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Abstract 

The spatial atomic correlations in liquids and glasses extend often significantly beyond the 

nearest neighbors.  Such correlations, called the medium-range order (MRO), affect many physical 

properties, but their nature is not well-understood.  In this article the variation of the MRO with 

temperature is calculated based upon the concept of the atomic-level pressure, focusing on simple 

liquids, such as metallic liquids.  It is shown that the structural coherence length that characterizes 

MRO follows the Curie-Weiss law with a negative Curie temperature as observed by experiment 

and simulation.  It is also shown that the glass transition is induced by freezing of the MRO, rather 

than the freezing of the nearest neighbor shell.  The implications of these results are discussed.     
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I.  Introduction 

The atomic structure of liquid and glass is usually described by the atomic pair-distribution 

function (PDF), g(r),  
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where ri is the atomic position of the i-th atom, N is the number of atoms in the system, ρ0 is the 

average number density of atoms, and <….> denotes thermal and ensemble average [1 – 3].  The 

PDF depicts the distribution of distances between two atoms.  The PDF can be determined by x-

ray or neutron diffraction measurement through the Fourier-transformation of the structure 

function, S(Q), where Q is the momentum transfer of scattering [1 – 3].  Even though some key 

properties depend on higher-order correlation functions [4, 5], the PDF is widely used in describing 

the structure because it is a convenient structural descriptor which can be experimentally 

determined with high accuracy.  The PDF is the same-time correlation function, thermal average 

of snapshots, and does not contain information on dynamics.  But it sufficiently characterizes 

supercooled liquid with relatively slow dynamics, whereas full description of high-temperature 

liquid requires the knowledge of dynamic correlation functions, such as the Van Hove function [6, 

7].   

The PDF shows many peaks indicating shell-like structures around an atom.  The first peak 

describes the short-range order (SRO) in the nearest neighbor shell, whereas the peaks beyond the 

first peak depict the medium-range order (MRO).  Ornstein and Zernike were the first to propose 

a scheme to connect the SRO with the MRO through a self-consistency equation [8].  Slightly 

different approaches were suggested later by others [2, 3, 9, 10], but all these approaches are based 

on the idea that the MRO is directly related to the SRO.  However, as we discussed elsewhere [11 

- 14] there are significant differences in the nature between the SRO and the MRO, particularly in 

the supercooled and glassy states.  For instance, the MRO freezes at the glass transition, whereas 

the SRO does not, as shown in Part I of this paper [14].  Even though they are related, they are 

sufficiently distinct so that the behavior of the MRO cannot be readily predicted from the SRO 

alone.  The problems with the Ornstein-Zernike (OZ) theory which directly relate the MRO to the 

SRO in describing supercooled liquid state are well-known, because it is based on the mean-field 

approximation and higher-order correlations are neglected [3].  In this article we propose an 
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alternative approach to elucidate the MRO and its temperature dependence down to the glass 

transition, based on the concept of the structurally coherent ideal glass state [12, 15] and the 

atomic-level pressure fluctuations [16, 17].  We primarily focus on simple liquids with spherical 

interatomic potentials, such as metallic liquids.   

 

II.  Short- and medium-range order in liquid and glass 

The first peak of the PDF describes the distribution of the nearest neighbor distances from 

a central atom, which reflects the atomic sizes of the constituent elements and the nature of 

chemical bonding among them, as well as quantum and thermal fluctuations.  In liquids and glasses 

the number of neighboring atoms for each atom, the local coordination number, varies from site to 

site.  The average coordination number, 𝑁̅𝐶, is given by the integration over the first peak of the 

PDF, 

   2
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N g r r dr  .        (2) 

For simple liquids with dense-random-packed (DRP) structure, such as metallic liquids, the value 

of 𝑁̅𝐶 is 12 – 14 [18, 19].  At longer distances the PDF oscillates around unity, and its amplitude, 

  1g r  , exponentially decays with distance as, 

  
 exp

1
sr

g r
r


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where s is the structural coherence length which characterizes the MRO.   

This form was suggested by Ornstein and Zernike through their self-consistency equation 

[8].  However, it is possible to arrive at this form from a more general point of view, as discussed 

in Part I of this paper.  For crystalline materials the reduced PDF,    04 1G r r g r     , has 

persistent oscillations with similar amplitudes up to macroscopic distances [20], because at large 

distances each peak in g(r) does not represent a single crystallographic distance, but it represents 

the number of atoms.  This argument applies equally well to liquids and glasses.  At large r the 

width of the higher-order peaks in g(r) is of the order of 1 Å, much wider than the typical phonon 
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amplitudes which are of the order of 0.1 Å.  Therefore, the peaks in g(r) do not represent individual 

atomic distances, but instead they describe more coarse-grained local density fluctuations [11].  

Then, starting from an imaginary state with long-range density correlation, G(r) should decay 

because of randomness in the structure of liquid as, 

    
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reproducing eq. (3).  Here G0(r) describes the state with the limit of s  , the structurally 

coherent ideal glass state with long-range density correlation, and has persistent oscillations [15].  

Interestingly we were able to create a model with such features for Pd42.5Ni7.5Cu30P20 alloy liquid 

[15] with the Reverse Monte-Carlo (RMC) method [21], using the experimentally determined G(r) 

as a starting point.   

 It was found that above the glass transition temperature, Tg, s(T) obeys the Curie-Weiss 

law for temperature dependence, 
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where a is the average nearest neighbor distance, TIG is the ideal glass temperature where s(T) 

diverges, and is negative for all metallic liquids we studied [15].  Because s is linearly related to 

S(Q1), where Q1 is the position of the first maximum in S(Q) [12], S(Q1)  1 also follows the Curie-

Weiss law [15].  The Curie-Weiss behavior of S(Q1) was predicted by the Ornstein-Zernike (OZ) 

theory at a high-temperature limit [22].  However, in this case the Curie temperature is positive for 

a system with an attractive potential, whereas our results show it is negative for all metallic liquids 

studied [15].  Furthermore, according to the OZ theory, the Fourier-transform of the MRO structure 

function, ℎ(𝑸) = 𝑆(𝑸) − 1, is given by, 
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where c(Q) describes the SRO [3, 8].  Therefore, a continuous variation of c(Q) with temperature 

through Tg as observed by experiment should result in a continuous variation of h(Q) as well, 

whereas S(Q1) shows a sharp change in its temperature dependence at Tg [15].  Thus, the OZ theory 
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cannot explain the important difference between the SRO and MRO with respect to the 

temperature dependence through Tg as observed by experiment and simulation [14].  The apparent 

failure of the OZ theory is partly because the high-temperature approximation does not work for 

supercooled liquid.  Also, the validity of the mean-field approximation in the OZ theory is 

questionable for supercooled liquid in which atoms are dynamically strongly correlated.  In the 

following we propose an alternative theory which explains the Curie-Weiss behavior of s(T) with 

a positive Curie temperature based upon the concept of the atomic-level pressure. 

 

III.  Results 

A.  Structurally coherent ideal glass state  

The G0(r) in eq. (4) describes the state extrapolated in the limit of s  .  This state has 

long-range correlation with no positional order.  We call it the structurally coherent ideal liquid 

(glass) [15].  The G0(r) can be obtained from the G(r) determined by experiment as 

     0 exp sG r G r r  .  Fig. 1 shows the G(r) of amorphous Fe at Tg (1000K) obtained by 

simulation, and the corresponding G(r) of the structurally coherent ideal glass.  The simulation 

was carried out by using the LAMMPS software [23] with the modified Johnson potential for Fe 

[24] for a model of 16000 atoms with periodic boundary conditions.  The model was equilibriated 

at 2000K and cooled with the rate of 2 K/ps to avoid crystallization.  The model of the structurally 

coherent ideal glass with 54000 atoms with periodic boundary conditions was obtained by the 

RMC method [21] to fit to G0(r), with the constraint of the minimum atomic separation of 2.0 Å.  

The amplitude of oscillations in G(r) for the model obtained by the RMC is smaller than that of 

G0(r), but the periodicities are the same [15].  The MRO portion of G(r) is approximately given 

by,  

      
 

, sin exp ,MRO MRO MRO MRO cutoff
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G r T A T a Q r T r r

T




 
     

 
.  (7) 

where a is the nearest neighbor distance defined by the first maximum in the PDF, AMRO(T) is the 

amplitude of the MRO oscillation, MRO(T) is the phase factor, and rcutoff is the position of the first 

minimum of the PDF beyond the first peak.  Both AMRO(T) and MRO(T) show only weak variations 
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with temperature [14].  QMRO is almost identical to Q1.  The S(Q) of the structurally coherent ideal 

glass state (s  ) has a single Bragg sphere at QMRO [15].  The Curie-Weiss law, eq. (5), shows 

that the system is driven to the structurally coherent ideal glass state as temperature is reduced.  

The driving force to increase the coherence will be discussed elsewhere.  We will assume that he 

structurally coherent ideal glass state represents the ground state of the system, although this state 

exists only in extrapolation, and in reality various frustration factors prevent the system from 

reaching this state, just as the frustrated ideal states assumed by other theories [25 – 27].  We will 

conceptually start from this state, and then consider deviations from this state due to frustration 

and thermal excitations. 

 

B.  Deviation from the structurally coherent ideal glass state and the MRO  

We assume that the imaginary structurally coherent ideal glass state as the ground state of 

the system.  As temperature is increased thermal density fluctuations reduce the coherence length 

as in eq. (4).  Thermal volume strain at an atom, i, is given by, 
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where NC,i is the number of nearest neighbors of i-th atom, uij is the deviation in the distance 

between the center atom i to the nearest neighbor atom, j, from the distance in the structurally 

coherent ideal glass state, and a is the average nearest neighbor distance.  The second moment of 

the average is, 

      
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where 
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describes the root-mean-square magnitude of local fluctuations in the near neighbor distance which 

varies with time.  For simple liquids 𝑁̅𝐶 = 4 [28].  If we introduce volume, or density, fluctuation 
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described by R  to the structurally coherent ideal glass state, the decay of G(r) from r to r + R, 

where 𝑅 =  2 𝑄𝑀𝑅𝑂⁄ , is given by 
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, (11) 

Thus, 
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Now the nearest neighbor distance, a, is defined by the first peak in eq. (7).  Then, neglecting the 

phase factor, MRO, which is small, 𝑎𝑄𝑀𝑅𝑂 = 5 2⁄ , 

 
3

210

9
V

s

a 



 .         (13) 

This equation relates the coherence length of the MRO to the volume fluctuation at the atomic 

level. 

 

C.  Atomic-level stress and strain  

We now calculate the volume fluctuation at the atomic level using the atomic-level 

stresses tensor for an atom i, i .  It is defined by 

  
1

i ij ij

ji

f r
V

      ,         (14) 

where  and  refer to Cartesian indices, Vi is the local atomic volume of atom i, and fij
 and rij

 

are the  and  components of the two-body force and distance between atoms i and j [16, 17].  

Its trace gives the atomic-level pressure 

 
1

3

xx yy zz

i i i ip      .           (15) 
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whereas five other combinations give the shear, or deviatory, stresses, m,i, m = 1 ~ 5.  Because the 

bulk of the two-body forces originates from the nearest neighbors the atomic-level stresses 

characterize the configuration of the nearest neighbors [17].  For instance, the atomic volume strain, 

 
,

i
V i

p

B
  ,          (16) 

where B is bulk modulus, describes the local atomic volume variation compared to the equilibrium 

atomic volume.  There are six stress components in each stress tensor, but because ij jif f    the 

contribution from each bond {i, j} is counted twice, so the total number of variables in the system 

of N particles is 3N, equal to the degree of freedom of the system.  This means that it is possible 

to describe the atomic dynamics in terms of the dynamics of the atomic-level stresses, if excitations 

are localized.  Indeed, in the liquid state the atomic-level stresses follow the equipartition theorem, 

 

2 2

2 2 4

B
p k T

B G


  ,         (17) 

where G is shear modulus [29, 30].   

The principal origin of the atomic-level pressure is the atomic size mismatch [17, 28].  If 

we place an atom to an atomic site in a solid which is smaller than the atomic size, this atom will 

be under compressive stress.  To evaluate this effect correctly, however, we have to consider the 

accommodation effect by the surrounding atoms.  For instance, in an icosahedral cluster the 

distance between the center and the apex is shorter than the apex-apex distance by 4.9%.  This 

means that in order to form an icosahedron with hard spheres, we have to use a sphere at the center 

which is smaller by x = 0.098 than the 12 spheres on the peripheral sites.  If we use 13 soft spheres 

with the same size, we have to compress the central sphere by 𝑉
𝑇 = 1 − (1 − 𝑥)3 = 0.266 in 

volume strain to place it at the center of the icosahedron without straining other atoms.  The 𝑉
𝑇  is 

called the transformation strain [31].  At this moment all the strain is in the center atom, whereas 

the atoms at the peripheral sites has no strain.  To reduce the total energy the strain on the central 

atom needs to be relaxed by 𝑉
𝑅 and other atoms need to be strained to accommodate the relaxation.  

For an icosahedral cluster of 13 atoms interacting via the modified Johnson potential this strain 

was calculated to be 𝑉
𝑅 = 0.141, after consideration of the secondary accommodation of the 

icosahedral cluster by surrounding elastic medium (see Appendix 1).  
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This elastic accommodation by the neighbor atoms can be modeled well by the elastic 

inclusion theory by Eshelby [31].  In this theory an elastic sphere is inserted into an elastic medium 

with a spherical hole.  The size of the inserted sphere, inclusion, does not match the size of the 

hole.  In order to match the size of the hole the size of the inclusion has to be changed by a volume 

strain, 𝑉
𝑇 .  After insertion the system is relaxed so that the strain in the inclusion can be partly 

accommodated by the surrounding elastic medium.  According to the Eshelby theory the strain on 

the inclusion after relaxation is given by 

 
T

I V
V

K


  ,          (18) 

where 
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and  is Poisson’s ratio, and the relaxation strain, 𝑉
𝑅 = 𝑉

𝑇 − 𝑉
𝐼  is given by   
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The total energy is, 

  
2

2

T

V

BV
E

K
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For the 13 icosahedral cluster of Fe atoms interacting with the modified Johnson potential,  = 

0.25, 𝑉
𝑇 = 0.266 . We obtain 𝑉

𝑅 = 0.148  according to eq. (20), which only slightly (by 5%) 

overestimates what is calculated for the icosahedral cluster embedded in an elastic medium, 0.141.  

Thus, the Eshelby theory is quite reliable in evaluating the atomic-level stresses due to the atomic 

size mismatch including the accommodation by the neighboring atoms, even though the atomic 

systems are not an elastic continuum as assumed by Eshelby [17].   

 

D.  Atomic-level pressure in liquid        
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In liquid the local structure has a wide variety in topology [18].  However, the atomic-level 

pressure is primarily dependent on the local coordination number rather than the detailed topology 

[17, 32].  The relation between the coordination number, NC, and the average atomic-level pressure 

for a specific value of NC can be calculated in the following way.  If we place an A atom with the 

radius rA in the liquid of B atoms with the radius of rB, the average coordination number is given 

by [28], 

       211
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3
14 
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where  𝑥 = 𝑟𝐴 𝑟𝐵⁄ .  If we replace the A atom with a B atom, it does not fit because of the difference 

in size.  This mismatch produces the atomic-level pressure.  The atomic size is not inherent to each 

element but depends on bonding and chemical environment [33], but here we neglect these effects 

and focus on purely geometric argument.   

First, we start with the structurally coherent ideal glass state given by eq. (7).  Even though 

this glass has long-range structural coherence, its local structure is quite diverse with distributed 

coordination numbers [15].  Thus, if we try to form this glass with a single element, atoms do not 

fit the atomic site.  To make an atom fit snug into each site with the coordination number NC, we 

have to compress or expand the atom by the volume strain, 

  3
3 3 2 3 1

2 4

T C
V

N
x



 
     

 
.       (23) 

as derived from the derivative of eq. (22) evaluated at x = 1 (see Appendix 2).  The pressure is 

given by 𝑝𝑇 = 𝐵𝑉
𝑇 .  At this moment all the strain is in the center atom, but to reduce the total 

energy the strain on the central atom needs to be relaxed by 𝑉
𝑅 and the matrix needs to be strained 

to accommodate the relaxation, by eq. (20).  Now, to create the state with s  , the structurally 

coherent ideal glass state, atoms have to be compressed or expanded with 𝑣
𝑇 to fit the structure.  

After the strain 𝑣
𝑇 is locally relaxed by 𝑣

𝑅 by straining the neighbors, the structure is deviated from 

the structurally coherent ideal glass state and loses long-range coherence.  Therefore, 𝑣
𝑅 is the 

volume strain that characterizes the deviation from the structurally coherent ideal glass state.  Thus, 

    
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E.  Variation of the MRO with temperature  

 Now there are two kinds of strain.  The first is the misfit strain, ,T mf

V , that originates from 

the misfit of the atomic size to the structurally coherent ideal glass state as we discussed above, 

which depends on chemical composition.  The second is thermal strain due to thermal atomic 

fluctuations, ,T th

V .  Because the misfit strain is static whereas thermal strain is dynamic with zero 

average, 

      
2 2 2
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V V V    .       (25) 

For the thermal strain, through the equipartition theorem for T > Tg [29, 30] we find, 
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Thus, the strain which determines the MRO through eq. (23) is given by, 
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for T > Tg where 
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Therefore, 0IGT  .  Thus, 
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where 
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which explains the Curie-Weiss law observed for (T) and S(Q1) by diffraction experiment and by 

simulation [15].  Because Tg is given by [34], 
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where ,T crit

V  is the universal critical transformation strain for glass transition, we obtain, 
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F.  Comparison with simulation and experiment  

We tested our prediction, eq. (29), with MD simulations using the LAMMPS software [23] 

for systems with 16000/32000 atoms.  The test was made firstly with the model by an embedded 

atom model (EAM) type many-body potential for Fe [35], which was designed to keep the value 

of B constant and vary G.  We used this model because it allows to examine the effect of Poisson’s 

ratio without changing composition, thus avoiding the complications due to alloying.  The total 

potential energy is given by, 

    
1

2
iPE ij

i j i

E F r 


 
  

 
  ,       (35) 

where (r) is the two-body potential, and 

   0 ln 1
2

A
F F     

,        (36) 

  
1

i ij

j iT

r 
 

  ,         (37) 
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  T ij

j i

r 


 ,         (38) 

  
0

exp 1
r

r
r

 
  

    
  

,        (39) 

    0

,

1
ln 1ij ij

i j i

F r r
N

 


   
  ,       (40) 

where r0  a [35].  We choose the modified Johnson potential (mJp) [24] as the pair potential (r), 

and  = 6.  The coherence length, s(T), and bulk and shear moduli were calculated as a function 

of temperature for the systems with A = 0 (the original mJp for Fe), A = 0.04, 0.08 and 0.12.  The 

plots of 𝑎 (𝑇)⁄  against T are shown in Fig. 2, for simulation with various values of A, and are 

compared to those by eq. (29) using the simulation values for TIG.  Even though we applied the 

Eshelby theory based on elastic continuum to discrete atomic systems, eq. (29) explains the Curie-

Weiss law of the data with excellent agreement for the slope.   

 The second moment of the volume strain, 〈𝑉
2 〉, is proportional to 𝑎 (𝑇)⁄  via eq. (13), so 

is linear with temperature as shown in Fig. 3 for the experimental data for Pd42.5Ni7.5Cu30P20 alloy 

liquid and the simulation data for various metallic alloy liquids in Ref. 15.  We calculated the value 

of C, the slope of the Curie-Weiss plot by eq. (32), and compared it in Fig. 4 (a) with the value 

obtained for the data shown in Figs. 2 and 3.  In evaluating eq. (32) we used macroscopic values 

of elastic moduli, calculated by imposing macroscopic strain by gradually modifying the periodic 

boundary conditions and relaxing the structure at T = 1K.  However, the alloys are chemically 

heterogeneous, and the macroscopic moduli represents the average values for local elasticity.  For 

this reason, the results shown in Fig. 4 (a) indicate small disagreement with the fitted C values for 

alloy glasses, even though it works very well for single component glassy Fe.  We also determined 

the effective value of K for the simulation results and calculated the effective Poisson’s ratio, eff.  

The value of eff is compared with the calculated value of  in Fig. 4 (b) for the experimental data 

on Pd42.5Ni7.5Cu30P20 alloy liquid and the simulation data for various metallic alloy liquids in Ref. 

15, in addition to the Fe simulation data using the many-body potential, eq. (35).  Overall 

agreement is excellent, supporting the validity of eq. (29) in explaining the Curie-Weiss law and 

predicting its slope. 
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 The value of ,T crit

v  in eq. (33) determined for experimental data is equal to 0.095 [34].  

However, for simulation the effective cooling rate, 5  1010 K/s, is much higher than those for 

experiments.  Interestingly, in spite of such large difference in cooling rates, eq. (33) is valid even 

for simulation if we use a slightly higher value of ,T crit

v , which is equal to 0.105, as shown in Fig. 

5.   

 

IV.  Discussion 

A.  Structural frustration   

Liquids are condensed matter with density comparable to those in the solid state.  In some 

cases, liquids are denser than solids, as in water and ice.  The attractive interatomic potential drives 

cohesion, and results in the condensation of liquid.  In the case of metallic or Lennard-Jones (LJ) 

liquids, maximizing compaction, thus density, is the primary principle for formation of the 

structure.  Local density is maximized for four atoms forming a tetrahedral cluster.  But the entire 

three-dimensional space cannot be filled with tetrahedra, as is well-known as the inherent 

structural frustration of three-dimensional space, where rules for local space filling and global 

space filling are not the same [25 – 27].   

Here, imposing the long-range order in G0(r) resulted in the large varieties in the SRO [15], 

as an outcome of this frustration.  The local strain, ,T mf

V , represents the atomic size mismatch due 

to the frustration.  From eqs. (30), (31) and (33) we obtain, 

 
1

s g

IG g

T C

a T T





,         (41) 

 

 

2
,

2
,

T mf

V
IG

T crit
g V

T

T




  .         (42) 

The  s gT a  is related the liquid fragility [36],  
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 
log

g
g

T T

d
m

d T T





 ,         (43) 

where  is viscosity [37].  Thus, the misfit strain is large for fragile liquid and is small for strong 

liquid.  In Fig. 6 m is compared against 1 [1 + |𝑇𝐼𝐺 𝑇𝑔⁄ |]
3

⁄  for various metallic liquids.  The values 

of m are determined by experiment [38 – 43].  A correlation between fragility and the misfit strain 

is clearly seen.  The  s gT a , thus the misfit strain, is also related to the ratio, wL/wG, where wL 

and wG are the Lorentzian and Gaussian widths when the first peak of S(Q) is fitted with the Voigt 

function, which is a hybrid of the Lorentzian and Gaussian peaks.  Because the exponential decay, 

eq. (3), results in the Lorentzian peak shape, we suggest that this ratio characterizes the ideality of 

the structure [12].  In summary, the misfit strain, ,T mf

V , arises as a consequence of structural 

frustration, and is small for fragile, more ideal liquid, and large for strong, less ideal liquid. 

 

B.   Relation between MRO and SRO   

The stress tensor, eq. (14), has six components, the pressure, the  = 0 term in the spherical 

harmonics representation, and the five shear components, the  = 2 terms.  Whereas the first peak 

of G(r) reflects all six terms, we have shown here that the MRO represents only the pressure 

fluctuations.  There are several reasons for this important difference.  The first is that whereas the 

first peak of the PDF which describes the SRO depicts the atom-atom correlations, or the point-

to-point correlations, the MRO peaks represents the correlation between the central atom to the 

coarse-grained density fluctuations, the point-to-set correlations [44].  The density fluctuations are 

controlled by pressure fluctuation.  The second reason is that if we describe the structure in terms 

of the density waves [45, 46], the PDF sees only the longitudinal waves, and not the shear waves 

[3].  Furthermore, the shear waves are strongly damped, and would not propagate in liquids [2, 3].  

We found that in supercooled liquid viscosity is determined by the coherence length of the 

MRO.  The activation energy for viscosity, Ea(T), 

  
 

exp
a

B

E T
T

k T
 

 
  

 
,        (44) 
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 is related to 
𝑠
(𝑇) through,  

  
 

3

0

s

a

T
E T E

a

 
  

 
.        (45) 

just above Tg in Pd42.5Ni7.5Cu30P20 liquid [15].  Because the glass transition is defined by  reaching 

1013 poise (= 1012 Pa.s), the glass transition is controlled by 
𝑠
(𝑇), thus by the volume fluctuation, 

,T th

V , reaching the critical value, ,T crit

V .     

On the other hand, the SRO represented by the height of the first peak of the PDF, is 

dominated by local shear fluctuations, because there are five shear components in comparison to 

one component of pressure, and shear modulus, G, is lower than the bulk modulus, B, resulting in 

larger shear strain [17].  Consequently, almost no change in the temperature derivative is seen at 

Tg for the height of the first peak of the PDF [14].  This observation, that the SRO dynamics is not 

frozen in the glassy state below Tg even though the MRO is frozen, has very significant 

implications on the properties of simple glasses, as will be discussed elsewhere. 

Various models assume high-symmetry atomic clusters, such as an icosahedral cluster, as 

building blocks to form the MRO by stacking these clusters [47 – 49].  In such models the relevant 

length-scale for the MRO is the inter-cluster distance, which is a few times the atomic distance, 

whereas the periodicity of the observed MRO oscillations is comparable to the interatomic distance.  

Therefore, the MRO discussed here cannot be explained in terms of the building of the SRO 

clusters.  Furthermore, in such models the distribution of the atomic-level strains will be bifurcated, 

less for the atoms within the clusters and more for those connecting the clusters.  But, the 

distribution of atomic-level stresses shows a single Gaussian distribution, with no evidence of 

bifurcation [32, 50].  In general, spatially heterogeneous distribution of stresses results in higher 

total elastic energy and is not preferred.  In the present work statistically homogeneous fluctuation 

of the atomic-level stress is assumed, without assuming any building block. 

 

V.  Conclusion  

For a long time, the medium-range order (MRO) in liquid and glass, defined by the atomic 

correlations beyond the nearest neighbors, has been considered to be a direct consequence of the 
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short-range order (SRO) in the group of the nearest neighbor atoms.  Consequently, research 

efforts focused on relating the properties of liquid and glass directly to the interatomic potential 

and the SRO.  However, mounting evidence suggests that the MRO is distinct in nature from the 

SRO, and the relationship between them is indirect.  This distinction is important because some 

properties, including viscosity and glass transition, are controlled more by the MRO than by the 

SRO.  In this article we discuss the MRO as it relates to the deviation from the structurally coherent 

ideal glass state.  Focusing on simple liquids, such as metallic liquids, we calculate the temperature 

dependence of the MRO based upon the concept of the atomic-level pressure.  The results provide 

the theoretical basis for the Curie-Weiss law for the structural coherence length as observed by 

experiment and simulation.   

 The temperature dependence of the MRO is quite distinct from that of the SRO, and the 

freezing of the MRO, not that of the SRO, defines the glass transition.  Describing the evolution 

of the liquid structure with temperature, the elucidation of the glass transition in particular, has 

been a long-standing question.  The theory described here presents a solution supported by 

experimental and simulation data, and provides an important piece of the puzzle on the origin of 

the glass transition, at least for simple liquids with spherical pairwise or EAM type potentials, such 

as most metallic liquids.  The extension to more complex liquids, including covalent liquids, is left 

for future work.     
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Appendix 1: Eshelby theory 

For an icosahedral cluster of 13 Fe atoms interacting with the modified Johnson potential 

[24], the distance between the central atom and the edge atom is RCE = 2.522 Å and the edge-edge 

distance is REE = 2.652 Å.  Because the equilibrium distance is R0 = 2.622 Å, the strain on the 

center-edge bond is 𝐿𝐶 = (𝑅𝐶𝐸 − 𝑅𝐸𝐸) 𝑅𝐸𝐸 = −0.0381⁄ , thus 𝑉
𝐼,𝐹𝑆 = 1 − (1 + 𝐿𝐶)3 = 0.110 

for the center atom.  By comparing to 𝑉
𝑇 = 0.266, we obtain 𝑉

𝑅,𝐹𝑆 = 0.156 for the center atom in 

a free-standing icosahedral cluster.  However, the strain on the edge-edge bond is 𝐿𝐸 = 0.0114.  

This means that the icosahedral cluster has expanded by 𝑉
𝐶 = 0.0346  compared to the ideal 

volume of the icosahedral cluster.  In order to reduce the volume of the icosahedral cluster to the 

ideal volume we have to apply the transformation volume strain to the cluster, 𝑉
𝑇,𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑉

𝐶 .  We 

then repeat the same Eshelby procedure for the cluster, by compressing it to the ideal volume, 

placing it in the hole of the elastic medium with the same ideal size, and relaxing the cluster and 

the medium to minimize the total elastic energy.  By eq. (18), we obtain 𝑉
𝐼𝐶 = 0.0154 for the 

icosahedral cluster.  This has to be added to 𝑉
𝐼,𝐹𝑇

.  Therefore, the final strain on the inclusion after 

the cluster is embedded in the elastic medium is, 𝑉
𝐼 = 0.125, and the relaxation strain is 𝑉

𝑅𝐶 =

0.141.  The value obtained by the Eshelby theory, eq. (20), 𝑉
𝑅 = 0.148, is in the middle between 

𝑉
𝑅𝐶 = 0.141 and 𝑉

𝑅,𝐹𝑆 = 0.156.  

It should be noted that the elasticity theory of Eshelby is applicable even for liquid, as long 

as the relaxation time of liquid is longer than the phonon timescale so that liquid behaves like solid 

as far as elasticity is concerned.  For this comparison the Maxwell relaxation time, 𝑀 =  𝐺⁄ , 

where  is viscosity and G is the high-frequency shear modulus, should be compared with the 

time for phonon to propagate to the nearest neighbor, because most of the Eshelby strain is born 

by the shell of nearest neighbor atoms.  They become equal to each other at the viscosity crossover 

temperature, TA [51].  Therefore, the Eshelby theory is applicable at least at temperatures below 

TA, which is about twice Tg for metallic liquids [52] and higher for molecular liquids [53]. 

Appendix 2: Derivation of eq. (23) 

From eq. (22), the ideal value of NC for x = 1 is 

  1 4CN  .          (A1) 



19 

 

Also, 

 
 

1

2
2 1

3

C

x

dN x

dx




 
  

 
.        (A2) 

Thus, to the first order, 

    
1

1 , 1 1
4

C
C C C C

C x

Ndx
x x N N N x N

dN 


 
          

 
,   (A3) 

To fit a sphere with rB = xrA to the site for x = 1 we have to change the size by x = x  1.  Then 

the A-B bond length, 𝑟𝐴 + 𝑟𝐵 = (1 + 𝑥)𝑟𝐴,  has to be compressed to 2rA.  Thus, the Voronoi 

volume defined by the nearest neighbors has the volume strain, 

 
3

2

T

v x   .          (A4) 

From (A2) – (A4) we derive eq. (23). 
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Fig. 1   The reduced PDF, G(r), of Fe glass at Tg (dark curve), and G(r) of the structurally 

coherent ideal Fe glass obtained by the RMC method (light curve). 
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Fig. 2   The MRO strain,   2 39 10v sa   , for liquid Fe with various values of A 

(symbols), and by eq. (27) (dotted lines). 
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Fig. 3   The MRO strain related to the structural coherence length, 〈𝑣
2〉 = (9 103⁄ )(𝑎 

𝑠
⁄ ), 

for Pd42.5Ni7.5Cu30P20 alloy liquid determined by x-ray diffraction, and for various metallic 

alloy liquids obtained by simulation [13]. 
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(a) 

 

(b) 

Fig. 4 (a) The value of C in eq. (29) determined for the data in Fig. 2 and S1, compared to the 

calculation by eq. (30), (b) The effective Poisson’s ratio, eff, obtained by fitting eq. (27) to 

the data, compared to the calculated values of .  The line indicates 𝑒𝑓𝑓 = .  
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Fig. 5   kBTg/2BV plotted against Poisson’s ratio, .  Circles are for simulation (this work) 

and squares are for experimental values by Ref. 34.  Lines are for two values of ,T crit

v  by 

eq. (33). 
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Fig. 6   Fragility coefficient, m, determined by experiment (Pd42.5Ni7.5Cu30P20 [38], Pd82Si18 [39], 

Zr35Cu65 [40], Zr50Cu50 [41], Zr50Cu40Al10 [42], Ni62Nb38 [43], Ni80P20 [41]) compared to 

1 [1 + |𝑇𝐼𝐺 𝑇𝑔⁄ |]
3

⁄ .  The |𝑇𝐼𝐺 𝑇𝑔⁄ | is related to the magnitude of the misfit strain through eq. (42). 


