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This Article presents micro medium amplitude oscillatory shear (µMAOS), a novel method to
measure the frequency-dependent micromechanical properties of soft materials in the asymptoti-
cally nonlinear regime using optical tweezers. We have developed a theoretical framework to extract
these nonlinear mechanical properties of the material from experimental measurements and also pro-
posed a physical interpretation of the third-order nonlinearities measured in single-tone oscillatory
tests. We validate the method using a well-characterized surfactant solution of wormlike micelles,
and subsequently employ this novel technique to demonstrate that the cytoplasm of a living cell
undergoes strain softening and shear thinning when locally subjected to weakly nonlinear oscillatory
deformations.

I. INTRODUCTION

Active microrheology has emerged as a canonical
method for micromechanical characterization of soft ma-
terials that is important in several applications, such
as food science [1], tissue engineering [2], regenerative
medicine [3], wearable electronics [4], and pharmaceuti-
cals [5]. The several advantages of these micromechani-
cal measurements over bulk rheology include a wide- and
high-frequency bandwidth for probing viscoelasticity, lo-
cal probing for heteregenous and multiphase systems, and
small required sample volumes [6, 7]. Microrheological
measurements are often made in the linear viscoelastic
regime or under steady flow conditions [8–10]; however,
many soft materials exhibit a nonlinear viscoelastic re-
sponse during modest unsteady deformations, a behavior
not characterized by linear or steady flow tests.

Recently, several time-dependent nonlinear microrheo-
logical tests have been developed in analog to bulk rheo-
logical techniques, including optically-driven microscopic
step-stress experiments [11], as well as the start-up, ces-
sation, and periodic reversal of the steady translation of
an optically trapped bead [12–14]. All of these methods
probe either steady or transient features of the viscoelas-
tic response of the surrounding matrix. Other bulk non-
linear tests do not yet have a direct microrheological ana-
log, including spectral methods such as large and medium
amplitude oscillatory shear tests, which characterize the
nonlinear frequency-dependent behavior of soft materi-
als using sinusoidal deformations [15–20]. Thus, the
microscopic equivalents of these feature-rich, frequency-
dependent nonlinear material properties have not been
directly accessed by any existing microrheological tech-
nique.
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In this Article, we develop the microscopic counterpart
to the medium amplitude oscillatory shear (MAOS) test
using optical tweezers, henceforth referred to as micro-
MAOS, or µMAOS (Figure 1). This µMAOS framework
represents the first spectral microrheological technique
for studying the nonlinear response of viscoelastic ma-
terials. For optical tweezers active microrheology in the
linear regime, the procedure for isolating the dynamic
mechanical properties of the material from the character-
istics of the optical trap is well-known [21–25]. However,
this procedure is no longer valid when probing nonlinear
mechanics. Through µMAOS, we obtain nonlinear vis-
coelastic properties that are independent of the strength
of the optical trap by applying the Volterra series ex-
pansion to the general relationship between the resistive
force exerted by the material on the probe bead and the
velocity of the bead [26]. Furthermore, we also provide
a physical interpretation of the third-order nonlinearities
observed in single-tone oscillatory microrheological tests
(Figure 2).

The following section presents a mathematical deriva-
tion of the µMAOS framework, including our proposed
interpretation of the weak nonlinearities measured by
single-frequency µMAOS experiments. We follow this
discussion with a brief description of the experimen-
tal methods in Section III. The experimental protocol
and mathematical framework of µMAOS is then applied
to four fluids: a Newtonian solution of glycerol in wa-
ter, a well-characterized viscoelastic solution composed
of wormlike micelles, the cytoplasm of a living mam-
malian cell, and an entangled network of linear polymers.
These four studies validate the applicability of µMAOS
to a variety of fluids with different phenomenology, and
demonstrate how our proposed framework can be used
to elucidate previously unknown features of the nonlin-
ear dynamical response of complex fluids.
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II. MATHEMATICS OF µMAOS

We study the asymptotically nonlinear – or medium
amplitude – regime because it is difficult to define mate-
rial functions for arbitrarily large amplitude oscillatory
tests, where an unbounded number of higher harmonics
emerge. Moreover, very large amplitudes are inaccessi-
ble for many materials, as a number of experimental and
physical artifacts are observed in this regime [19]. Alter-
natively, medium amplitude tests provide distinct infor-
mation from linear tests, but avoid the data abstraction
and experimental artifacts of large amplitude tests.

A schematic of our experimental system is shown in
Figure 1. It consists of a spherical sub-micron sized
bead immersed in a soft material. The bead is trapped
by optical tweezers, which are manipulated by a set of
acousto-optic deflectors according to some time-varying,
user-supplied protocol. When the trap created by the op-
tical tweezers is displaced from the center of the bead, it
exerts a spring-like restoring force that pulls the bead to-
wards the focus of the trap. This force is balanced by the
resistance supplied by the surrounding medium, and the
inertia of the bead. In the low-Reynolds number limit,
inertia is negligible, and the resistance exactly balances
the trapping force. In the Hookean limit of the trapping
force (i.e. for small displacements of the trap from the
bead) we express this force balance as:

0 = −ζ[v(t)]− k
(
x(t)− xT (t)

)
. (1)

Here, x(t) and v(t) represent the position and velocity of
the bead, and xT (t) represents the focus of the trap. The
mechanical force exerted on the bead by the surrounding
medium is ζ[v(t)], which is a nonlinear, material-specific
functional of v(t). In bulk rheometry, it is common to
measure analogous properties using oscillatory protocols,
which we extend to microrheology here. For oscillatory
experiments, it is convenient to employ the Fourier trans-
form of the force balance:

0 = −ζ∗[iωx̂(ω)]− k
(
x̂(ω)− x̂T (ω)

)
. (2)

We now represent the particle and trap positions in terms
of their Fourier transforms, denoted by carets: x̂(ω) and
x̂T (ω). This transformation allows us to rewrite the
transformed particle velocity in terms of the transformed
particle position: v̂(ω) = iωx̂(ω).

For isotropic materials, the functional ζ∗[iωx̂(ω)] ex-
hibits odd symmetry with respect to v̂(ω) due to frame-
invariance of the force balance, with the following
frequency-domain Volterra series expansion:

ζ∗[iωx̂(ω)] =
∑

n∈odds

1

(2π)n−1

∫
···
∫ ∞
−∞

ζ∗n(ω1, ... , ωn)

× δ(ω −
n∑

m=1

ωm)

n∏
m=1

iωmx̂(ωm)dωm. (3)

The transfer functions ζ∗n(ω1, ... , ωn) are the material-
specific properties characterized by oscillatory microrhe-

ological experiments, and we define the medium ampli-
tude regime as that wherein only the first two terms of
this Volterra series are resolvable above the experimental
noise [15, 16]. For a spherical bead with radius R, the lin-
ear transfer function is directly proportional to the com-
plex viscosity, η∗(ω) = G∗(ω)/(iω) = ζ∗1 (ω)/(6πR). The
product of the third-order transfer function ζ∗3 (ω1, ω2, ω3)
and the bead radius R represents a newly defined, non-
linear material property that has not been measured di-
rectly in any previous microrheological study. Measuring
this transfer function is the primary objective of µMAOS.

Equations 2 and 3 are not yet sufficient to compute
ζ∗1 (ω) and ζ∗3 (ω1, ω2, ω3) from µMAOS data, because the
particle position x̂(ω) appears inside the Volterra series,
but is not a directly controlled quantity. In optical tweez-
ers active microrheology, measurements proceed by con-
trolling x̂T (ω) and measuring ∆(ω) = x̂T (ω)− x̂(ω) with
a quadrant photodiode [21]. Therefore, we define an al-
ternate Volterra series directly relating the experimental
input and output:

∆(ω) =
∑

n∈odds

1

(2π)n−1

∫
···
∫ ∞
−∞

R∗n(ω1, ... , ωn)

× δ(ω −
n∑

m=1

ωm)

n∏
m=1

x̂T (ωm)dωm. (4)

If we define a characteristic amplitude A for varia-
tions in the trap position, then the transfer functions
R∗n(ω1, ... , ωn) can be inferred directly from data at dif-
ferent A using polynomial regression. This inference is
performed by the MITMAPS software package adapted
from [17], and is described in more detail in the Supple-
mental Material. By comparing equation 4 to equations
2 and 3, we obtain equations relating the measured trans-
fer functions R∗1(ω) and R∗3(ω1, ω2, ω3) to the linear and
medium amplitude material transfer functions [27]:

ζ∗1 (ω) =
kR∗1(ω)

iω[1−R∗1(ω)]
, (5)

ζ∗3 (ω1, ω2, ω3) =
kR∗3(ω1, ω2, ω3)

[1−R∗1(Ω)]
3∏
j=1

iωj [1−R∗1(ωj)]

, (6)

with Ω = ω1 +ω2 +ω3. These expressions allow us to di-
rectly relate active microrheological data to weakly non-
linear material properties.

The mathematical development herein has so far been
independent of some specific driving function xT (t) [16].
For the sake of simplicity, however, we now restrict
our attention to single-tone drives of the form xT (t) =
A sin(ω0t), where A and ω0 are the amplitude and angu-
lar frequency of the trap oscillations, respectively. Sub-
stituting the single-tone signal into equations 4 through
6, we find that a weakly nonlinear single-tone drive elic-
its both a linear and third-order material response at the
driving frequency (ω0), and a purely third-order response
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FIG. 1. Schematic representation of nonlinear micromechanical measurements via optical tweezers. (a) Bead within the soft
material trapped by optical tweezers (not to scale). (b) Depiction of the trapping and mechanical forces in the system. (c)
Trapping force vs. trap displacement curves showing linear and nonlinear mechanical behavior at amplitudes of 0.175 and 0.4
µm respectively at 500 rad/s for a 5 wt% aqueous PEO solution.

v(t)

ζ[v
(t)]

x(t)

ζ[x
(t)]

ζ′ ′ 31(ω) < 0
Shear Thinning Shear Thickening Strain Softening Strain Stiffening

ζ′ ′ 31(ω) > 0ζ′ 31(ω) < 0 ζ′ 31(ω) > 0

FIG. 2. Physical interpretation of the sign of the third-order,
first harmonic nonlinear response for the limiting cases of
purely viscous (left) and purely elastic materials (right).

at the third harmonic (3ω0). The coefficient weight-
ing the linear response at ω0 is the linear transfer func-
tion ζ∗1 (ω0). The coefficients weighting the third-order
response elements are certain values of the third-order
transfer function:

ζ∗3 (ω0,−ω0, ω0) ≡ ζ∗31(ω0) = ζ ′31(ω0)− iζ ′′31(ω0), (7a)

ζ∗3 (ω0, ω0, ω0) ≡ ζ∗33(ω0) = ζ ′33(ω0)− iζ ′′33(ω0). (7b)

Here, ζ∗31(ω) and ζ∗33(ω) describe the first and third har-
monic nonlinearity, respectively. It is common to inter-
pret the real and imaginary components of the linear
complex viscosity, η∗(ω) = η′(ω) − iη′′(ω), as represent-
ing viscous and elastic components of the linear response,
respectively. We may extend this interpretation to the
nonlinear properties, where ζ ′31(ω) (ζ ′33(ω)) represents a
viscous nonlinearity and ζ ′′31(ω) (ζ ′′33(ω)) represents an
elastic nonlinearity on the first (third) harmonic.

Unlike η′(ω) and η′′(ω), the real and imaginary com-
ponents of the nonlinear properties can be either positive
or negative, and we may interpret their signs in terms of
the mechanical properties of our material. To develop
this interpretation, it is instructive to consider some lim-
iting examples. For a purely viscous medium in the linear
regime, the mechanical force ζ[v(t)] responds proportion-
ally to v(t). For nonlinear deformations, however, this

curve may bend downwards or upwards, corresponding to
shear thinning or shear thickening, respectively. Asymp-
totically, this curvature is dictated by the sign of the real
component of the first harmonic nonlinearity ζ ′31(ω), with
ζ ′31(ω) < 0 corresponding to shear thinning and ζ ′31 > 0
corresponding to shear thickening. Similarly, for a purely
elastic medium in the linear regime, the mechanical force
ζ[x(t)] responds proportionally to x(t). In the nonlin-
ear regime, negative curvature (ζ ′′31 < 0) in this relation-
ship corresponds to strain softening and positive curva-
ture (ζ ′′31 > 0) to strain stiffening. Figure 2 depicts these
limiting cases. For a viscoelastic material, the mechani-
cal force is no longer dictated instantaneously by either
v(t) or x(t), and plots of ζ[v(t)] against either v(t) or x(t)
for oscillatory probes will look like deformed ellipses (e.g.
the red curve in Figure 1(c)). However, ζ ′31(ω) and ζ ′′31(ω)
still provide information about curvature in the deformed
ellipses, and their signs can be associated with average
shear thinning/thickening and strain softening/stiffening
over one period of oscillation [15].

III. EXPERIMENTAL METHODS

A. Materials

1. Polystyrene Probe Particles

Throughout all experiments in this Article, we use
fluorescent carboxylate-modified polystyrene latex beads
with radius R = 0.44 µm (from Molecular Probes) as
probe particles, which are small enough to maneuver in-
side of the cytoplasm but substantially larger than the
characteristic mesh size for each material studied in this
work [28–31]. These particles are rendered inert by graft-
ing short amine-terminated methoxy-poly(ethylene gly-
col) to their surface, as described previously [32]. These
grafts limit surface interactions with the viscoelastic ma-
trix, particularly cytoplasmic proteins [33, 34], which is
critical for ensuring that the experiments measure the
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FIG. 3. Validation of µMAOS framework for a Newtonian fluid (a 50 wt.% aqueous glycerol solution). (a) The real and
imaginary components, η′(ω) and η′′(ω), of the linear complex viscosity obtained from µMAOS measurements. (b) and (c) The
third-order material properties, ζ′31(ω), ζ′′31(ω), ζ′33(ω), and ζ′′33(ω) obtained from µMAOS measurements, depicted with filled
and unfilled symbols to indicate where data are positive and negative, respectively. Data represent the average over 20 trials,
with error bars representing one standard error uncertainty.

continuum viscoelastic properties of the surrounding ma-
trix. These inert particles are stored at 4◦C and used
within 2 weeks.

2. Wormlike Micellar Solution

The surfactant solution of wormlike micelles used in
this study was composed of cetylpyridinium chloride
(CPyCl), sodium salicylate (NaSal), and sodium chlo-
ride (NaCl) in de-ionized water at concentrations of 100
mM, 60 mM, and 33mM, respectively (CPyCl and NaSal
supplied by Alfa Aesar, reagent grade NaCl purchased
from Sigma Aldrich).

3. Cell Cultures and Microinjection

Mouse embryonic fibroblasts (mEFs) [35] were cul-
tured in Dulbecco’s minimal essential medium (Corn-
ing, NY, USA) supplemented with 10% fetal calf serum
(Gibco, Life Technologies, Gaithersburg, MD, USA) and
1% penicillin-streptomycin (Gibco, Life Technologies,
Gaithersburg, MD, USA) at 37◦C and 5% CO2 in humid
conditions. Cells were transferred onto 35 mm micropat-
terned dishes and allowed to grow overnight. Microinjec-
tion of probe particles is performed using a glass needle
and a FemtoJet microinjector (Eppendorf) mounted on a
bright-field microscope. About 50 cells were injected per
dish; each cell was injected with up to 50 tracer particles
to eliminate the interference to cell function. Cells were
then allowed to recover in culture medium for 6 hours
before the µMAOS measurements were performed.

B. µMAOS Experimental Protocol

The beam from a single-mode continuous wave (CW)
Ytterbium fiber laser (10 W, 1064 nm; IPG Photon-

ics, MA, USA) is directed through a series of Keple-
rian beam expanders to overfill the back aperture of a
1.45 numerical aperture microscope objective (CFI Plan
Apo Lambda DM 100X Oil; Nikon Corp., Japan), which
focuses the beam to optically trap and manipulate the
probe beads immersed in viscoelastic media. Two-axis
acousto-optic deflectors (IntraAction Corp., IL, USA)
are used to maneuver the beam in the plane of the
microscope glass slide and subsequently manipulate the
trapped bead. To measure the position of the probe, the
bead is centered on a high-resolution position detection
quadrant detector (Thorlabs Inc., NJ, USA) with bright-
field illumination from a 100 W lamp.

The linear region of the detector was previously cal-
ibrated by trapping a bead identical to those used in
this Article and moving it across the detector using the
acousto-optic deflectors in known step sizes. The trap
stiffness was calibrated using the mean-squared Brown-
ian motion of a trapped bead in solution of glycerol and
water at various laser power densities using the principle
of energy equipartition [36]. Due to the slightly different
indices of refraction in the cellular cytoplasm and water,
we use a water/glycerol solution with a matched index
index of refraction to calibrate the trap for the measure-
ments in cells.

Finally, to perform the µMAOS experiments described
hereing, the optical trap is subjected to sinusoidal oscil-
lations at six logarithmically spaced frequencies between
6.28 and 1526 rad/s, with measurements at 12 amplitudes
spaced linearly between 0.175 and 0.45 µm, and the laser
position and bead displacement are recorded simultane-
ously. These amplitudes were selected to ensure that the
distance between the particle and trap, ∆, is sufficiently
described by a cubic polynomial in the trap position. The
largest of these amplitudes is nearly equal to a single
particle radius, therefore the focus of the trap never ex-
ceeds a single particle diameter of separation from the
probe, ensuring that bead dropout will not hamper the
microrheological tests. The absence of dropout can be
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verified visually in Figure 1(c), which shows that the
force-displacement curve for even a high-amplitude ex-
periment in polyethylene oxide varies gradually, without
any sudden changes characteristic of dropout.

IV. RESULTS

A. Glycerol-Water Solution

To validate the applicability of the µMAOS protocol
in the linear limit, and to verify the linearity of the in-
strumental tools, we first study the mechanical response
of a 50 wt% solution of glycerol in water. The measure-
ments in glycerol faithfully reproduce the expected New-
tonian viscosity of the solution [Figure 3(a)] indicating
proper calibration of the equipment. Moreover, the non-
linear response detected in glycerol is nearly ten orders of
magnitude less than those measured in viscoelastic solu-
tions [Figure 3(b) and (c)], suggesting that nonlinearities
due to the detection and trapping mechanisms, including
highly nonlinear effects such as the bead dropping out of
the optical trap, have negligible impact on our measure-
ments.

B. Wormlike Micellar Solution

We next apply µMAOS to a well-characterized worm-
like micellar solution – 100:60:33 mM CPyCl:NaSal:NaCl
in deionized water – to validate the scheme in the medium
amplitude regime. First, we compare the complex mod-
uli obtained from the µMAOS technique to predictions
of the corotational Maxwell (CRM) model:

λ
Dτp
Dt

+ τp = ηp
(
∇u + (∇u)T

)
, (8)

with a relaxation time spectrum described by a single
discrete relaxation mode plus a continuous spectrum of
fast-relaxing Rouse dynamics:

P (λ) =
(1−B)e−λ/λc

√
πλcλ

+Bδ(λ− λp). (9)

This model has been previously validated to approximate
the linear and weakly nonlinear viscoelasticity of this mi-
cellar solution using bulk rheological measurements [37],
and we similarly observe close agreement between the
model and the measured linear response [Figure 4(a)].

To validate the nonlinear measurements, we compute
predictions for ζ∗31(ω) and ζ∗33(ω) from the CRM model
using this relaxation time spectrum [27]. Details regard-
ing these analytical predictions are presented in the Sup-
plemental Material, and more extensively in [27]. The
result shows qualitative agreement between the model
predictions and data [Figure 4(b) and (c)]. Without
any adjustable parameters to fit the nonlinear response,
the model predicts the correct sign for all four nonlinear

properties, as well as the approximate magnitude and
frequency-dependence of the data. This level of agree-
ment is supported by bulk rheological measurements, for
which the CRM model also underestimates the magni-
tude of the weakly nonlinear response [17], likely due to
its inability to capture more detailed physical effects of
the micellar solution, such as the elongation of micellar
segments. Still, that such agreement is observed between
our data and a constitutive model known to approximate
the mechanical response of this micellar solution in bulk
rheometry verifies that µMAOS indeed measures intrin-
sic nonlinear properties of viscoelastic materials.

C. Mammalian Cellular Cytoplasm

We finally demonstrate the capability of µMAOS to
discern previously unknown physical traits of soft ma-
terials by characterizing the nonlinear, time-dependent
response of the cytoplasm of a living cell. The mechan-
ical properties of the cytoplasm play important roles in
regulating many key cellular physiological functions, such
as mechanotransduction [38], cancer metastasis [39], cell
signalling [40], and stem cell fate [41, 42]. A significant
portion of cell mechanics studies are limited to the linear
regime [21, 22, 43, 44]. Some studies have examined non-
linear behavior, showing that cells stiffen when subjected
to an external stress [36, 45, 46]. However, these studies
externally probe the cell, measuring the rigid actin cor-
tex instead of the cytoplasm [47]. In fact, we know from
previous studies that the linear cytoplasmic mechanics is
distinct from the cortex, with the latter being two or-
ders of magnitude stiffer [21, 42, 43, 48]. Thus, our goal
here is to directly probe the cytoplasm of a living cell to
characterize its previously unknown nonlinear behavior,
as it could lead to significant insights into how critical
physiological processes are mechanically regulated.

We introduce probe beads inside the cytoplasm of
mouse embryonic fibroblasts (mEFs) by endocytosis [22].
To avoid effects caused by the cellular cortex, we apply
the µMAOS technique only to beads that are at least
1.5 µm from the cortex. From these measurements, we
find that the storage and loss moduli in the linear regime
[Figure 5(a)] show weak power-law dependence on fre-
quency with a magnitude ranging from 1 to 30 Pa. These
measurements are consistent with previous observations
for mammalian cytoplasm [21, 33, 48], suggesting that
both surface interactions between the bead and cytoplas-
mic proteins and effects from the stiffer cellular cortex
are indeed minimal. Both components of the first- and
third-harmonic nonlinear properties [Figure 5(b) and (c)]
exhibit a ∼ ω−3 power-law decay over the measured fre-
quency range, similar to the behavior of the nonlinear
properties of the wormlike micellar solution. Thus, the
observed behavior is consistent with our expectations for
simple viscoelastic materials with fading memory.

The first-harmonic nonlinear properties, ζ ′31(ω) and
ζ ′′31(ω), are both negative throughout the measurement
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FIG. 4. Validation of the µMAOS framework using a CPyCl wormlike micellar solution. (a) The elastic and viscous moduli,
G′(ω) and G′′(ω), obtained from µMAOS measurements. (b) and (c) The third-order material properties, ζ′31(ω), ζ′′31(ω),
ζ′33(ω), and ζ′′33(ω) obtained from µMAOS measurements, depicted with filled and unfilled symbols to indicate where data are
positive and negative, respectively. Data represent the average over 20 trials, with error bars representing one standard error
uncertainty. Predictions of the corotational Maxwell model with high-frequency Rouse dynamics are depicted with solid and
dashed lines to indicate positive and negative values, respectively.
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FIG. 5. µMAOS studies of the cytoplasm of a living cell and of an entangled solution of polymers. (a) A schematic of an
optically trapped bead within the cellular cytoplasm is shown as an inset. The linear elastic and viscous moduli, G′(ω) and
G′′(ω), obtained from µMAOS measurements in the cytoplasm of an mEF cell and in a 5 wt% solution of PEO in water. (b)
and (c) The third-order material properties, ζ′31(ω), ζ′′31(ω), ζ′33(ω), and ζ′′33(ω) obtained from µMAOS measurements. Data
from the mEF cytoplasm are represented by blue and red symbols, while data from PEO are represented with light blue and
purple symbols, with filled and unfilled symbols used to denote positive and negative values, respectively. Data represent the
average over 20 trials, with error bars representing one standard error uncertainty.

window, implying that the cytoplasm exhibits a dy-
namic strain softening and shear thinning behavior dis-
tinct from that of the stress-stiffening cortex. The strain
softening of the cytoplasm is possibly due its relatively
sparse filamentous actin compared to the cortex [49] and
unbinding of the network due to mechanical disruption,
as observed in previous studies [50]. Furthermore, consis-
tent intracellular softening and fluidification behavior of
the cytoplasm was observed during cell division [51]. We
believe that this behavior aids in intracellular processes
within the cytoplasm by providing a soft environment
that is distinct from the cortex, which stiffens under ex-
ternal physical stress as a mechanism for protecting the
soft cytoplasm.

The observation of dynamic softening of the cytoplasm
is supported by recent theoretical studies, which predict
shear thinning of the cytoplasm in steady flow [52], and
by experimental observations of strain softening of the
cytoplasm [14] after cyclic steady loading. To further

support the observation made from the µMAOS mea-
surements that the mammalian cytoplasm exhibits a dy-
namic strain softening and shear thinning behavior, and
to contrast the mechanics of the mammalian cytoplasm
with that of the cellular cortex, we conduct unidirectional
dragging experiments both in the cytoplasm and near the
cortex. In these experiments, an optically trapped bead
is displaced at a steady rate, and the force exerted by the
surrounding medium on the bead is measured by observ-
ing the displacement between the bead and the optical
trap. Otherwise, the experimental setup and protocol is
the same as for µMAOS experiments, described in Sec-
tion III B. Figure 6 shows the result of these unidirec-
tional dragging experiments.

Although these experiments capture the nonlinear me-
chanics of the cytoplasm and cortex only in the steady
limit, whereas µMAOS measurements are inherently dy-
namic and therefore correspond to a finite timescale,
these measurements do support the observation that
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FIG. 6. Unidirectional dragging measurements of an optically trapped bead in a living mammalian cell. (a) Measurement
near the cellular cortex, which depict a strain stiffening behavior (positive concavity in the force vs. displacement curve). (b)
Measurements in the cytoplasm, away from the cortex, which depict a strain softening behavior (negative concavity in the force
vs. displacement curve). The solid black line corresponds to the mean over 20 trials, and the shaded region corresponds to one
standard error of the mean.

the cytoplasm is strain softening. The strain soften-
ing behavior is evident in the negative concavity of the
force vs. displacement curve, which would correspond to
ζ ′′31(ω) < 0 in the limit of ω → 0. The cytoplasm, on the
other hand, exhibits a strain stiffening response, corre-
sponding to ζ ′′31(ω) > 0 in the limit of ω → 0. Therefore,
the unidirectional dragging experiments support the con-
clusions made from the µMAOS data that the cytoplasm
is strain softening, and that its behavior is distinct from
that of the strain stiffening cortex.

D. Polyethylene Oxide

The unique capabilities of µMAOS to study the non-
linear mechanical properties of complex fluids at the mi-
croscale are further demonstrated by comparing the data
from the mEF cytoplasm to that obtained in another ma-
terial with similar linear viscoelastic characteristics. Fig-
ure 5 also presents data taken in an aqueous solution of 5
wt% polyethylene oxide (PEO), a solution which forms a
weakly entangled polymeric network that might be con-
sidered a surrogate model for the cytoplasm. Indeed,
G′(ω) and G′′(ω) for both the cytoplasm and PEO ex-
hibit weak power-law dependence on frequency [Figure
5(a)], consistent with previous observations [53]. How-
ever, ζ ′31(ω) is measured to be positive for PEO but nega-
tive for the mEF cytoplasm, indicating that while the cy-
toplasm is shear thinning in the measured frequency win-
dow, the PEO solution is asymptotically shear thickening
– an observation supported by bulk rheological measure-
ments of concentrated PEO solutions [54]. With the sen-
sitivity of µMAOS to this nonlinear material property,
we are able to distinguish the distinct nonlinear charac-

teristics of two materials with qualitatively similar linear
viscoelastic responses.

V. CONCLUSION

This Article demonstrates that µMAOS sensitively
probes aspects of soft material physics that are difficult,
or impossible, to ascertain using other methods. De-
spite the mathematical complexity of µMAOS compared
to linear microrheology, conducting µMAOS experiments
does not involve additional instrumentation. These ex-
periments produce a high data throughput, which can
even be dramatically increased by incorporating multi-
ple tones into the driving signal [17]. This accessible and
high-throughput experimental technique opens doors to
a number of intriguing applications. Here, we have used
µMAOS to distinguish the nonlinear mechanical signa-
tures of the cellular cytoplasm from the cortex. The fun-
damental understanding of cytoplasmic mechanics will
lend deeper understanding of biological processes such as
mechanotransduction, cancer metastasis, and differenti-
ation, where mechanical behavior of cells plays a critical
regulatory role. Other potential applications of µMAOS
include data-driven analysis by building large sets of non-
linear microrheological data, and the continuous obser-
vation of the nonlinear mechanical response of a material
as it changes. Thus, µMAOS stands to become a versa-
tile technique that is essential to future explorations in
the physics of soft materials.

We would like to thank Roger D. Kamm, Gareth
H. McKinley, and Scott Manalis for helpful discussions.
KRL acknowledges the support of the U.S. Department
of Energy Computational Science Graduate Fellowship
program under Grant No. DE-SC0020347.



8

[1] R. Mezzenga et al., Nature Materials 4, 729 (2005).
[2] A. Miserez et al., Journal of Materials Chemistry B 3, 13

(2015).
[3] M. C. Serrano et al., Advanced Functional Materials 20,

192 (2010).
[4] C. Choi et al., Acc. Chem. Res. 52, 73 (2018).
[5] M. A. Azad et al., Pharmaceutics 12, 124 (2020).
[6] T. G. Mason and D. A. Weitz, Physical Review Letters

74, 1250 (1995).
[7] M. L. Gardel et al., in Microscale Diagnostic Techniques

(Springer, 2005) pp. 1–49.
[8] A. Meyer et al., Journal of Rheology 50, 77 (2006),

https://doi.org/10.1122/1.2139098.
[9] I. Sriram et al., Physics of Fluids 22, 062003 (2010),

https://doi.org/10.1063/1.3450319.
[10] J. R. Gomez-Solano and C. Bechinger, EPL (Europhysics

Letters) 108, 54008 (2014).
[11] J. N. Wilking and T. G. Mason, Phys. Rev. E 77, 055101

(2008).
[12] C. D. Chapman and R. M. Robertson-Anderson, Phys.

Rev. Lett. 113, 098303 (2014).
[13] M. Khan, K. Regan, and R. M. Robertson-Anderson,

Phys. Rev. Lett. 123, 038001 (2019).
[14] J. Hu et al., Proceedings of the National Academy of

Sciences 116, 17175 LP (2019).
[15] R. H. Ewoldt and N. A. Bharadwaj, Rheologica Acta 52,

201 (2013).
[16] K. R. Lennon et al., Journal of Rheology 64, 551 (2020).
[17] K. R. Lennon et al., Journal of Rheology 64, 1263 (2020).
[18] K. Hyun et al., Prog. Polym. Sci. 36, 1697 (2011).
[19] H. Y. Song and K. Hyun, Korea-Australia Rheology Jour-

nal 31, 267 (2019).
[20] P. K. Singh et al., Journal of Rheology 62, 277 (2018).
[21] S. K. Gupta and M. Guo, Journal of the Mechanics and

Physics of Solids 107, 284 (2017).
[22] S. K. Gupta et al., Soft Matter 15, 190 (2019).
[23] M.-T. Wei et al., Optics Express 16, 8594 (2008).
[24] M.-T. Wei et al., in Handbook of Photonics for Biomedical

Engineering (Springer, Dordrecht, 2014) pp. 1–20.
[25] R. Brau et al., Journal of Optics A: Pure and Applied

Optics 9, S103 (2007).
[26] V. Volterra, Theory of Functionals and of Integral and

Integro-differential Equations (Dover, New York, 1959).
[27] M. A. Joens and J. W. Swan, (2021), arXiv:2106.07774.
[28] J. Mohanty, A. C. Bhasikuttan, S. D. Choudhury, and

H. Pal, The Journal of Physical Chemistry B 112, 10782

(2008).
[29] F. Nettesheim and N. J. Wagner, Langmuir 23, 5267

(2007).
[30] H. Rehage and H. Hoffmann, Molecular Physics 74, 933

(1991).
[31] T. Shikata, S. J. Dahman, and D. S. Pearson, Langmuir

10, 3470 (1994).
[32] M. T. Valentine, Z. E. Perlman, M. L. Gardel, J. H.

Shin, P. Matsudaira, T. J. Mitchison, and D. A. Weitz,
Biophysical Journal 86, 4004 (2004).

[33] M. Guo et al., Cell 158, 822 (2014).
[34] B. R. Daniels, B. C. Masi, and D. Wirtz, Biophysical

journal 90, 4712 (2006).
[35] S. Mahammad, S. Murthy, A. Didonna, B. Grin, E. Is-

raeli, R. Perrot, P. Bomont, J. Julien, E. Kuczmarski,
P. Opal, and R. Goldman, The Journal of clinical inves-
tigation 123, 1964–1975 (2013).

[36] M. L. Gardel et al., Proceedings of the National Academy
of Sciences 103, 1762 (2006).

[37] K. R. Lennon et al., (2021), arXiv:2104.11040.
[38] H. Huang et al., American Journal of Physiology-Cell

Physiology 287, C1 (2004).
[39] A. Malandrino et al., ACS Biomaterials Science & Engi-

neering 4, 294 (2018).
[40] Y. Li et al., Cell stem cell 28, 63 (2021).
[41] F. Chowdhury et al., Nature materials 9, 82 (2010).
[42] M. Guo et al., Proceedings of the National Academy of

Sciences 114, E8618 (2017).
[43] B. Fabry et al., Physical Review Letters 87, 148102

(2001).
[44] P. Kollmannsberger and B. Fabry, Annual Review of Ma-

terials Research 41, 75 (2011).
[45] P. Kollmannsberger et al., Soft Matter 7, 3127 (2011).
[46] P. Fernández et al., Biophysical Journal 90, 3796 (2006).
[47] T. P. Stossel, The Journal of Cell Biology 99, 15s (1984).
[48] M. Guo et al., Biophysical Journal 105, 1562 (2013).
[49] J. Stricker et al., Journal of Biomechanics 43, 9 (2010).
[50] H. Lee et al., Physical Review E 82, 011919 (2010).
[51] S. Hurst et al., bioRxiv , 2021 (2021).
[52] C. Duclut, J. Paijmans, M. M. Inamdar, C. D. Modes,
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