the fracture network.

We simulate diffusive transport using a Monte Carlo
scheme involving independent random walks. We popu-
late the lattice with a uniform initial density of random
walkers and let each walk continue until the walker is ab-
sorbed on the fracture network. The probability density
function for the walker arrival time, which one can con-
struct by considering sufficient numbers of walks, gives
the time history of the mass transport rate.

We determine each hop by sampling the displacement
distribution φ (x) and the waiting time distribution ψ (t)
for Brownian motion:

φ (x) =
1√
2πσ

exp

(

− (x− µ)2

2σ2

)

, (2)

where σ ≪ lattice spacing and µ = 0 (no drift), and

ψ(t) =
1

t∗
exp

(

− t

t∗

)

. (3)

In practice we set t∗ = 1 and σ = 0.1. This corresponds
to a diffusion constant for the two-dimensional problem
of D = σ2/(2t∗) = 0.005.

B. Validation

We validated our Brownian walk simulation by com-
paring with an analytical solution [6] for flow to parallel
plates in one dimension. The geometry is given in Fig-
ure 3a. We show in Section III D 2 that the difference
between the one-dimensional solution for plates and two-
dimensional solution for squares is insignificant. Particles
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start at a randomly chosen point in the interior and dif-
fuse until they hit a boundary.
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Figure 3. Validation of our Brownian motion code. To con-
struct the scaled rate vs time plot, we fit the parallel plate
solution Eq. (29) to the probability density function for ar-
rival time, which we get from the simulation. The fitting
procedure yields a time scale τ and a mass scale M, which
we then use to scale time and rate: scaled time t̃ is defined
by t/τ ; scaled rate, by Q̇/ (M/τ ) (a) Validation geometry, a
fractured (blue) 5 × 5 lattice. (b) Simulation (jagged6 line)
matches theg theory from parallel plate model ( (smooth line,
color online).

Starting with a uniform initial density of random walk-
ers, we simulate Brownian motion until all walkers are
absorbed on the fractures. Next, we fit the solution for
flow into squares to the probability density function for
the walkers’ arrival time and obtain the scaled rate vs
time plot presented in Figure 3b. There is a good agree-
ment between the analytical result (Eqs. (28) and (29))
and Monte Carlo calculations.

C. Results

We now apply the Monte Carlo scheme of Section II A
to several fracture networks. Figure 4 shows the pro-
duction rate for the fracture network presented in Fig-
ure 2. At early times, the rate declines in accord with
the parallel plate solution [6]: the rate initially declines
as 1/

√
t and transitions to an exponential at about t̃ = 1.

The 1/
√
t decline emerges from the diffusion of low gas

pressure from the fractures through what appears to be
a semi-infinite reservoir at early times. Next, the rate
begins to decline as a power law and maintains this be-
havior over approximately a decade in scaled time. The
emergence of this power law is the most striking feature of
Figure 4. It suggests that the rate vs time plot might con-
tain information about the geometry of the underlying
fracture network and in particular about the power law
distribution of fractures forming the network. The expo-
nent here for the decline of gas production is D = −1.7.

0 5 10 15 20 25

7

Figure 4. Production decline for the fracture network in Fig-
ure 2 (jagged line). The rate initially declines according to
the solution for the parallel plate geometry, Eq. (29) (smooth
curving line), but then transitions to a power law decline
(straight line, color online).

To examine the relationship between the power law de-
cline and fracture network geometry, we compared pro-
duction decline for numerous fracture networks with dif-
ferent fracture length exponents e and/or filling fractions
p. The fracture length exponent e controls the structure
of the fracture network, such that small values result in
networks made up of a few long fractures and large values
lead to networks with numerous short fractures. (In the
limit of e→ ∞, one recovers the classic bond percolation
problem in which the size of every fracture is one lattice
spacing.) The filling fraction p controls the density of the
fracture network.

As an example, Figure 5 presents the geometry and
rate for a network with e = 2 and p ≈ 40%. The exponent
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Figure 5. Geometry and decline rate for structure with e = 2
and p ≈ 40%. (a) Fracture network with e = 2 and p ≈ 40%.
(b) Production rate (jagged line) initially declines according
to the solution for the parallel plate geometry (smooth curve),
Eq. (29), but then transitions to a power law decline (straight
line, color online).

for the power decline here is D = −1.4, which is smaller
in magnitude than the exponent for the network with
e = 1.2 and p ≈ 40%.

Thus our Monte Carlo simulations suggested that the
structure and density of fracture networks manifested
themselves through a power law decline in the time his-
tory of production rate. If the correspondence between
fracture network geometry and production decline were
one to one and could precisely be identified, we would
be able to arrive at conclusions about fractal network ge-
ometry from the production decline. The concern with
this method was that it was being applied in a relatively
small, finite domain. We decided that limitations on pre-
cision and computational efficiency in the Monte Carlo
method would make it worthwhile to develop an analyt-
ical approach capable of solving the problem exactly in
an infinite external domain.

We developed such an approach and proceed to discuss

it in detail. The methods were first described in [13], but
the brevity of that discussion, as well as numerous tech-
nical improvements leading to s hundred-fold increase in
solution speed justify a revised description, to which we
now turn.

III. EXACTLY SOLVABLE DISCRETE MODEL

A. Model Definition

We define an exactly solvable model on a square lattice.
Every site of the lattice has a binary index associated
with it, and a continuous variable. The binary index
determines whether the site is rock or an absorber. The
continuous variable represents a density of gas. If the
site is rock, then gas diffuses through it as a conserved
quantity. If the site is an absorber, any gas that arrives
at it immediately disappears from the system. One can
think of the absorbers as sites along a fracture network
that conducts gas rapidly to the surface.

This model differs from the one in the previous section
in a subtle way. In the previous section as well as here,
the fracture network is defined on a square lattice. How-
ever in the previous section the fractures were viewed as
infinitely thin and gas density was defined everywhere in
a two-dimensional plane. Here the gas density is only
defined on the (countably infinite) sites of the lattice.
Therefore the two models give different results at short
times t ≤ a2/α = 1, where a is the lattice spacing and α
is the diffusivity. On long time scales, equivalently over
large distance scales, the models are the same.

Sites of the square lattice are denoted by ~Rj , or more
simply just by j. Sites j and j′ on the lattice are con-
nected by links of strength kjj′ = kj′j . We restrict our-
selves to nearest-neighbor coupling

kjj′ =

{

1 if j and j′ are nearest neighbors

0 otherwise.
(4)

Each site is either intact rock, or an absorber, which we
indicate through a variable θj by

θj =

{

1 if j is rock, not an absorber

0 if j is an absorber.
(5)

On every site j there lives at every time a density of gas
ρj(t). We denote the state vector of densities by |ρ(t)〉,
and the density at site j by

ρj(t) = 〈j|ρ(t)〉

We use dimensionless variables, where distance is in units
of a lattice spacing a, time is in units of a2/α, and α is
the diffusivity of gas. The time evolution of ρ is given by

ρ̇j (t) =
∑

j′

θjkjj′ [ρj′ (t) θj′ − ρj (t)] . (6)
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Whenever a site j is an absorber (θj = 0), the density
of gas located there does not change. At a rock site j
(θj = 1) that has as neighbor j′ an absorber (θj′ = 0),
gas flows from j to j′ as if the density at j′ is 0. Since
the density at j′ does not change, the gas that flows in
this way exits the system; conceptually it is transported
to the surface out of the rock. The time evolution can be
written more compactly as

|ρ̇ (t)〉 = Ĥ |ρ (t)〉, (7)

where

〈j|Ĥ |j′〉 = Hjj′ = θj [kjj′ −Bδjj′ ] θj′ ; B ≡
∑

j′

kjj′ = 4.

(8)
We choose an initial density given by

|ρ(0)〉 = |ρi〉; 〈j|ρi〉 = ρj(0) = 1. (9)

We want to know the total amount of gas Q that has ex-
ited from the lattice by time t. This is given by summing
over j:

Q(t) =
∑

j

(ρj (0)− ρj(t)) = 〈ρi|ρi〉 − 〈ρi|ρ(t)〉, (10)

where 〈ρi| is the transpose of |ρi〉.
Because Eq. (6) is an infinite set of coupled equations,

it is impossible to solve directly by any elementary means.
We divide the solution into two phases. In most of our
example problems, the system has one or more enclosed
interior regions, all finite, and then an exterior region
which is infinite. Intuitively it is clear that the solutions
of disconnected interior regions are completely indepen-
dent from each other, and independent of the solution of
the exterior problem. Therefore, we solved these prob-
lems separately.

To do so, we modified the time evolution matrix of
Eq. (8) twice, first to address the interior problems, and
second to address the exterior problem. The modifica-
tion for the interior problems is straightforward, since it
is accomplished by limiting the equation of motion to a
subspace. To address the exterior problem, the equation
of motion has to be thought through in a new way. The
solution of the problem once it is recast is so technically
elaborate that we relegate most of it to a set of appen-
dices. The remainder of this section is devoted to the two
sets of solutions and to presentations of test problems as
a prelude to applying the solutions to address physical
questions.

To assist presentation of the two modified time evo-
lution problems, we illustrate various subsets of lattice
sites in Figures 6 and 7.

B. Solution for enclosed interior region

Consider a region of the two-dimensional lattice sur-
rounded by absorbers, and focus only on gas absorption

L

Figure 6. Illustration of the interior of a fractured network.
The absorbers are the black squares, and these are indicated
by the condition θj = 0. The space L is the space of all sites
interior to the absorbers but not absorbers themselves: light
blue (or gray), indexed by l (color online).

MM

M
′

Figure 7. Illustration of the exterior of a fractured network.
Space M is the set of all absorbers in contact with the exterior:
black squares, indexed by m. Space M ′ is the set of all nearest
neighbors of absorbers that are not themselves absorbers and
in contact with the exterior: orange (or gray), indexed by
m′. Space N is the union of M and M ′: black and orange (or
gray) squares, indexed by ν. Space O is the set of absorbers in
contact with the exterior and all exterior sites: black squares
plus everything outside them (color online).

in this interior region (Figure 6). Project down onto the
finite-dimensional space L of sites j where θj = 1, (Fig-
ure 6). Index this space with l. Then the solution of the
interior problem is given by Eq. (7) with

〈l|Ĥ|l′〉 = Hll′ = kll′ −Bδll′ . (11)

The matrix 〈l|Ĥ |l′〉 has −B down the diagonal, and every
row and every column has between 0 and 4 off-diagonal
entries equal to 1. Any row or column with less than 4
nonzero off-diagonal entries represents a lattice site with
one or more neighboring absorbers. The factors θj from
Eq. (8) are gone because only sites where θj = 1 are left

in the system. In this space L, Ĥ has a complete set of
eigenvectors |α〉 so that

1 =
∑

α

|α〉〈α| and Ĥ |α〉 = Eα|α〉. (12)

One can write the solution of Eq. (7) as

|ρ (t)〉 =
∑

α

eEαt|α〉〈α|ρi〉. (13)
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Clearly all the eigenvalues Eα must be negative, or else
there would exist initial conditions for which the amount
of gas in the lattice increases, and that is impossible. At
time t the amount of gas that has been produced is

Q(t) = 〈ρi|ρi〉 −
∑

α

eEαt|〈α|ρi〉|2, (14)

and the production rate is (note again that all eigenvalues
are negative)

Q̇ = −
∑

α

Eαe
Eαt|〈α|ρi〉|2. (15)

These expressions are practical so long as finding all
the eigenvalues is practical. By way of reference, for a
100×100 two-dimensional lattice, such as the interior re-
gion depicted in Figure 2b, for which the matrix Ĥ is on
the order of 10, 000×10, 000, standard eigenvalue solvers
can find all eigenvalues and eigenvectors in a few seconds
on a desktop computer. The matrix is sparse, but for a
problem of the scale just mentioned, the sparse matrix
eigenvalue solvers are much slower, less accurate, and find
only a subset of the eigenvalues rather than all of them
as we require. For the largest systems considered in this
paper (Section IVF) the interior region was partitioned
into disconnected subregions, the eigenvalue problem was
solved in each of them, and the results summed at the
end to give total interior production. Finding all the dis-
connected interior regions is an easy numerical problem
since one simply needs to place a boundary around all the
absorbers and then run through all the sites inside this
boundary, checking for regions connected to each other.

We did not pursue the formal inverse mathematical
problem of deducing the fracture network from the pro-
duction curves. Based on the physically motivated anal-
yses that follow it seems certain that the mathematical
problem is ill-posed, for variations in the initial condi-
tions are amplified exponentially by the diffusion opera-
tor, Eq. (6), when time is reversed.

C. Solution for infinite system

Any collection of absorbers in contact with an infinite
two-dimensional lattice must have some absorbers that
draw on an unbounded amount of gas. While formally
one can still employ Eq. (13), the number of eigenvalues
and eigenvectors is infinite, and a direct approach to di-
agonalizing the diffusion operator fails. This requires a
completely different and more elaborate formal approach.

While the formalism is necessary to achieve our aims,
the main purpose of this paper is to employ this for-
malism to answer questions about collection networks.
Therefore we develop the formalism in a series of appen-
dices. Here we only describe the purpose of each ap-
pendix.

Appendix A: Obtain an equation of motion that is
identical to Eq. (6) in the exterior region O (Fig-
ure 7) but keeps all gas in the interior regions from

ever changing if the interior begins with uniform
density ρ0.

Appendix B: Present expressions for lattice Green’s
functions in the infinite square lattice and find
methods for the computation of the matrix ele-
ments for large distances. This task does not ap-
pear to have been achieved previously, but is nec-
essary for the ensuing results.

Appendix C: Use a T matrix formalism to reduce the
solution of the infinite exterior problem to a finite
matrix problem defined on the domain N (Figure
7).

Appendix D: Compute gas production Q̇ from the so-
lution of the finite matrix problem.

We summarize the net result of the whole procedure.
In the appendices we use standard bra and ket notation
from the Green’s function literature, while here we repeat
key expressions in matrix form. Let H0 be the matrix
corresponding to a diffusion problem on an infinite square
lattice without absorbers,

H0
jj′ = kjj′ − 4δjj′ , (16)

and let G0(E) be a matrix that solves the equation, for
E in the complex plane, G0(E) (E − H0) = 1. Define
a matrix H1 on the space N with the following matrix
elements: consider a site m that is an absorber bordering
the exterior (space M in Figure 7), and suppose it has
nm neighboring exterior rock sites. ThenH1 has diagonal
elements

H1
mm = nm. (17)

The off-diagonal elements, for each m′ that is a neigh-
boring exterior rock site of m (space M ′ in Figure 7),
are

H1
mm′ = H1

m′m = −1. (18)

Define the vector ~H with components

Hν ≡
∑

ν′

H1
νν′ . (19)

Here ν lives in space N of Figure 7. Then find the vector
~T (E) that solves the following matrix equation

(

1−H1G0(E)
)

~T (E) = ~H. (20)

This matrix equation is finite dimensional, since the ma-

trix H1 and the vectors ~T (E) and ~H have indices that
run over the finite space N . The matrix G0 is defined
on the infinite square lattice, but here one uses only the
matrix elements G0

νν′(E) for ν and ν′ in space N .
Then the gas production rate is given by an integral

over the argument E of ~T (E) through

Q̇ = −
∫ 0

−8

dλ

πλ
eλt Im

∑

ν

Tν(λ). (21)
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D. Solutions of test problems

1. One absorber

The simplest possible problem that makes use of this
formalism is a single absorber in an infinite square lattice.
|T 〉 has five components. The first corresponds to the
absorber at t = 0, and the remaining five correspond to
the four neighbors of the absorber. Only T0 has a nonzero
imaginary part; the remaining values are Tν = −1, where
ν = 1 . . . 4,

T0(λ) = 4
G10(λ)

G00(λ)
= λ+ 4− G∗

00(λ)

|G00(λ)|2
, (22)

and G∗

00(λ) is the complex conjugate of G00(λ). So

Im T0(λ) = −Im
1

G00(λ)
. (23)

This is the only contributor to gas production, as shown
in Eq. (D5). As in Eq. (D7), define

Gl
00(f) = G00(−e−f ); T (f) ≡ lim

η→0
Im
∑

ν

Tν(−e−f−iη)

Then

Q̇ =

∫

∞

− ln 8

df

π
e−te−f

T (f) =

∫

∞

− ln 8

df

π
e−te−f

Im
−1

Gl
00(f)

.

(24)
For the integral to converge, one has to take values of f
up to around 2000, which correspond to values of λ on the
order of e−2000. Asymptotic values of the lattice Green’s
function are available [21]. In the limit as λ→ 0−,

lim
λ→0−

ImG00 =
1

4
; Re G00(λ) =

1

4π
ln

(

−32

λ

)

. (25)

Therefore, for f < 300, we compute Gl
00(f) directly,

while for f > 300 we use the asymptotic expression

T (f) ≈ 1

1/4 + 1/4π2 (f − ln(1/32))
2 . (26)

An asymptotic procedure of this sort works in the general
case, as we discuss below. That is, for large enough f ,
every finite collection of absorbers leads to an integrand
of this form, but with different values in place of 1/32.

A good way to check whether the procedure has been
carried out correctly is to check a sum rule that applies
when t = 0. The rate of gas production at t = 0 always
equals the number of external nearest neighbors of the
sites belonging to N . The reason for this is that at time
t = 0 the gas density is uniform and equals 1 everywhere,
and it flows into every absorber at rate 1. In this partic-
ular case, the sum rule is obeyed and takes the form

4 = Q̇(0) =

∫

∞

− ln 8

df

π
Im

−1

Gl
00(f)

. (27)

Given the definition ofG00(λ) in terms of elliptic function
Eq. (B14), this is not at all self-evident and could not be
obeyed unless both the theoretical results and numerical
implementation are correct.
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Figure 8. Spectrum and production for a single absorber.
(a) Continuous spectrum on the negative real axis for single
absorber. (b) Gas production, single absorber.

2. Square

We now turn to a case whose solution we will employ
repeatedly in what follows. It is a square shown in Figure
9a. The interior problem for region L (Figure 6) is of size
642 × 642. The sum rule for initial production from the
interior gives Q̇(0) = 256 = 4× 64, which serves as check
on the computations. Gas production from the interior
region comes from Eq. (15), and the result appears in
Figure 9b.

We can compare this with an analytical solution. It is
the solution Q̇plates(t), which is the rate of diffusive flow
to two absorbing plates separated by distance 2 [6],

Q̇plates(t) = 2

∞
∑

n=0

e−(2n+1)2π2t/4. (28)

The comparison of this solution with the solution for the
square is performed in the following way. The flow rate



9

for the interior of the square is

Q̇int(t) =
V
τ
Q̇plates(t/τ). (29)

The two-dimensional interior volume V of the region is
642. The interference time for parallel plates separated
by distance 2d in a medium of diffusivity α is d2/α [6].
For our square with unit diffusivity we have instead τ =
1
2 (64/2)

2
. The leading factor of 1/2 is due to the fact

that there is twice the surface area at which gas can be
collected as in for the parallel plates, so one should expect
the interference time to be cut in half. This is indeed an
exact result in the continuum limit, and one sees from
Figure 9b that the solution of the discrete lattice model
agrees with it well apart from small deviations at early
times.

We now turn to solution of the exterior problem for

the square. When employing Eq. (D8) we find that our
procedures to compute the integrand are stable up to
f ≈ 2000 and become unstable and inaccurate for larger
values. Therefore it is advantageous to see if the function
T (f) defined in Eq. (D7) can adequately be represented
by an asymptotic expression for large f. The form sug-
gested by Eq. (26) is

1

T (f)
≈ T1 + T2(f − f0)

2 as f → ∞. (30)

In the range f ∈ [1200, 3000], this asymptotic expression
reproduces direct calculation of T (f) up to nine decimal
places. The coefficients T1 and T2 that enable this fit
are identical to their values in Eq. (26). Indeed, we find
they never vary for any structure we have examined. It
seems clear this could be proved, but we have not sought
the proof. We replace f0 with ln(σ/σ0) — we will choose
σ0 to give σ geometrical meaning — and write

Q̇ =
1

π

∫ g

− ln 8

df exp(−te−f)T (f) +
1

π

∫

∞

g

df
exp(−te−f)

1/4 + 1/(4π2)(f − ln (σ/σ0))2
. (31)

For most cases we studied, the separation parameter
g = 300 is large enough, although for the structure in
Section IVF it needed to be raised to 1000, as indicated
by residuals of the fit in Eq. (31). In the current instance
we find σ/σ0 = 1205, and define σ0 – for all fracture
networks – as

σ0 = 3.506. (32)

We will allow σ to vary from structure to structure, and
in the current case we find

σ = 4225 = 652. (33)

The reason for this definition looks forward to scal-
ing properties of Q̇(t) and Q(t) which we will discuss in
Section IVA. We choose σ0 so that σ is identical to
the exterior volume Vext = 652 of the fracture network.
We will show that since for this one structure σ equals
the exterior volume, σ obtained using Eq. (31) for other
squares will give their volumes to high precision. For
more complicated structures, this procedure gives a defi-
nition of the exterior volume, a constant that determines
the universal form of their production at late times (Sec-
tion IVC).

The exterior problem produces a matrix for Eq. (20)
of size 532× 532. Initial production from the exterior is
Q̇(0) = 260, and we recover this value from Eq. (31). This
sum rule could not be obeyed if the asymptotic approxi-
mation in Eq. (30) were not accurate. The sum of interior
and exterior production rates and cumulative production
from 0.1 to 106 time units appear in Figures 9b and 10.
Note that for times up to around 10 the interior and ex-
terior production are nearly identical. This makes sense

because the fracture network is a thin closed circuit, and
the inside and outside of it are locally the same except
at the corners.

3. Fractal Fracture Network

As a final test case, consider a network generated from
Eq. (1) with e = 1.2 and p = 25% and shown in Figure
11. The interior space L has 3080 sites, and therefore the
interior solution has 3080 eigenvalues and eigenvectors in
Eq. (15). The sum rule for the interior gives Q̇(0) = 3264.
There are more neighbors of absorbers than absorbers
because each absorber can have as many as 4 neighbors.
The production rate and cumulative production from the
interior of this network are depicted in Figure 13. The in-
terior production was found by finding all the 195 discon-
nected closed regions inside the network, ranging in size
from 1 site to 1417 sites, and applying Eq. (15) to each of
them in turn. The process of finding all the disconnected
regions is numerically quite fast as the algorithm is linear
in the overall size of the structure.

Computation of the external flow to this network was
at first challenging. It was in the attempt to calculate
production for this structure that we developed the inte-
gration contour of Figure 23 in Appendix D. If one tries
to compute the integral of Eq. (31) by integrating along
the negative real axis, it means integrating the function
shown in Figure 12a. There are hundreds of peaks of
width on the order of 10−3 and heights up to 105. By
contrast, integrating along the contour shown in Figure
23 produces the integrand of Figure 12b. This is rel-
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Figure 9. (a) Square with interior of size 64 × 64. (b) Inte-
rior production from the square, comparing exact computa-
tion Q̇interior,Eq. (15), with approximate analytical expression
Qint, Eq. (29), scaled as described in text (color online).

atively smooth, has no peaks, and is fast to integrate.
The sum rule Q̇(0) = 4820 is satisfied to 7 decimal places
at t = 0, and this provides assurance that the computa-
tion is technically correct. For the asymptotic expression
of Eq. (30), σ = 2419. Despite geometrical complexity
of the network, and complexity of the solution in the
complex plane seen in Figure 12a, the solutions shown
in Figure 13 are somewhat anticlimactic in their smooth
behavior.

IV. APPLICATIONS AND INTERPRETATION

OF EXACT SOLUTIONS

A. Dimensional form and scaling

We now apply this formalism to settle questions about
production from fracture networks.

To find scaling laws to relate solutions to each other,
we put our results in dimensional form. Suppose that
unit lattice spacing corresponds to the physical distance
a, that unit dimensionless time corresponds to the time
interval t0, that dimensionless gas density corresponds to
mass density ρ0 and that the diffusivity is α. Let Q̃(t̃) give
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Figure 10. Cumulative production for flow to network shown
in Figure 9a. From top to bottom, total, exterior, and interior
production (color online).

Figure 11. Network of absorbers used as example.

dimensional production versus dimensional time where
the unit of production is mass, and time t̃ = t × t0 also
carries units. The evolution equation for gas is

d

dt̃
|ρ̃
(

t̃
)

〉 = a2

t0

Ĥ

a2
|ρ̃
(

t̃
)

〉. (34)

In the continuum limit, Ĥ/a2 becomes the Laplacian op-
erator ∇2. Therefore we identify the diffusivity as

α =
a2

t0
. (35)

We can generalize this expression. Suppose we refine
the lattice spacing by a factor s, replacing a by a/s, but
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Figure 12. Continuous spectrum from network of Figure 11.
(a) Continuous spectrum along negative real axis for network
in Figure 11. (b) Real part of continuous spectrum along
contour in complex plane in Figure 23, as function of real
part of contour variable.

that otherwise we are describing the same physical phe-
nomenon and in particular keep α fixed. Let ρ̃s be the
dimensional solution for the problem defined on the lat-
tice refined by factor s. Then

d

dt̃
|ρs
(

t̃
)

〉 = αs2
Ĥ

a2
|ρs
(

t̃
)

〉. (36)

Therefore ρ̃s(t̃) describes the same problem in time as
ρ̃(t̃) if one replaces t̃ by t̃s2. Since the number of lattice
squares corresponding to any particular physical region
goes up by s2, one has to divide the gas concentration ρo
by this value. That is,

s−2ρ̃s(s
2 t̃) = ρ̃(t̃). (37)

We can now return to the dimensionless production
function. We have found that if one refines the lattice by
a factor s, the new solution Qs(t) obeys

s−2Qs(s
2t) = Q(t);⇒ Q̇s(s

2t) = Q̇(t) (38)
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Figure 13. (a) Gas production rate for network in Figure 11.
(b) Cumulative gas production from interior of network in
Figure 11 (color online).

The expressions in Eqs. (37) and (38) are approximate
at early times when lattice effects are important, and
become exact in the limit of late times when only large
scales matter. We will use this scaling result frequently
in what follows, and test it explicitly in Figure 15a.

It may be helpful to mention typical values of a few
variables [6, 14]. The diffusivity α is on the order of
10−8 m2/s. The spacing between fractures d after well
stimulation is around 1 m. This means that the charac-
teristic time to drain the interior of a structure is 108 s
or around 3 years.

B. Apparent power law seen in Monte Carlo is not

present in exact solutions

We apply these scaling ideas as we return to examine
the results of Section II again. From the Monte Carlo
simulations it appears that gas production from a com-
plex fractured network might reveal a signature of the
network complexity in its late-time behavior through a
power-law decay. It is also possible that the power law
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(a)

(b)

(c)

Figure 14. Lattice realizations of the fracture network of Fig-
ure 5 at three separate resolutions. (a) Fracture network of
Figure 5 on lattice whose spacing equals minimum distance
between fractures. (b) Fracture network of Figure 5 on lat-
tice whose spacing equals half the minimum distance between
fractures (c) Fracture network of Figure 5 on lattice whose
spacing equals one sixth the minimum distance between frac-
tures.

is an artifact of the finite region in which the simulations
have been performed. We return to this question using
the Green’s function formalism of Section III.

Each of the numerical methods has its strengths and
weaknesses. The Kinetic Monte Carlo solutions have a
stochastic element and can only be performed in a finite
domain. The Green’s function calculations are exact in
an infinite domain, but they are performed on a lattice,
and the behavior at short times is unrealistic. The ex-
tent of lattice effects depends on precisely how the lattice
model is implemented. Figure 14 shows three separate re-
alizations of the fracture network of Figure 5. The frac-
ture network was defined in a space of size 25× 25. The
first realization represents the network on a 25× 25 lat-
tice. The next realizations refine the network by factors
s of 2 and 6 respectively. Thus, in Figure 14c, there is
a minimum of five empty lattice sites between the most
closely spaced fractures.

We noted in the previous subsection that when a lattice
is refined by scale factor s, the time needed for any diffu-
sion process increases by the square of the scaling factor.
We verify the scaling of Eq. (38) explicitly in Figure 15a.
We want to reach the continuum limit, and rescaling by
a factor of 6 is adequate to achieve this goal for times as
little as 10−2, while the unscaled network shows lattice
effects up to a time of 10. At late times production all
comes from large distances, and only the rough external
contour of the fracture network matters for production.

Now that lattice effects are under control, we compare
the Green’s function solution for the network on a lattice
(scaled up by a factor of 6) with the Kinetic Monte Carlo
result. Figure 15 shows the comparison. We rescale time
both for the Green’s function solution and for the Ki-
netic Monte Carlo solution so as to match the function
Qint from Eq. (29) at early times. The portion of the Ki-
netic Monte Carlo solution we previously thought might
describe a power law we now see results from the finite do-
main in which the solution was found. The Green’s func-
tion solution, which is exact in an infinite domain, does
not show a trace of such a power law, and we therefore
conclude that fractal features of the fracture geometry
cannot be obtained from analysis of production decline
in this way. In Section IVE we provide an analytical
examination of the relation between power-law fracture
networks and production power laws. We will show that
the fractal structure of the collection network does re-
veal itself in production curves, but not in the way we
originally thought.

C. Very late time behavior is universal

In this section we show that at late times, all wells fall
on a single production curve scaled by two variables. We
return to Eq. (31) and write

Q̇ ≈ 1

π

∫

∞

−∞

df
exp(−te−f )

1/4 + 1/(4π2)(f − ln(σ/σ0))2
. (39)

This motivates the definition, sending f → f + ln(σ/σ0),

Q̇lt = 4π

∫

∞

−∞

df
exp(−(tσ0/σ)e

−f )

f2 + π2
. (40)

There is a more transparent but less accurate expression
at very late times (vlt) given by

Q̇vlt ≈
4π

ln(tσ0/σ)
and Qvlt ≈

4πt

ln(tσ0/σ)
. (41)

What one sees from Eq. (39) is that the late-time be-

havior of Q̇ depends on the single parameter σ, which
sets a time scale. This late-time behavior describes pro-
duction of all structures, including structures of different
sizes. As we showed in Section IVA, the late-time cumu-
lative production of two structures must be unchanged
when distances are rescaled by a factor s and time is
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Figure 15. Comparison of Kinetic Monte Carlo and Lattice
Green’s function result for fracture network of Figure 5 in this
paper (a) Convergence of Green’s function solution as lattice
of Figure 5 is scaled by factors s (from lowest curve to highest
curve) of 1, 2, 4, and 6, and thus approaching a continuum
limit where the early time behavior is a t−1/2 power law. The
scaled time is time divided by the scaling factor squared, lead-
ing the curves to lie on top of one another. (b) Comparison
of Green’s function solution scaled by factor of 6 with kinetic
Monte Carlo solution in Figure 5b (color online).

rescaled by s2. How is this compatible with the depen-
dence of Eq. (39) on a single parameter?

To answer this question, we examine cumulative pro-
duction at late times, Qlt, which is given by

Qlt(t, σ) = 4π

∫

∞

−∞

df

∫ t

0

dt′
exp(−(t′σ0/σ)e

−f)

f2 + π2

= 4πσ

∫

∞

−∞

df

∫ t/σ

0

dt′
exp(−(t′σ0)e

−f)

f2 + π2

= σQlt(t/σ, 1). (42)

Therefore, late-time production is unchanged if time is
divided by σ and production is multiplied by σ. This is
the same scaling property displayed in Eq. (38) if we take
σ = s−2.
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Figure 16. Late-time and very-late-time production functions
Q̇lt(t) and Q̇vlt for σ = σ0. The late-time expression produces
a value of 4π for t ≪ 1, but this is not meaningful; only t ≫ 1
provides information about production rates (color online).

In Figure 16 we show Q̇lt(t). It drops less than two
orders of magnitude over thirteen orders of magnitude in
time. This means that the late time production is almost
linear, but with a coefficient of the linear relation that
decreases slowly over exponentially long time scales. We
also show the very-late-time production function Q̇vlt(t),
illustrating that behavior is essentially one over the log
of time.

Because Eq. (40) describes the late-time behavior of all
compact fracture networks, all of them can be described
by an overall scale (ρ0) and the parameter σ. While
σ is defined to be dimensionless, it is connected to two
important dimensional parameters. Note that σ0 was
defined in Eq. (32) so that with lattice spacing a and for a
square of size Vext = 652a2, a2σ = Vext. Therefore σ can
be considered either to define the external volume Vext =
a2σ or a timescale we call the external time τext = Vext/α.
The late-time behavior of flow to the fracture networks is
like a black hole. All geometrical details drop away and
only the effective volume Vext remains.

D. Grid Model

We now set out to find simple functional forms to char-
acterize collection networks with complicated geometries.
The basic strategy is to solve some simple geometries ex-
actly, and then use the scaling law in Eq. (38) to apply
them to a broad range of other cases.

The idea we have in mind is illustrated in Figure 17.
We represent the stimulated volume V as a rectangular
region subdivided into N2 squares of side length d. It is
clear that V and d2 can be chosen completely indepen-
dently. When their ratio is large, the network is highly
ramified.

We assemble the functions needed to carry this out.
For the interior, we need the interior production from a
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Figure 17. Grid geometry with N = 12

square.
The rate equation for flow to parallel plates was

recorded in Eq. (28). Now we need the cumulative pro-
duction, which is

Qplates(t) =

∞
∑

n=0

2

(2n+ 1)
2

4

π2

(

1− e−(2n+1)2π2t/4
)

.

(43)
According to the discussion in Section III D 2, the in-

terior production of a unit square is given by

Qint (t) = Qplates (8t) . (44)

The reason for the factor of 8 is that the solution was
produced for plates at distance 2 from each other while
here they are at distance 1, and the fact that there are
top and bottom boundaries doubles the rate at which
gas is depleted. As shown in Figure 9b, deviations of the
two-dimensional solution from the one-dimensional solu-
tion once it is sped up by 2 are negligible; indeed, the
analytical solution for plates in Eq. (43) is also the ana-
lytical solution for interior production of a square once it
has been scaled as described here.

In addition to a scaling function describing interior
production, we need a scaling function describing exte-
rior production. For this we use the exterior production
function of the unit square, which is

Qext(t) =
1

652
Q square

exterior
(652t) (45)

Here by Q square

exterior
we mean the exterior solution for the

65× 65 square in Figure 10. The factor 652 rescales the
solution to describe a unit square. While using a square
to represent flow into the exterior of all structures is evi-
dently a simple choice, without even taking into account
aspect ratio, we have been guided in this direction by
the fact that all geometric information but a single scale
becomes irrelevant in the long-time limit.

We set down the quantities we will need to connect to
dimensional version of the expressions:

• The diffusivity of the unperturbed background ma-
terial is α.

• The exterior volume, exterior time, and exterior

mass in place are

Vext = σa2, τext = Vext/α,Mext = ρ0Vext. (46)

• The stimulated gas in place is

M = Vρ0 = ρ0d
2NxNy. (47)

• The interference time is

τ = d2/α. (48)

The total gas production, from N2 copies of production
from interior squares, plus exterior, for the grid model is
therefore (t ≡ t̃/τ)

Qgrid (t̃) = MQint(t̃/τ) +MextQext(t̃/τext) (49)

In the particular case of a 65 × 65 square, our defini-
tions of σ0 and σ in Eq. (33) ensure that M and Mext

are exactly equal. This exact equality will not hold for
general structures, but the mass in place M and exterior
mass in place Mext should always be of the same order of
magnitude. When equality holds, Eq. (49) is essentially
the same as Eq. (14) in [14].

In short, the grid geometry, which we propose as a
canonical form to capture complex fracture collection
structures, has four parameters: stimulated original gas
in place M and interference time τ , which scale the inte-
rior solution along the horizontal and vertical axes, and
the exterior mass in place exterior mass in place Mext

and exterior time τext. (gas density ρ0 is assumed known).
The exterior mass in place cannot vary far from the stim-
ulated original gas in place, and thus most of the uncer-
tainty about late times lies in the determination of τext.
Finding this is equivalent to determining the unstimu-
lated diffusivity α.

In the next section we will explore a generalization of
Qint that accounts for a power-law distribution of interior
squares, and we will then address the question of whether
this constitutes an improvement.

E. Why early-time production decay as t−1/2

persists for complex geometries

We address the question of whether fractal fracture
networks might have power-law behavior at early times
that differs from t−1/2. Consider the following simple ap-
proximation to a decline curve; here θ(t) is a Heaviside
function in time:

Q̇early(t, τ) =
θ(t)θ(τ − t)√

tτ
. (50)

This has the same behavior for small t as the internal
collection rate 1

τ Q̇plates(t/τ) in Eq. (28) and can there-
fore be used to examine how a probability distribution
of interference times modifies the power laws of decline
curves. Suppose that there is some probability distribu-
tion P (τ) that leads the early time power-law to change.
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That is

1

tβ
=

∫

∞

−∞

dτP (τ)
θ(t)θ(τ − t)√

tτ
(51)

⇒ 1

tβ−1/2
= θ(t)

∫

∞

t

dτ P (τ)/
√
τ . (52)

Restricting attention to positive t, differentiate with re-
spect to time. Then

(β − 1/2)
1

tβ+1/2
= P (t)/

√
t. (53)

Note that since a probability distribution must be posi-
tive, there only exists a way to obtain the power law t−β

if β > 1/2. In this case, one has a normalized distribution

P (τ) = (1− β) τβ−1
m τ−βθ(τm − τ), (54)

where τm ≡ 2τ is the maximum value allowed for the
distribution. This corresponds to a collection network of
finite size, which must present an upper bound on τ.

We have that
∫ τm

0

dτP (τ)Q̇early(t, τ) =
1√
t

∫ τm

t

dτ (1− β)
τβ−1
m

τβ+1/2

=
(1− β)τβ−1

m

(β − 1/2)

(

t−β − τ−(β−1/2)
m /

√
t
)

. (55)

Thus if 1 > β > 1/2, the short-time behavior goes as
t−β , while if β < 1/2 the short-time behavior continues
to go as 1/

√
t. In other words, when a fracture network

is fractal with a distribution of interference times τ going
as τ−β then the fractal geometry changes the observed
power law of gas production when β > 1/2, but for β <
1/2 the early-time power law for production of gas is
unaffected by the fractal geometry.

What happens if we now return to Eq. (28) and inte-
grate over this distribution with the power-law distribu-
tion of interference times τ we just obtained? We obtain
a new family of decline curves depending upon the addi-
tional parameter β:

Q̇int(t, τm, β) ≡
∫ τm

0

dτ P (τ, β)
Q̇plates(t/τ)

τ

= 2 (1− β)
∞
∑

n=0

τβ−1
m (δnt)

−βΓ(β,
δnt

τm
),

(56)

where

δn = (2n+ 1)2π2/4.

Here Γ(β, x) is the upper incomplete Gamma function.
Integrating over time yields a cumulative production
curve

Q̇int(t/τ, β)

=

∞
∑

n=0

2

δn

(

1− eδnt/2τ + (δnt/2τ)
1−β

Γ(β,
δnt

2τ
)

)

. (57)

In this last expression we replaced τm with 2τ . This has
the effect of making the extended scaling function with
β close to the old one without β for those β < 1/2 for
which the early-time behavior is similar. The production
rate and cumulative production of the curves defined in
Eq. (57) are displayed in Figure 18. For 1/2 < β < 1, the
decline curve in Eq. (56) decays for early times as t−β and
the cumulative production curve grows for early times as
t1−β . However, for β < 1/2, the decline curve goes as
t−1/2 and the cumulative production curve increases as
t1/2. It turns out that this latter case is what is needed
to account for the behavior of the model systems. In
fact, the production of our multiscale systems is best fit
for −1 < β < 0. This, we suggest, is the fundamental
reason that the measured decline curves from stimulated
wells display the t−1/2 power law so universally, despite
the fact that the true collection geometry is much more
complicated than the models where the computations are
usually done.

Note that since our calculations in this section rely
only on a distribution of interference times τ , they are
not limited to two dimensions. They will apply equally
well to cases where three-dimensional fracture networks
divide space up into orthorhombic regions

It would be interesting to inquire into the relationship
between a distribution of fracture lengths and the dis-
tribution of interference times. We have carried out a
preliminary analysis of this topic, but do not report on
it here.

F. Multiscale Model

Figure 19 shows a rectangular region with a power-law
distribution of fractures. We use this as a test of the
methods developed to this point, in an instance where
we can compute the solution for production exactly, and
we also know the geometry exactly, but the geometry
differs from the grid model in Figure 17. The lengths of
the fractures are chosen from a power-law distribution
with e = 1.2 as in Eq. (1). The structure deliberately
is constructed without a fine scale and thus is not very
refined. The smallest distance between fractures is 10
lattice spacings (achieved because after construction, the
network was scaled up by a factor of 10). This is done to
limit the lattice effects so that they are only evident for
times shorter than a tenth of the dominant interference
time. While the resulting network is irregular, it is not
ramified enough for one to say it is a good realization of
a power-law distribution. It was as large as was feasible,
however, for the exploratory analyses of this study. Sev-
eral other statistically equivalent structures were studied
as well to ensure that the results are robust, but this is
the only one we will discuss in detail.

The convex hull of the fracture network has a (2-d)
volume of 6.54 × 104. From the exact solution for gas
flow we extract the external time τext = a2σ/α by fitting
to the asymptotic form on the right hand side of Eq. (31).
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Figure 18. Plots of cumulative production when the prob-
ability of interference time τ goes as τβ up to a maximum
interference time τm. Curves are ordered with β = 0.9 on
top and β = −0.7 on bottom. (a) As β drops below 0.5 the
early-time asymptotic behavior of Qint(t, β) stops depending
upon β. (b) However the detailed shape of the cumulative
production curve in the vicinity of t ≈ τm does depend upon
β, and this does affect attempts to provide good phenomeno-
logical fits to exact solutions of model systems (color online).

The relation a2σ = Vext gives the external volume of the
structure, and we obtain Vext = 6.39×104. It is reassuring
that the completely geometrical value from the convex
hull is the same within around 10% as a value obtained
from fitting long-time behavior.

We compute gas production of this fracture network,
and then examine it in two phases. In the first phase
we examine the complete production history, up to ar-
bitrarily large times, and fit this using ideas from the
previous sections. In addition to the form in Eq. (49) we
also examine the following scaling form:

Qgrid β(t̃) = MQint(t̃/τ, β) +MextQext(t̃/τext) (58)

This is the same as Eq. (49) except that the internal
solution for the stimulated volume now involves the gen-
eralized function from Eq. (57) depending upon β. We

Figure 19. Multiscale rectangular network used as test case.

introduce β reluctantly because each new parameter car-
ries with it the possibility of better fits that come at the
cost of reduced robustness in the procedure. We find
that the quality of the fit without taking β into account
is worse, and a formal criterion (Akaike Information Cri-
terion) says that the models with β are better. We illus-
trate the accuracy of the model fit in Figures 20 and 21.
The first of these figures shows the production rate Q̇ and
cumulative productionQ comparing the exact result with
the best model fit. As we did in Figure 13b, we use the
subscript “total” to indicate the sum of interior and ex-
terior solutions to obtain the complete exact result. The
only visible deviations occur at early times where lattice
effects are present. In order to obtain a more precise
sense of the quality of the fit, in Figure 21 we compute
the slope of the log-log cumulative production depicted
in Figure 20b. This means plotting d lnQ/d ln t, and it
appears in Figure 21. Figure 21b compares the exact re-
sult with the parameterization that excludes the fractal
dimension β, while 21a shows the improvement in the fit
when β is included as a fitting parameter.

Nevertheless, our final judgement is that including the
fractal dimension β is not helpful enough to justify in-
clusion. This is based on two observations. The first is
that we asked if the geometrical distribution of collection
regions for networks such as the one in Figure 19 cor-
responds to the value of β that comes from a fit. The
answer is that while the two are not incompatible, we
are not in a position to say that the power-law distribu-
tion of internal collection regions correlates well with the
exponent β obtained from the fitting procedure. For ex-
ample, based on a geometric count of the numbers of gas
molecules diffusing distance d (note τ = d2/α) to reach
a fracture, we estimate β ≈ 0 ± 0.25, while the fitting
process gives best-fit β = 0.4 for the fits in Figures 20
and 21.

A second approach to deciding whether or not to in-
clude β comes when one tries to mimic the process of
fitting to data that occurs in real life as time unfolds.
We graph this process in Figure 22. To prepare this fig-
ure, we truncate the exact solution QTotal at a value tm
and fit over this limited time interval to the model in
Eq. (58). We let tm advance and carry out the fits as it
gets larger and larger. We carry out this process both
for the parameterized form Qgrid that does not include
the power-law exponent β and the form in Eq. (58) that
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Figure 20. Fits of the model in Eq. (58) to the exact pro-
duction rate and cumulative production for the structure in
Figure 19 (a) Production rate, comparing the exact result
Q̇Total to the parameterized Q̇grid β. (b) Cumulative produc-
tion, comparing the exact result QTotal to the parameterized
Qgrid β (color online).

does. In the test cases we have examined, there are in-
stances where including β gives more accurate estimates
of the parameters at earlier times. Yet this is not always
the case. As shown in Figure 22b, when the system has
reached the age of the interference time τ (a fact that
would not in reality be known at the time) the estimate
of the diffusivity α without using β is too high by a factor
of 10. By contrast, at this point the model employing β
is too high by a factor of 2. When the time reaches 5τ
(about as far in time as any profitable wells in the real
world have proceeded) the model without β provides an
estimate of diffusivity α that is high by a factor of 2,
while the model with β is within 90% of the correct an-
swer. But this is fortuitous, since the estimate of α then
drops to 70% of the true value before eventually converg-
ing to an accurate final estimate when tm ≈ 100τ (taking
a typical value of τ= 3 years, we would have to wait for
the year 2300 to check this prediction thoroughly with
field data). Furthermore, the estimate of τ is better in
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Figure 21. Slope of log-log production plot, comparing models
with parameterized fits (a) Slope of log-log cumulative pro-
duction including fractal exponent β from Eq. (58). (b) Slope
of log-log cumulative production without fractal exponent β
in Eq. (49) (color online).

the model without β and the estimate of M is compara-
ble in the two cases.

These estimates will be degraded further if stochastic
values are added to the production measurements, and
these are present in all real datasets. On the other hand,
the estimates will improve if α is treated as a field-wide
physical constant, rather than a parameter to be deter-
mined well by well. Thus further effort is appropriate if
these methods are to turn into a practical tool.

V. DISCUSSION

When we began this work, our motivation was to learn
the extent to which the time history of gas coming from a
well could be used to infer the geometry of the transport
network feeding the well.

To address this question, we constructed and solved
model systems. Our geometry consists of an infinite
square lattice with uniform initial gas saturation, pop-
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Figure 22. Comparison of fits obtained to production data as
maximum available time increases. The bands around each
line show one-σ uncertainties obtained from the statistical
routine conf_interval in the package lmfit [22]. The uncer-
tainties are almost always underestimates. (a) Estimates of
model parameters, including long-time behavior, making use
of fractal exponent β. (b) Estimates of model parameters,
including long-time behavior, without making use of fractal
exponent β (color online).

ulated with a network of absorbing sites. The formalism
we described in this work makes it possible to obtain
an analytical solution for the time behavior of the rate of
mass transport into the absorbers and out of the domain.
The solution can be obtained for any finite network of
absorbers on a square lattice and is valid over very long
times.

Our main contributions are the following:

1. We implemented two separate methods to solve the
model problem. The first of these is a kinetic Monte
Carlo method that has the advantage of treating
short distances as a continuum, but has the dis-
advantage of providing a solution with a stochas-
tic component and subject to finite-size effects at

large scales. The second of these is a Green’s func-
tion method that has the advantage of providing
an exact solution without finite-size effects at large
scales, but the disadvantage of lattice effects at
short scales.

2. To implement the Green’s function method we had
to find a numerical procedure capable of computing
unperturbed lattice Green’s functions for ranges of
arguments that appear not to have been achieved
previously.

3. By comparing our two methods, we determined
that an apparent power-law visible in the solutions
obtained from Kinetic Monte Carlo is a finite size
effect. We also determined that early-time results
from the Green’s function method showed unrealis-
tic lattice effects unless we expanded structures so
that the smallest structures of interest were sepa-
rated by many lattice spacings.

4. Late-time gas production takes a universal form
scaled by two parameters that corresponds to ra-
dial diffusion of gas from far away towards an ab-
sorbing square. One of the parameters is a time
scale, and the other parameter is the diffusivity of
the unperturbed medium.

5. Fractal geometry of the collection network affects
early-time production. The nature of the effect
depends on the power law governing interference
times. In one regime, the gas production rate at
early times goes as t−β, where β > 1/2. In the
other regime, which is the one that describes real-
istic structures, the production rate at early times
goes as t−1/2, independent of the power law de-
scribing the fractal fracture network.

6. In establishing a practical method to fit both early
and late-time production for our model systems
from production data obtained as early as possi-
ble, we found it best to use four parameters: a
time scale and a volume characterizing late-time
production (together these yield the diffusivity of
the unfractured rock), and a time scale and vol-
ume characterizing early-time production. If the
diffusivity of unfractured rock can be treated as
a known physical quantity, the fitting task drops
down to finding three parameters.

In [14] we described the practical implications of deter-
mining the long-time production of hydrofractured wells.
The assumptions of that paper we now see have been
borne out, although they were based on intuition rather
than on the derivations we have just provided. It is worth
summarizing some of the previous results because they
explain the practical significance of the current results.
The amount of gas coming from a single well in thirty
years can be 30%-50% greater than is predicted by fits
to the early-time solution. The distance around the well
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from which this gas comes impacts the economics of fill-
ing in the field with additional wells. This distance (Fig-
ure 15 in [14]) is estimated to be 50 to 100 m. That is,
the return over 30 years comes from the depletion of a
region that is quite close to the well.

Hydrofracturing is such a recent process that no data
are available to check whether theoretical expectations
about late-time behavior are correct, and whether fit-
ting procedures are accurate. The model systems in
this paper provide a theoretical laboratory where all
these points can be checked. Actual field conditions
introduce many elements that go beyond the models;
three-dimensional structures, production fluctuations,
and multiphase flow are some of the most important. But
learning to make predictions correctly for the ideal two-
dimensional models explored here is a critical first step

towards a physically accurate description of the decline
of unconventional gas and oil wells.
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Appendix A: Equation of motion for exterior

problem

Our goal is to find an equation of motion for |ρ(t)〉 that
is identical to Eq. (6) in the exterior region O (Figure
7), but that leaves the gas density for all interior sites
always unchanged. This solution can then be added to
the solution for the interior to obtain the total gas flow.

In order to accomplish this task, let us return to the
equation of motion in Eq. (6) and modify it. When there
are no absorbers we have

ρ̇j (t) =
∑

j′

kjj′ [ρj′ (t)− ρj (t)] =
∑

j′

H0
jj′ρj′ , (A1)

with

H0
jj′ = kjj′ − 4δjj′. (A2)

Here j ranges over the entire infinite square lattice. Next
suppose there is a set of absorbers indexed by m that
forms the outer boundary of a fracture network (space
M in Figure 7) and that the neighbors of these sinks on
the outside of the network are labeled with m′′ (space
M ′ in Figure 7). Then the drainage from a site m′′ to
its neighboring absorber m can be described by adding a
term to the right hand side of Eq. (A1):

ρ̇m′ (t) =
∑

j′

km′j′ [ρj′ (t)− ρm′ (t)]

−
∑

m∈M

km′mρm(t). (A3)

The last term produces the same effect as if the gas den-
sity at all the absorbers were zero, because it cancels any
nonzero ρm out of the equation for ρm′ . If this were
the only term added to the equation of motion then gas
density at the absorber m would change, and this would
in turn cause gas flow to commence from the interior of
the structure. This can be prevented by adding an addi-
tional term to the equation of motion for density at the
absorber m which precisely cancels any flow along the
bond connecting m and its exterior neighbors m′:

ρ̇m (t) =
∑

j′

kmj′ [ρj′ (t)− ρm (t)]

−
∑

m′∈M ′

kmm′ [ρm′(t)− ρm(t)] . (A4)

Putting together these terms produce the desired effect.
All the sites in the interior are ringed around by ab-
sorbers on the boundary. Their densities cannot change
because the gas density on the absorbers does not change.
And the density on the absorbers cannot change because
the term that couples them to the exterior is zeroed out
in Eq. (A4). However the external neighbors of the ab-
sorbers send gas to them as if the absorbers are empty,
according to Eq. (A3), and as all the external sites are

coupled together, gas flows into the boundary according
to the solution to the exterior problem. Returning to op-
erator notation, the Hamiltonian governing the exterior
problem is given by

Ĥ−Ĥ0 ≡ Ĥ1 =
∑

m∈M
m′∈M′

kmm′

(

|m〉〈m| − |m′〉〈m| − |m〉〈m′|
)

.

(A5)

Note that Ĥ1 is symmetric and is nonzero only in the
space N (Figure 7) spanned by absorbers and their near-
est neighbors connected to the exterior. Eq. (A5) can be
interpreted as a discrete operator for flux into the bound-
ary of the collection network. The sum contains a term
for every bond connecting an absorber to a site on the
exterior.

Appendix B: Green’s function solution

1. Green’s function definition

We intend to find an exact solution of Eq. (6) for the
Hamiltonian in Eq. (A5). Note that the full Hamilto-

nian is the sum of two pieces. The first of them, Ĥ0 is
defined over an infinite-dimensional space, but is analyt-
ically tractable. The second of them, Ĥ1 is not analyti-
cally tractable in the same way, but is defined on a finite-
dimensional space. The method of Green’s functions lets
us turn the whole problem into a matrix problem on a
finite-dimensional space.

Adopt the convention that

|ρ(ω)〉 =
∫

∞

0

dt e−iωt|ρ(t)〉 =
∑

α

1

iω − Eα
|α〉〈α|ρi〉.

(B1)
For t > 0 ω must have some negative imaginary compo-
nent for the integral to converge. Then we have

|ρ(ω)〉 = Ĝ(iω)|ρi〉, (B2)

with

Ĝ(E) =
1

E − Ĥ
, (B3)

and

|ρ(t)〉 =
∫

∞

−∞

dω

2π
eiωtĜ(iω)|ρi〉 =

∫ i∞

−i∞

dE

2πi
eEtĜ(E)|ρi〉.

(B4)

Ĝ(E) as defined in Eq. (B3) is Green’s function, and the
solution for ρ(t) is obtained by integrating on a contour
that traces out the imaginary axis.

2. Unperturbed Green’s function

Consider the Hamiltonian H0, Eq. (A2) for gas diffu-
sion on an infinite two-dimensional lattice without any
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absorbers. Green’s functions for this problem are ex-
tremely well known and described in many textbooks
[21], although to the best of our knowledge they have
not previously been computed in the general cases we
will need. We briefly review the solution as we will need
several of the expressions for the formal development that
follows. The definition of the unperturbed Green’s func-
tion is

Ĝ0
(

E − Ĥ0
)

= 1. (B5)

What are the eigenfunctions and eigenvalues of Ĥ0?

They are just Fourier modes: Choose ~k in the first Bril-

louin zone for a Bravais lattice ~R. For the unit square lat-

tice used here, ~k = 2π(n1, n2)/N, where N is the number
of lattice sites and n1 and n2 are integers ranging from 0
to N − 1,

|~k〉 = 1√
N

∑

~R

ei
~R·~k|~R〉. (B6)

Let ~δ be the nearest neighbor vectors of each lattice site.
Then the eigenvalue E~k is

E~k = −
∑

~δ

(1− cos~k · ~δ) (B7)

and

Ĥ0|~k〉 = E~k|~k〉. (B8)

Therefore for any initial condition ρ(0)

|ρ0(t)〉 =
∑

~k

eE~k
t|~k〉〈~k|ρ(0)〉. (B9)

Green’s function is given by

Ĝ0 =
∑

~k

|~k〉〈~k|
E − E~k

. (B10)

When the lattice is uniformly filled with gas, it is in a

state that is proportional to |~k = 0〉. Because the energy

E~k vanishes for |~k = 0〉,

Ĝ0(E) |ρi〉 =
|ρi〉
E

and 〈ρi|Ĝ0(E) =
〈ρi|
E
. (B11)

Expressions for matrix elements 〈~R|Ĝ0|~R′〉 in one, two,
and three dimensions for various Bravais lattices are
available in the literature [21]. An explicit although com-
putationally impractical expression for the square lattice

with unit lattice spacing is

〈(0, 0)|Ĝ0(E)|(x, y)〉

=
1

(2π)2

∫ π

−π

dkx

∫ π

−π

dky
eikxx+ikyy

E +B − 2 cos kx − 2 cos ky
,

(B12)

where B = 4 is the number of nearest neighbors of each
lattice site.

3. Numerical method to compute unperturbed

Green’s functions

Solution of the gas flow problem requires computation
of the unperturbed lattice Green’s function between ar-
bitrary sites x, y. These are the matrix elements (here
λ < 0)

Gx,y(λ) = lim
η→0

〈(0, 0)|Ĝ0(λ− iη)|(x, y)〉. (B13)

The fastest numerical procedure uses recursion relations
[23]. First find G00 and G10 which are given by

z =λ+ 4,

k =z/4,

k′ =
√

1− k2,

ImG00 =
1

2π
K (k′) ,

Re G00 =sgn(z)
1

2π
K (k) . (B14)

Note that many numerical routines take the square of
the argument given here for the complete elliptic integral
of the first kind, K. For G11, with E the complete elliptic
integral of the second kind,

Ki =kK(k′),

Kr =kK(k),

Ei =
1

k

(

−E(k′) + k2E(k′)
)

,

Er =
1

k

(

E(k)− k′2E(k)
)

,

ImG11 =
2

πz

((

2k2 − 1
)

Ki − 2k2Ei

)

,

ReG11 =
2

π|z|
((

2k2 − 1
)

Kr − 2k2Er

)

. (B15)

From these two matrix elements all the rest can be
obtained by recursion. It is convenient to define

gsy = Gy+s,y; Gx,y = gx−y
y . (B16)

Then all the diagonal elements of G can be obtained from

g0y+1 =
4y

2y + 1

(

z2

8
− 1

)

g0y −
2y − 1

2y + 1
g0y−1. (B17)

Next use the recursion relation
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(E − Ĥ0)Ĝ0 = 1 ⇒ (λ+ 4)Gxy −Gx+1,y −Gx−1,y −Gx,y+1 −Gx,y−1 = δx,0δy,0. (B18)

From this one can deduce the following:

g10 =
zg00 − 1

4
, (B19)

g1y =
z

2
g0y − g1y−1 for y ≥ 1,

gs0 = zgs−1
0 − gs−2

0 − 2gs−2
1 for s ≥ 2,

gsy = zgs−1
y − gsy−1 − gs−2

y − gs−2
y+1 for s ≥ 2 and y ≥ 1.

The papers introducing these recursion relations em-
ploy them for values on the order of s ≤ 5. The reason
larger values do not appear is that the recursions are ex-
ponentially unstable. The instability is particularly se-
vere as λ approaches the band edge λ = 0. We found
reports of effective methods for computation of the un-
perturbed lattice Green’s function for large imaginary λ
[24] but those methods do not function for λ approaching
the band edge along the real axis. Integral formulations
derived from Eq. (B12) are slow and inaccurate, particu-
larly for lattice numbers x and y on the order of 100, and
λ close to the band edge. Because the Green’s functions
behave as logarithms near the band edge, values as small
as λ ≈ 10−2000 are needed in order to carry out the inte-
gral in Eq. (D5). The solution we adopted is to employ
Eq. (B19) with high-precision arithmetic. For example,
when λ = 10−2000, the computation is performed with
4000 places of precision. For x and y on the order of 100,
the recursions require a minimum of 100 places of preci-
sion almost everywhere in the band. Once the Green’s
function matrix elements have been obtained, the rest of
the computation can be carried out with ordinary double
precision floating point numbers.

So far as we can tell, despite the fact that the Green’s
functions employed here have been studied for decades,
this is the first occasion where they have actually been
computed near the band edge for lattice hops larger than
10. We provide a few remarks on numerical implemen-
tation. We used mpmath [25], SciPy [26] and Python
[27]. We were concerned that the computation of Green’s
functions was very slow, and therefore rewrote the arbi-
trary precision Green’s functions routines in C using arb
[28], which we then linked to Python and SciPy using
SWIG [29]. While this did speed up the computation
of Green’s functions by a factor of 100, that turned out
not to be the rate-limiting step. The unexpectedly time-
consuming step was loading the matrix 〈ν′|Ĝ0|ν〉 after all
necessary matrix elements had been computed. For ex-
ample, consider a problem in a 100×100 spatial domain.
All Green’s functions Gxy need to be computed where
0 ≤ x ≤ y ≤ 100. This means finding around 5000 val-
ues making use of Eq. (B19). By contrast the state vec-
tors ν range over 10,000 values, and therefore the matrix
〈ν′|Ĝ0|ν〉 has 108 entries. Each of these is drawn from the
5000 Green’s functions that were previously computed,
but simply looking them up and inserting them turned

out to take much more time in Python than computing
them to begin with. No rapid way to perform this task
in SciPy was found so this portion of the code was also
rewritten in C. Once this was done, the rate-limiting step
became finding |T 〉 from the linear system in Eqs. C7.
SciPy does this efficiently using routines from LINPACK
[30].

Appendix C: T matrix solution

Let Ĝ be Green’s function for the full Hamiltonian for
the exterior problem Ĥ = Ĥ0 + Ĥ1 in Eq. (A5). We now

can compute the Green’s function Ĝ0 that corresponds
to the unperturbed Hamiltonian Ĥ0 and starting with
this we want to find an expression that relates it to the
full problem.

The T matrix corresponding to a Green’s function is
defined by the following formal relation between Ĝ and
Ĝ0:

Ĝ = Ĝ0 + Ĝ0T̂ Ĝ0. (C1)

Standard manipulations found for example in [21] give
an expression for the T matrix as an infinite series:

T̂ = Ĥ1 + Ĥ1Ĝ0Ĥ1 + Ĥ1Ĝ0Ĥ1Ĝ0Ĥ1 . . . (C2)

This makes clear that T̂ like Ĥ1 is nonzero only in the
spaceN of absorbers and their exterior neighbors (Figure
7). The essential point is this: we have a diffusion prob-
lem defined on an infinite two-dimensional lattice. Its
solution can be expressed in terms of the unperturbed
Green’s function Ĝ0 which is defined on the infinite lat-
tice, and T̂ , which is defined in a finite-dimensional space
specified by the finite collection of absorbers. This turns
an infinite-dimensional problem into a finite-dimensional
one.

One can write for the T matrix

T̂ = Ĥ1 + Ĥ1Ĝ0T̂ . (C3)

Thus T̂ is determined by solving the matrix equation

∑

ν′′

〈ν|
(

1− Ĥ1Ĝ0
)

|ν′′〉〈ν′′|T̂ |ν′〉 = 〈ν|Ĥ1|ν′〉. (C4)

Here the indices ν, ν′, and ν′′ belong to N . To compute
gas production from Eq. (14) one does not need the com-
plete T matrix, but just sums over all its matrix elements.
As we will see, it suffices to find

Tν ≡
∑

ν′

〈ν|T̂ |ν′〉 = 〈ν|T 〉. (C5)
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Also define

Hν ≡
∑

ν′

〈ν|Ĥ1|ν′〉 ≡ 〈ν|H〉. (C6)

Then the equation satisfied by the relevant part of the T
matrix is

∑

ν′

〈ν|
(

1− Ĥ1Ĝ0
)

|ν′〉Tν′ = Hν , (C7)

which can be written as
(

1− Ĥ1Ĝ0
)

|T 〉 = |H〉. (C8)

Appendix D: Gas production

1. Derivation from Green’s functions

The relation between the full Green’s function and the
amount of gas produced at time t is

Q(t) = 〈ρi|ρi〉 −
∫

∞

−∞

dω

2π
eiωt〈ρi|Ĝ(iω)|ρi〉. (D1)

Use Eq. (C1) to eliminate Ĝ. It gives

Q(t) = 〈ρi|ρi〉 −
∫

∞

−∞

dω

2π
eiωt〈ρi|

(

Ĝ0(iω) + Ĝ0(iω)T̂ (iω)Ĝ0(iω)
)

|ρi〉 (D2)

Using Eq. (B11) (and recalling that the Fourier transform
of 1/iω is 2π for t > 0) the first two terms cancel, so that
the gas produced is

Q(t) =

∫

∞

−∞

dω

2π
eiωt 1

ω2

∑

νν′

〈ν|T̂ (iω)|ν′〉. (D3)

We indicate the sum over ν explicitly to emphasize that
we are now working in the finite-dimensional space N ,
rather than the infinite two-dimensional lattice on which
|ρi〉 is defined. Taking the time derivative, gas production

Q̇ is

Q̇(t) = −
∫ i∞

−i∞

dE

2πi
eEt

(

1

E

∑

νν′

〈ν|T̂ (E)|ν′〉
)

. (D4)

All the poles of T̂ are on the negative real axis, starting
just a little bit below 0, and proceeding down to −8. One
can perform the integral by deforming the contour to run
just below the real axis from −∞ up to zero, crossing
over the top and running down the real axis for positive
imaginary part from 0 to −∞. This leads to an expression
for energies with vanishing negative imaginary part η:

Q̇ = − lim
η→0

∫ 0

−8

dλ

πλ
eλt Im

(

∑

νν′

〈ν|T̂ (λ− iη)|ν′〉
)

= − lim
η→0

∫ 0

−8

dλ

πλ
eλt Im

∑

ν

Tν(λ− iη)

= −
∫ 0

−8

dλ

πλ
eλt Im〈ρi|T (λ)〉. (D5)

When Tν(λ) has a real argument, it will be understood
to be limη→0 Tν(λ− iη). Eq. (D5) provides an explicit ex-
pression relating the remaining gas to a computation per-
formed only within the subspace of absorbers and their
nearest neighbors.

−8 0

λ1 + αi λ2 + αi

λ1 λ2

Legs 1, 2, 3, 4, 5

Figure 23. Integration contour used for Eq. (D5). The values
used in computation were λ1 = −8 + 10−5, α = −0.1, λ2 =
−10−5.

The numerical strategy we followed at first was to com-
pute the contributions from the discrete spectrum (the
interior sites) from Eq. (15) and the contributions from
the continuous spectrum (external sites) from Eq. (D5).
The integrals were extremely slow to converge because as
shown in Figure 12a the integrand consists of thousands
of narrow peaks. These are produced by cavities in the
structure that are nearly, but not completely, closed re-
gions with discrete levels. It proved greatly preferable
to deform the integration contour as shown in Figure 23.
With this contour, integrals converge much more rapidly.
The numerical values in the caption of Figure 23 were ob-
tained by optimizing convergence time for some simple
test cases.

In our previous publication [13] we had to conduct
a complicated process to deal with discrete modes we
found during the solution of this exterior problem. These
problems were eliminated once we defined the perturbing
Hamiltonian through Eq. (A5) rather than a Hamiltonian
used in the previous publication.

A final definition and change of variables puts the gas
production rate into the most numerically tractable form
for the portion of the contour where λ lies on the real
axis. Define

f ≡ − ln (−λ) , (D6)
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T (f) ≡ lim
η→0

Im
∑

ν

Tν(−e−f − iη). (D7)

Then the fifth leg of the contour in Figure 23, which
requires caution to compute accurately and completely
dominates the integral at large times, is

Q̇(5) =
1

π

∫

∞

− lnλ2

df exp
(

−te−f
)

T (f) . (D8)

2. Additional comments on numerical method

For any given time the integral in Eq. (D5) is performed
with the SciPy routine quad [31], which evaluates the in-
tegrand at a set of quadrature points. Almost all the
numerical time is spent computing |T 〉. For the compu-
tation at t = 0 on the order of 2000 function evaluations
are necessary. It appears that to carry out the computa-
tion for successive values of time t will require repeating
this computation from scratch, but that is not the case.
The quadrature routine selects mainly the same evalua-
tion points as t increases. Therefore the strategy is to
store Im〈ρi|T (λ)〉 every time it is evaluated in a dictio-

nary keyed to the complex argument λ. As the quadra-
ture proceeds for increasing values of t,most of the time it
terminates without needing any new function evaluations
at all. If the quadrature decides it needs new points, it
selects them, they are computed, and added to the dictio-
nary. The result is that the most time-consuming step is
to compute the production rate at t = 0 (where the exact
answer is known in advance), and the computation time
for all remaining times put together is less. In general we
computed the production rate for around 600 different
times equally spaced on a log scale (apart from t = 0)
up to t = 1010. It turns out that the value of time t for
which the computations are most numerically challeng-
ing is around t = 1000. At this point there are very rapid
oscillations of the integrand on the fourth leg of the in-
tegration contour in Figure 23. The integration routine
has difficulty converging, and some very slight glitches
are visible in some of the plots of production rate ver-
sus time. For example, there are slight wobbles in the
black curves in Figure 21. For much larger values of t
only the fifth leg of the contour is important, and as on
this portion of the path the integrand is well-behaved the
integration difficulties go away when t is large enough.


