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The e-machine is a stochastic process’ optimal model-—maximally predictive and minimal in size.
It often happens that to optimally predict even simply-defined processes, probabilistic models—
including the e-machine—must employ an uncountably-infinite set of features. To constructively
work with these infinite sets we map the e-machine to a place-dependent iterated function system
(IFS)—a stochastic dynamical system. We then introduce the ambiguity rate that, in conjunction
with a process’ Shannon entropy rate, determines the rate at which this set of predictive features
must grow to maintain maximal predictive power over increasing horizons. We demonstrate, as an
ancillary technical result that stands on its own, that the ambiguity rate is the (until now missing)
correction to the Lyapunov dimension of an IFS’s attracting invariant set. For a broad class of
complex processes and for the first time, this then allows calculating their statistical complexity
dimension—the information dimension of the minimal set of predictive features.
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I. INTRODUCTION

The bedrock of scientific inquiry is model build-
ing. The act of modeling a natural system serves
many purposes, among them prediction of future be-
havior, generating surrogate data, pattern recognition,
and pattern discovery. These goals are not independent,
nonetheless they are sufficiently distinct to merit sub-
stantial and separate attention. This is particularly the
case when confronted with modeling complezr systems—
those that create intricate and delicate patterns through
their internal interplay of stochasticity and determin-
ism. These systems are often identified by the presence
of collectively-interacting subsystems, long-range correla-
tions, and visually-striking emergent structures. In this
regime, where direct observation is difficult at best and
uninformative at worst, the importance of building mod-
els is amplified and we require a robust theoretical frame-
work to guide their construction, analysis, and interpre-
tation.

Computational mechanics [1] introduces a suite of
tools to analyze complex systems in terms of their infor-
mational architecture by integrating Turing’s computa-
tion theory [2—4], Shannon’s information theory [5], and
Kolmogorov’s dynamical systems theory [6-10]. Its most
basic statistic is the e-machine—a system’s maximally
predictive, minimal, and unique model. The e-machine’s
causal states are the minimal set of maximally-predictive
features—the unique possible futures conditioned the
system’s infinite past. Qualitatively, the information
stored in the causal states is a process’ statistical com-
plexity C),, a measure of the memory resources a system
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FIG. 1. (a) Equivocation: Same input sequence to a commu-
nication channel leads to different outputs. (b) Ambiguity:
Two different inputs lead to same output. The strategy un-
derlying Shannon’s proof of his second coding theorem is to
find channel inputs that are least ambiguous given the chan-
nel’s distortion properties.

employs to generate its behavior and support its orga-
nization. Due to its uniqueness and minimality, via an
Occam’s razor argument, we may identify the e-machine
as a system’s canonical description.

We may choose to view the e-machine either as dis-
tinct from the system (a predictor of the true system’s
behavior) or as representing the system itself (a generator
of data statistically indistinguishable from observations).
There is a third option, though. Consider the e-machine
as a memoryful communication channel, mapping pasts
to futures. In this view, we imagine an adaptive chan-
nel interacting with a system via a time-series of discrete
observations. At each time, it updates its internal con-
figuration to represent the current optimal prediction of
the system. The channel’s set of possible configurations
are the causal states and these require C, bits of memory
to operate.

The student of information theory will recall that
Shannon, in his analysis of information transmission
through channels, introduced two mechanisms: equivo-
cation, in which the same input may lead to distinct out-
puts, and ambiguity, in which two different inputs may



lead to the same output; see Fig. 1. When our chan-
nel is taken to be the e-machine, the equivocation rate
of the channel is the entropy rate h, of the underlying
system—the rate at which the system generates future
information. This is guaranteed by the e-machine’s pre-
dictive optimality—the only noise in the channel arises
from the system’s intrinsic randomness h,,.

The following proposes a parallel quantity—the am-
biguity rate h,—as a new intrinsic complexity measure.
The ambiguity rate tracks the rate at which an optimal
predictor of a system discards information by introduc-
ing uncertainty over the infinite past. The difference
h, — hq between this rate and the entropy rate describes
the growth rate of the information stored in a process’
optimally predictive features. When h, = h,, this rate
vanishes and the associated e-machine’s internal causal-
state process is stationary. Explicitly, for the e-machine
to comsist of a finite set of predictive features, it must
forget information at the same rate at which the system
generates it, so as to not grow the size of the model over
time. However, when h, > h,, any optimal predictor
must accumulate new information over time to sustain
accurate predictions.

This introduces a challenge, since h, = h, is atypi-
cal for a broad class of stochastic processes—as our prior
works demonstrated [11, 12]—in particular, those used
not only in the study of complex systems [1], but also
in coding theory [13], stochastic processes [14], stochas-
tic thermodynamics [15], speech recognition [16], com-
putational biology [17, 18], epidemiology [19], and fi-
nance [20]. In point of fact, for many complex systems,
the predictive-feature set is uncountably infinite and the
structural complexity C,, diverges, requiring new tools to
characterize these systems’ complexity. The recent work
introduced a suite of tools to address this state of affairs.

The key realization was identifying a process’
e-machine as the attractor of a hidden Markov-Driven
Tterated Function System (DIFS) [11]. First, we showed
that this gave efficient and accurate calculation of a pro-
cess’ Shannon entropy rate h,. Second, we introduced
a new measure of structural complexity—the statistical
complexity dimension d,—that tracks C,’s divergence
and gives the information dimension of the distribution
of predictive features [12]. Previously, accurate calcula-
tion of d,, was contingent on the DIFS meeting restric-
tive technical conditions. Introducing ambiguity rate h,
reframes these constraints information-theoretically, ef-
fectively lifting them. The result is a new method to
accurately calculate d,, for a broad class of complex pro-
cesses.

Introducing h, is not merely a means to an end—
allowing accurately calculating d,—but also a first step
towards a full dynamical decomposition of information in
physical systems. Several novel informational measures,
such as “transfer entropy” [21] and “causation entropy”
[22], were introduced to solve this puzzle. Unfortunately,
they met with mixed success and were criticized for fail-
ing to truly capture “information flow” [4, 21, 23]. We
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FIG. 2. How a hidden Markov-driven iterated function sys-
tem (DIFS) generates a hidden Markov process: An initial
state n—a distribution over three states: (0,0,1), (0,1,0),
and (1,0,0)—in the 2-simplex is associated with a transition
probability distribution over the alphabet A = {O,A}. If
the emitted symbol selected from this distribution is [, the
next state is generated according to the associated mapping
function f(D)(n) and the probability distribution is updated
accordingly. The same steps are followed if the symbol is A
using f(A) (n), resulting in an emitted process P over symbols

argue that h, — h, points instead at an information fluz
that measures the difference in rates of information flow
into and out of a system. This framing is a natural exten-
sion of previously successful information decomposition
methods [24] that identified how information is embed-
ded in time series. Although the full tool set necessary
for the decomposition is not developed here, we believe
that the new perspective introduced is key to finally de-
veloping a dynamics of information for complex systems
and model inference.

The development introduces and motivates the am-
biguity rate h,. Sections II and III review stochastic
processes and information theory, respectively, and may
be skipped by the familiar reader. Section IV introduces
hidden Markov-driven iterated function systems. Sec-
tion V then discusses the statistical complexity dimen-
sion d,, and the overlap problem—a long-standing issue in
the dimension theory of iterated function systems. Sec-
tion VI introduces h, from an information-theoretic per-
spective, motivating it as a solution to and a measure
of the overlap problem. Various interpretations are ex-
plored, including an historical note on Shannon’s original
dimension rate from 1948. Finally, to illustrate our algo-
rithm’s effectiveness and the challenges for very complex
processes, Section VII works through multiple examples,
including processes generated by stationary and nonsta-
tionary e-machines.



II. PROCESSES

A stochastic process P is a probability measure over
a bi-infinite chain ... X; o Xy 1 Xy Xy11 X442 ... of ran-
dom variables, each X; denoted by a capital letter. A
particular realization ... Ty_o Ty_1 T4 Typ1 Tyt - .. is de-
noted via lowercase. We assume values x; belong to a dis-
crete alphabet A. We work with blocks X;.;, where the
first index is inclusive and the second exclusive: X;.;v =
X;...Xy_1. P’s measure is defined via the collection of
distributions over blocks: {Pr(X;../) : t <t/ t,t' € Z}.

To simplify, we restrict to stationary, ergodic pro-
cesses: those for which Pr(Xyty¢) = Pr(Xo.) for all
t € Z, £ € Z*, and for which individual realizations obey
all of those statistics. In such cases, we only need to
consider a process’s length-¢ word distributions Pr(Xo.e).

A Markov process is one for which Pr(X¢| X _o.t) =
Pr(X:|Xi—1). A hidden Markov process is the output
of a memoryless channel [25] whose input is a Markov
process [14]. Somewhat surprisingly, though well known,
the output process can have realizations with arbitrarily-
long correlations.

III. INFORMATION THEORY

Beyond its vast technological applications to com-
munication systems [25], Shannon’s information theory
[5] is a widely-used foundational framework that provides
tools to describe how stochastic processes generate, store,
and transmit information. In particular, we use informa-
tion theory to study complex systems as it makes mini-
mal assumptions as to the nature of correlations between
random variables and handles multi-way, nonlinear cor-
relations that are common in complex processes. Here,
we now briefly recall several basic concepts needed in the
following.

The most basic quantity within information theory is
the Shannon entropy. Intuitively, it measures the amount
of information that one learns when observing a sample of
a random variable. (It is, equivalently modulo sign, also
the amount of uncertainty one faces when predicting the
sample.) The entropy H[X] of the random variable X is:

H[X]=-> Pr(X =z)log, Pr(X =z). (1)
zeA

In addition to focusing on individual samples, we can
probe the relationship between two jointly-distributed
random variables, say, X and Y. There is the joint
entropy H[X,Y], of the same functional form but ap-
plied to the joint distribution Pr(X,Y’). And, there is
conditional entropy that gives the amount of information
learned from observation of one random variable X given
another Y:

HIX|Y] = H[X,Y] - H[Y] . 2)

Conditional entropy can be generalized to describe
processes in terms of the intrinsic randomness—the
amount of information one learns upon observing the
next emitted symbol X, given complete knowledge of
the infinite past. This is the Shannon entropy rate:

h, = elggo H[Xo|X_¢0] , (3)

the irreducible amount of information gained in each time
step.

The fundamental measure of correlation between
random variables is the mutual information. It can be
written in terms of Shannon entropies:

I[X;Y]=H[X,Y] - HX|Y] - HY|X]. (4)

As should be clear by inspection, the mutual informa-
tion between to variables is symmetric. When X and Y
are independent, the mutual information between them
vanishes. As with entropy, we may condition the mutual
information on another random variable Z, giving the
conditional mutual information:

I[X;Y|Z] = H[X|Z] + H[Y|Z] - HIX,Y|Z] . ()

The conditional mutual information is the amount of in-
formation shared by X and Y, given we know the third
Z. Note that X and Y can share mutual information,
but be conditionally independent. Moreover, condition-
ing on a third variable Z can either increase or decrease
mutual information [25]. That is, the two variables can
appear more or less dependent, given additional data.

IV. DRIVEN ITERATED FUNCTION SYSTEM

Our main objects of study are hidden Markov pro-
cesses. The following introduces driven iterated function
system as a class of predictive models for them.

Definition 1. An N -dimensional hidden
Markov-driven  iterated function system (DIFS)
(A VYV, RAT@} {p@} {f®} : 2 € A) consists of:

1. a finite alphabet A of k symbols x € A,
2. a set'V of N presentation states,

3. a set of states R C AN, over N-dimensional
presentation-state distributions n € R,

4. a finite set of N by N symbol-labeled substochastic
matrices T, z € A,

5. a set of k symbol-labeled probability functions
p" = (| T™) 1), and

6. a set of k symbol-labeled mapping functions f*) =
(n|T™
p(®)(n) "
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FIG. 3. The states and transitions of a hidden Markov-driven iterated function system (DIFS) discussed in Section VIIA
embedded in the 1-simplex. In this case, the set R of states is countable and each subsequent application of f(A) brings n
nearer to .o = (0,1). The latter is reached only after observing infinitely many As. The countable nature of R arises from
the fact that one of the mapping functions is a constant: f& = (1,0).

The (N-1)-simplex AN~ is the set of presentation-
state probability distributions such that:

{neRY :(n]1) =1,(n|6;) 20,i=1,.... N},

where (6;/=(0 0 ... 1 ... 0)and 1) = (1 1 ... 1).
We use this notation for components of the presentation-
state vector 7 to avoid confusion with temporal indexing.

Note that the set of substochastic matrices must
sum to the nonnegative, row-stochastic matrix T =
D wea T(*)—the transition matrix for the presentation-
state Markov chain. This ensures that ZyveAp(“") (m)=1
for all n € AN~1L,

The transition probability between states is equiva-
lent to the probability of seeing the symbol that leads to
that state:

Pr(X; =a,Rip1 = m1|Re = i) =
{M(m), 1 = F) ()

0 et # F ()
(6)

Each symbol must by definition lead to a unique state,
although two symbols may lead to the same state. Fig-
ure 2 shows how a DIFS generates a hidden Markov pro-
cess: Given an initial state 7y € AN~1, the probability
distribution {p(*)(no) : @ = 1,..., k} is sampled. Accord-
ing to the realization xq, apply the mapping function to
map 7 to the next state 7, = f(#)(n9). According to
the new probability distribution defined by 7, draw z;
and repeat. This action generates our emitted process P:
Ty L1y L2y e e

This describes the random dynamical system—
the DIFS—that generates the hidden state sequence
No,M1, M2, - - .- As we previously showed, the attractor of
this dynamical system is the invariant set R of states
and their evolution is ergodic [11, 26]. Additionally,

the attractor has a unique, attracting, invariant measure
known as the Blackwell measure pp(R) [27]. Although
R may be countable, as for the DIFS depicted in Fig. 3,
in general, R is uncountably infinite and fractal in na-
ture, as in the examples in Fig. 4.

DIFS states are predictive in the sense that they are
functions of the prior observables. Consider an infinitely-
long past that, in the present, has induced some state 7.
It is not guaranteed that this infinitely-long past induce
a unique state, but it is the case that any state induced
by this past must have the same conditional future dis-
tribution Pr(Xo.c0|-). Indeed, for the task of prediction,
knowing the previous state is as good as knowing the in-
finite past: Pr(Xo..|Ro = 1) = Pr(Xo./|X_c:0) for all
e NT.

Therefore, the DIFS is a predictive model of the
process P it generates. (This is in contrast to it being
merely a generative model-—whose only requirement is to
produce all and only the set of realizations.) Borrowing
from the language of automata theory, we refer to the set
of states R plus its transition dynamic—Pr(z;|n;) and
Pr(nr1|ne, xt)—as a state machine or, simply machine
that optimally predicts P. When each state is associated
with a unique future distribution, we have a canonical
predictive model that is unique: a process’ e-machine

[1].

Definition 2. An e-machine is a DIFS with probabilis-
tically distinct states: For each pair of distinct states
1,( € R there exists a finite word w = xg.y—1 such that:

Pr(Xo.0 = w|Ro = 1) # Pr(Xo.w = w|Ro =) .

A process’ e-machine is its optimally-predictive,
minimal model, in the sense that the set R of predictive
states is minimal compared to all of the process’ other
predictive models. By capturing a process’ structure and



not merely being predictive, an e-machine’s states are
called causal states. Unless otherwise noted, we assume
that all DIFS discussed here are e-machines.

Calculating the Shannon entropy rate for a process
generated by a DIFS was the focus of our first discussion
of DIFSs [11]. Due to the associated process’ ergodicity,
h, may be written as a time average:

h/; — lim - z Z Pr(z|ne) log, Pr(z|ne) . (7)

l—o0 ¥
t=0 z€ A

This tracks the uncertainty in the next symbol = given
our current causal state 7;, averaged over the Blackwell
measure. It quantifies the intrinsic randomness of the
process P.

V. STATISTICAL COMPLEXITY DIMENSION

Images of the self-similar state sets R of DIFS are
evocative (again see Fig. 4) and lead naturally to ques-
tions about how R’s geometric properties relate to in-
trinsic properties of the underlying process P. To begin
to answer this, we identify a process’ memory with the
information required to specify its e-machine states; i.e.,
the minimal amount of information needed to predict P.
This may be measured either in terms of the cardinality
|R| of causal states or the amount of historical Shannon
entropy they store—that is, the statistical complexity C,.

Definition 3. A process’ statistical complexity is the
Shannon entropy stored in its e-machine’s causal states:

C, =H[Pr(R)]
=— > p(n)log, p(n) - (8)

neErR

From the definitions above, a process’ e-machine is
its smallest predictive model, in the sense that both |R|
and C), are minimized by a process’ e-machine, compared
to all other predictive models. Due to the e-machine’s
unique minimality, we identify the e-machine’s C), as the
process’ memory.

However, when the set R of causal states is infinite,
the statistical complexity may diverge. In this case, C),
is no longer an appropriate complexity measure to distin-
guish processes. Despite this, a need remains: It is clear
that processes with infinite state sets differ significantly
in internal structure, as shown in Fig. 4. In this case,
we turn to the statistical complexity dimension, defined
as the rate of divergence of the statistical complexity, to
serve as a measure of structural complexity. This leaves
us with an abiding question, though, What does it mean
that a finitely-specified process’ state information (mem-
ory) diverges?

A. Dimension and Causal State Divergence

A set’s dimension, construed most broadly, gives the
rate at which a chosen size-metric diverges with the scale
at which the set is observed [28-32]. Fractional dimen-
sions, in particular, are useful to probe the “size” of
sets when cardinality alone is not informative. “Frac-
tal dimension”, said in isolation, is often taken to refer
to the box-counting or Minkowski-Bouligand dimension.
The following, though, determines the information di-
mension—a dimension that accounts for the scaling of a
measure on a fractional dimension set. In this case, our
measure of interest is the Blackwell measure g over our
causal states R.

Consider the state set R on the (N — 1)-simplex
for a DIFS that generates a process P. Coarse-grain the
N-simplex with evenly spaced subsimplex cells of side
length e. Let F(€) be the set of cells that encompass at
least one state. Now, let each cell C' in F(e) itself be
a (coarse-grained) state and approximate the e-machine
dynamic by grouping all transitions to and from states
encompassed by the same cell. This results in a finite-
state Markov chain that generates an approximation of
the original process P and has a stationary distribution
#(F(€)). Then pup(R)’s information dimension is:

9)

where Hy[F(e)] = —3 ¢ 7 #Ci)logu(Cy) is the
Shannon entropy over the set F(e) of cells that cover
attractor R with respect to .

Rearranging Eq. (9) shows that the state entropy of
the finite-state approximation scales logarithmically with
R’s information dimension with respect to the Blackwell
measure:

H,(F) ~ di(up) log - (10)

Applied to a process P’s e-machine, d; describes the di-
vergence rate of statistical complexity C,:

1
-log — . (11)
€

CIL (€) ~ dy,
In this way, we refer to the e-machine’s information di-

mension di(up) as P’s statistical complexity dimension
d

e

B. Determining Statistical Complexity Dimension

Directly calculating the statistical complexity di-
mension using Eq. (9) is nontrivial, as it often requires es-
timating a fractal measure. Fortunately, as our two previ-
ous works discussed and as we now show, the intractabil-
ity can be circumvented by leveraging the process’s asso-
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FIG. 4. Hidden Markov driven iterated function system (DIFS) may generate state sets with a wide variety of structures, many
fractal in nature. Each subplot displays 10° states of a different DIFS. The DIFSs themselves are specified in Appendix A.

ciated generating dynamical system—the DIFS—to cal-
culate d, [11, 12].

For a dynamical system, the spectrum of Lyapunov
characteristic exponents T' = {A1,...,An + A\i > Aigy1}
[33, 34] measures expansion and contraction as the av-
erage local growth or decay rate, respectively, of orbit
perturbations. The result is a list of rates that indicate
long-term orbit instability (A\; > 0) and orbit stability
(\i < 0) in complementary directions.

Consider covering an attractor generated by a dy-
namical system f with hypercubes of side length €. After
applying f to a hypercube k times, the side lengths are
approximately ee* ¥, ee*2* . assuming that the hyper-
cube orientation is chosen appropriately. This property
allows combining the elements of the spectrum I' into an
expression approximating the growth rate of hypercubes
needed to cover the attractor, as € — 0. In turn, this
implies a natural relationship between the I' and dimen-
sional quantities, such as Eq. (9). The Lyapunov dimen-
sion [35] has been conjectured to be equivalent to the
information dimension for “typical systems” f.

Our previous work showed how to calculate I' for
DIFSs [12]. However, since DIFSs are random dynam-
ical systems, additional orbit expansion arises from the
stochastic selection of the maps f(*). Indeed, for DIFSs,
all expansion arises from this stochastic choice, which is
measured by the Shannon entropy rate h, of the gener-
ated process P. That is to say, for DIFSs, \; < 0 for all
1 while h,, monitors the expansive exponent.

With this in mind, we adapt the Lyapunov dimen-
sion expression to DIFSs as follows:

A(k)+hu
——F  —A(N)>h
|Aks1l () > . (12)

N, —A(N) < h,

— fr+
dr =
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FIG. 5. Overlap problem on the 2-simplex A?%: Two distinct
DIFSs (given in Appendix A) are considered, each with three
mapping functions. Images of the mapping functions over
the entire simplex are depicted as regions in red, blue, and
green. (a) Images of the mapping functions £ @ and
f ) do not overlap—every possible state has a unique pre-
image. (b) Images of the mapping functions overlap—there
exist n1,m2 € A? such that f’(A)(m) = f'(‘:”(ng) = nz. This
case is an overlapping DIFS.

where we introduce the Lyapunov spectrum partial sum
A(m)=>" N and k=0,1,2,..., N — 1 is the largest
index for which —A(k) < h,. Note A(m) < 0 for m =
1,2,..., N and we take A(0) = 0. Readers familiar with
the Lyapunov dimension should take care as we reindexed
from the traditional presentation of dr for readability.

Under specific technical conditions, dr is exactly the
information dimension of the DIFS’s attractor: dr = d,,

[36]. Generally, relaxing the conditions, dr only upper
bounds the statistical complexity dimension:

dr > d,, . (13)



The extent to which the bound is not saturated is in large
part determined by the open set condition, which we now
discuss. We, then, turn to solve the associated “overlap
problem”. This leads to an exact expression for DIFS
attractor information dimension d,,.

C. The Overlap Problem

The overlap problem is a long-standing concern for
iterated function systems that arises from the overlap
of the ranges of the symbol-labeled mapping functions
f®) Figure 5 illustrates the issue. Specifically, to quan-
titatively count system orbits we must properly monitor
orbit divergence and convergence. This then requires dis-
tinguishing between iterated function systems that meet
the open set condition (OSC) and those that do not.

Definition 4. An iterated function system with mapping
functions f*) : A — A satisfies the open set condition
(OSC) if there exists an nonempty open set U € A such
that for all z,x' € A:

k
U o cu,
r=1
OO N U=, s

IF'Ss that meet the OSC are nonoverlapping IFSs.

When the OSC is not met, the inequality in the d,,
bound Eq. (13) becomes strict. This is a consequence
of using h,, as our measure of state space expansion in
Eq. (12). The Shannon entropy rate tracks the uncer-
tainty in the next symbol z given our current causal state
714, averaged over the Blackwell measure. From a dynam-
ical systems point of view, we identify this as the typical
growth rate of orbits (words) in symbol space.

When the OSC is met, the Shannon entropy rate also
measures the typical growth rate of orbits in the (N —1)-
simplex. Observing z, current state 7; transitions to the
next state n.41 via application of the mapping function
Ner1 = f@ (n,). Since images of the map do not overlap,
this is guaranteed to be a distinct new state—thus the
number of distinct state sequences grow at the same rate
as the number of words. Then, we may use h, to measure
state-space expansion.

However, when the OSC is not met, it is possible
for two distinct states n:,(; € A to map to the same
next state on different symbols, by occupying the “over-
lapping region”; as depicted in Fig. 5. In this case,
M+1 = C¢+1 has no unique pre-image. This introduces
ambiguity about the past, given knowledge of the cur-
rent state. As a consequence, using the Shannon entropy
rate as a proxy for the state expansion rate implies a
more rapid expansion in state space than is actually oc-
curring. This indicates the need to adjust the use of h,
in determining d,,.

VI. AMBIGUITY RATE

We propose that the ambiguity rate properly corrects

dr of Eq. (12) from overcounting orbits. Since the prob-
lem at hand is an overestimation in uncertainty in our
state space, we must identify and quantify mechanisms
of state uncertainty reduction when the OSC is not met.
Consider that when the OSC is met, every state 1, has a
unique pre-image 7;_1 that can only be reached via a sin-
gle, specific observed symbol. When the OSC is not met,
for a subset of n € R there is uncertainty about the pre-
vious state, the previous symbol, or both. Quantifying
this ambiguity about the past is the goal in constructing
the ambiguity rate hg.

Intuitively, it would seem that generating uncer-
tainty in reverse time is equivalent to reduction of un-
certainty in forward time. The following shows that this
is the case and that the ambiguity rate is the necessary
correction to the DIFS dimension formula Eq. (12).

A. Sources of State Uncertainty Reduction

For e-machines represented as DIFSs, there are three
distinct mechanisms that contribute to the ambiguity
rate, as depicted in Fig. 6.

The first is identical mapping functions, depicted in
Fig. 6 (a). When for z,2' € A, f@(n) = f&)(n) for
all n € R, we say that x and 2’ have identical mapping
functions. In this case, the distinction between z and
7' is not reflected in state sequences and produces am-
biguity in the symbol sequence. We quantify this as the
Shannon entropy in our current symbol, conditioned on
the previous state and the next state: H[X;|R¢, Re11].

The second is overlapping mapping functions, which
motivated this investigation and have already been de-
fined. Their impact on the state machine is shown in
Fig. 6 (b). In this case, two distinct symbols z,2’ € A
map two distinct states 1, € R to the same next state.
Although the previous state affects the probability distri-
bution over the observed symbol, the next state “forgets”
that distinction. This is quantified by the mutual infor-
mation shared by the current symbol and the previous
state, conditioned on the next state: I[Xy; Re|Rit1]-

Finally, there is noninvertibility in the mapping func-
tions themselves. If a single mapping function maps dis-
tinct states 17,{ € R to the same next state, the pasts
that led to n and ¢ can no longer be distinguished. Fig-
ure 6 (c) shows this in general. However, it may also be
observed in f(J from Fig. 3, which maps every state to
7o = (1,0). Numerically, the reduction via this mech-
anism is measured by the Shannon entropy in the pre-
vious state, given our next state and current symbol:
HIR| X1, Ry ]-



(A) H[Xo|Ro, Ri]

(B) I[Xo; 720|731]

(C) H[Ro|Xo,Ri]

FIG. 6. Sources of ambiguity rate depicted in state machines: (A) H[Xo|Ro, R1] > 0—Previous state R is mapped to the next
state R1 by two distinct symbols. This occurs when two symbols have identical mapping functions. (B) I[Xo; Ro|R1] > 0—
Two distinct previous states Ro map to the same next state by distinct symbols, due to overlapping mapping functions. (C)
H[Ro|Xo,R1] > 0—Two distinct previous states Ro map to the same next state by the same symbol. This occurs when a

mapping function is noninvertible.

Combining these three sources of uncertainty reduc-
tion defines the ambiguity rate:

he = H[X¢|R¢, Rey1] + 1[ X4 Re| Ry
+ H[Rt|Xt, Rt.}rl]

= H[X:, Rt|Ret1] - (14)

This can be rewritten as a integral over R:

hy = — / dus(n) S Pr(x, () log, Pr(x, Cln). (15)
neErR TE€EA,
Ce(f™N) = ()

In this, we must be careful about the pre-images of 7,
due to the possibility of noninvertible mapping func-
tions. The probability distribution inside the summation
is given by the relationship:

PI‘(XO = J),RO = <|R1 = ’17) =
15(Ro = ()

p,B(Rl :77) XPI‘(X():.’E|R0 :C) .

(16)

Calculating this distribution requires calculating or esti-
mating the Blackwell measure, which may be nontrivial.
Section VII discusses this in greater depth.

B. Correcting d,

The information-theoretic decomposition of ambigu-
ity rate facilitates combining h, and h,. Recall that for
prediction, the states of a predictive model are equivalent
to knowledge of the infinite past. Due to this, the Shan-
non entropy rate may be written H[X;|R;]. Combining
this with the ambiguity rate gives:

hy —he = H{X¢|Ri]) — H[ X, Re|Ri1]

= H[Ri11|Ry, Xi] + H[Ri41] — H[R]
=AH[R:] .

Moving to the third line called on the fact that the sym-
bol and state transitions are defined by functions. So,
the difference between the Shannon entropy rate and the

ambiguity rate gives the rate of growth of our causal state
set R.

Recall that the information dimension, as defined in
Eq. (9), compares the average growth of occupied cells
F—taking into account the measure over those cells—
as the cell size € shrinks. To adhere to the main de-
velopment, here we will not walk through the heuristic
for how a dimensional quantity is determined from the
I'. (Though, this is briefly discussed in Section V B.)
Nonetheless, we will show how the relationship between
dy, hy—hg, and I is intuitive for DIFSs in one dimension.

When the DIFS states lie in the 1-simplex, I" con-
sists of only one exponent A\; < 0, which is the weighted
average of the Lyapunov exponents of each map:

(z)
n= [ 30| L1

where p is the Blackwell measure.

d
d ’ M )

Now, consider a line segment in A® of length e. Map-
ping this line forward & times by the DIFS produces, av-
eraging over several iterations of this action, 2(u—la)k
new lines of length ee** < e. (Note that the use of
base-two for Shannon entropy rather than base e follows
convention; retained here for familiarity. In numerical
calculation of d,, we recommend a consistent base be
chosen for h,, he, and the I'.) The logarithmic ratio of
the growth rate of lines (as averaged over the Blackwell
measure) compared to the shrinking of these lines is the
simple ratio:

h, — hq

d“:_”T .

This, of course, is exactly the definition of the informa-
tion dimension Eq. (9) and is, assuming the DIFS is an
e-machine, the statistical complexity dimension d,.



For higher-dimensional DIFSs, we conjecture that
the ambiguity rate is the adjustment to the IFS Lyapunov
dimension formula that gives the information dimension:

A(E) + By — ha
| Akt
N “A(N) < hy, — ha

— e+

. —A(N) > hy, — hq
d, =

, (17)

where, as in Eq. (12), A(m) is the Lyapunov spectrum
partial sum A(m) =3""" A, and k=0,1,2,...,N—1is
the largest index for which —A(k) < hy, — hq.

C. Interpreting Ambiguity Rate

Up to this point, we motivated ambiguity rate as
correcting over counting in the DIFS statistical complex-
ity dimension d,. It is worth discussing the quantity in
more depth.

On the one hand, note that when h, — h, =
0, the causal-state process is stationary and C), time-
independent: AH[R;] = 0. This occurs for finite-state
DIFSs, as well as many with countably-infinite states; see
Section VII A. When this occurs, applying Eq. (17) re-
turns a vanishing statistical complexity dimension d,, =
0, as expected.

On the other hand, when ambiguity rate vanishes,
C,, grows at the Shannon entropy rate: AH[R:| = h,,.
This occurs when there are no identical maps, no over-
lap, and no noninvertibility in the mapping functions. In
short, h, = 0 when the process is “perfectly self-similar”
and every new observed symbol produces a new, distinct
state.

With this in mind, we can use the ambiguity rate,
and specifically h,,—hq, to describe the stationarity of the
model’s internal state process. The state set is time inde-
pendent. When h, > 0, however, to optimally predict the
process P requires a nonstationary model (temporally-
growing state set R), even though P is itself stationary.
This is a consequence of modeling “out of class”. That is,
predicting a perfectly self-similar P requires differentiat-
ing every possible infinite past. This is only possible with
a DIFS by storing new states at the rate new pasts are
being created. (Moving to a more powerful model class
by, say, imbuing our states with counters or stacks, may
make it possible to model P with a stationary model.)

This perspective naturally leads to another that
probes the efficacy of the causal-state mapping. Con-
sidering the space of all possible infinite pasts X, the

causal-state mapping f.(X) — R is defined such that:

F
(X =) =X =d)=mn .
E
if Pr(Xo.|X = %) = Pr(Xo.|X = #') for all £ € N*.
When the process is perfectly self-similar, the causal-
state mapping is one-to-one and h, = 0. In this case,

FIG. 7. The entropy rate h,, which in this case is equivalent
to the ambiguity rate h,, is plotted for the DIFS depicted in
Fig. 3 for p,q, € (0,1).

storing the causal states is no better for prediction than
simply tracking the space of all pasts. (Although the
causal-state set R is still informative in characterizing
how we might approximate the process with a finite state
machine [37].) The number of pasts each state “contains”
is stationary and given by 2P« = 1.

In general, for a stationary process P, the average
number of pasts contained by a given causal state grows
at the rate 2"+, When the process has a stationary state
set, the number of pasts each state contains must nec-
essarily grow at the rate new pasts are being generated,
and so 2" = 2ha,

Finally, let’s close with a short historical perspec-
tive. The development of d, was partially inspired by
Shannon’s definition in the 1940s of dimension rate [5]:

A = Jim lim lim 0 %T)
6—0e—20T—c0 Tloge

)

where N(e, d,T) is the smallest number of elements that
may be chosen such that all elements of a trajectory en-
semble generated over time T, apart from a set of mea-
sure d, are within the distance € of at least one chosen
trajectory. This is the minimal “number of dimensions”
required to specify a member of a trajectory (or message)
ensemble. Unfortunately, Shannon devotes barely a para-
graph to the concept, leaving it largely unmotivated and
uninterpreted.

Therefore, it appears the first modern discussion of
a dimensional quantity of this nature for stochastic pro-
cesses motivated the development using resource theory
[37], noting that the d; of the causal-state set Eq. (9)
characterizes the distortion rate when coarse-graining an
uncountably-infinite state set. Starting from the dimen-



sional quantity, the relationship to statistical complexity
was then forged.

In this light, developing ambiguity rate and calling
out its easy mathematical connection to AH[R;] flips
this motivation. The quantity h, — h, can be defined
purely in terms of P and has an intuitive relationship to
the causal-state mapping. The dimensional quantity d,,
naturally falls out when we compare this rate of model-
state growth to the dynamics of the causal states in the
mixed-state simplex. Therefore, we may motivate d,
as not only a resource-theoretic tool for coarse-graining
infinitely-complex state machines, but also as an intrinsic
measure of a process’ structural complexity.

VII. EXAMPLES

We now consider two examples. The first is a
parametrized discrete-time renewal process that has a
countably-infinite state space for all parameters. This
allows us to explicitly write down the Blackwell measure
and calculate ambiguity rate exactly using Eq. (15). The
second is a parametrized machine with three maps, which
has an uncountably-infinite state space for nearly all pa-
rameters. Calculating the ambiguity rate in this case
requires us to approximate the Blackwell measure using
Ulam’s method.

A. Example: Discrete-Time Renewal Process

The DIFS depicted in Fig. 3 has the alphabet A =
{A,O} and the substochastic matrices:

1— 00
7)) — a 4 d7® = . (18
( 0 1-p) " » 0 (18)

where p = ¢ = % Recall that the states n will take the
form of length-two vectors such that (n|1) = 1, so f*)
and p*) will depend only on a single variable—which
we will take to be the first component of . We write
this component (n|d1) to avoid confusion with temporal
indexing.

For the general case where p,q € (0,1) are left un-
specified, we have the probability function set:

P ) =1—p+mlo)p,
PP () =p—(lé1)p
and the mapping function set:
£ () = ( o) (L —q) Mo)(p+q—1)+1— p)
L—p+ (nor)p’ L—p+(nlér)p ’
FOm) = (1,0) . |

Due to the temporal indexing, this may appear com-
plicated, but note that the denominator of f(%) is simply

10

p®). When p = ¢ = 1/2, the functions reduce to:

p B ) =5 1+ @lar)

(1= {nld)) ,

N = N =

and

o <77\51> 1
1 = (1 ey TT <77|51>> ’

fOm) =@,0) .

It is simple to confirm that the mixed state set is
countable:

rR=A(L " Vipoporl
n+1l n+1

where 7,, = ( ) is the state induced after observ-

TR
ing A’s since the last (0. Compare this to Fig. 3. From
here, we could find the transition probabilities p(*)(n,,)
and compute the Blackwell measure, but let us do so in

the general case.
When p # ¢, R becomes:

. :{ P-—9(1-9g" q1-g)"—q(1-p"
Y=g —q(1—p) p(1 —q)" —q(1 —p)»

This simple structure allows us to give the Blackwell mea-
sure explicitly:

1 . n __ 1 _ n

i (n) = p—q"—ql=p)" P71
p—q ptyq

where pp(n) is the asymptotic invariant measure over

the state induced after seeing n As since the last [J.

With the Blackwell measure in hand, the entropy
rate can be explicitly calculated as the infinite sum:

oo
Z ,LLnH[Xn‘Rn = nn]

n=1

= = 3 (P () Yoo 2 (1)

n=1

hy, =

+pP () logzp(m)(nn)) :

Figure 7 plots h,, for p,q € (0,1). In calculating h,,, there
is a contribution from every state except the first—mny—
since the first state transitions to the second with prob-
ability one and there is no branching uncertainty. Every
other state transitions on a coin flip of a determined bias
between (A,0), generating uncertainty with each tran-
sition.

In contrast to how h,, averages over all mixed states,
ambiguity rate accumulates in only one state—y. From
Fig. 3, we see that H[z,,nn|nnt1] = 0 for all n other
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FIG. 8. One-dimensional attractor for DIFS given in Eq. (19) with x = 0.25 and horizontally varying « € (0,1). State set n € R
plotted (red, blue green) on top of the images of the mapping functions {f(A), o, f(°)} applied to R. For a € (0.07,0.78),

there is overlap in the images of the maps.

than n = 0. That is, each state 7, is only accessed via
the prior state 1,1, except for 1y, which may be accessed
from every other state. So, ambiguity in the past can only
be introduced by visiting 1. Since these transitions only
occur on a [J, we must find the probability distribution
PT(XO = |:|7R0 = 77n|R1 = 1’]0).

Applying Eq. (15) and Eq. (16), we explicitly write
down the ambiguity rate as:

:_M02< PO )k,g (NO (D’(nn)> _

Both h, and h, are infinite summations, but when cal-
culating the ambiguity rate, the sum refers to calculating
a single Shannon entropy over the infinite, discrete dis-
tribution representing the probability distribution over
prior states when arriving in 7.

Since the state space does not grow—AH[R;] = 0—
the entropy rate h, = h, as n — oo. Therefore, d,
vanishes for all values of p and ¢. This will always be the
case for finite-state DIFSs.

B. Example: 1-D Ambiguity Rate

Now, let’s turn to the more general case, those DIFSs
with uncountably-infinite state spaces. For the moment
we restrict to one-dimensional DIFSs, so that the states
lie in the 1-simplex. Consider a DIFS with the alphabet

A ={A,0, o} and the associated substochastic matrices:

_ (ay Bz _ (By Bz
o= (15). 79 - (1 5).

T) = (gfé Zz) : (19)

witha=1-28, € (0,1),andx =1—-y, z € (0,1).

Figure 8 depicts all of the DIFSs for the slice of the
parameter space where z = 0.25. The vertical axis is
the 1-simplex and each vertical slice plots the state space
R(«) at the appropriate value of «, given on the hor-
izontal axis. Additionally, the images of the functions
{fAR), fO(R), fO(R)} are shaded in red, blue,
and green respectively.

At o = 1/3, the mixed state set R contracts to
a finite set, and h, must equal to h,, making d,, = 0.
At this point in parameter space, R consists of only a
single state; R(a = 1/3) = {(1/2,1/2)}. At every other
value of o, hy < h,. There is overlap in the images of the
maps for, approximately, a € (0.07,0.78). In this regime,
he > 0.

To calculate the ambiguity rate and therefore the
statistical complexity dimension d,, we use a modified
Ulam’s method to approximate the Blackwell measure
and then approximate the integral equation Eq. (15).
This method is not the only way to find the ambiguity
rate, but does have several advantages, including speed
and the ability to control the accuracy of our approxima-
tion. Appendix B discusses the method in depth.

The top plot in Fig. 9 gives the entropy rate, ambigu-
ity rate, and h, — h, for the DIFSs pictured in Fig. 8. As
« is increased, h, smoothly increases from zero as overlap
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FIG. 9. Entropies and dimensions for the DIFS given in Eq. (19) with o € (0,1) and = = 0.25: (Top) Entropy rate h,,

ambiguity rate h,, and hy, — hq.

(Bottom) Comparing dr = hyu/A1 to dy, = (hy — ha)/A1. The latter smoothly departs from

the former. It is approximately 1 for much of the overlap region, except where it discontinuously jumps to zero at o = 1/3.

begins to occur. It approaches a~ 0.6 around o = 1/3,
but is discontinuously equal to h, at this point. The
reason for this is an instantaneous equality in the fixed
points of the mapping functions, causing the state space
to collapse. As « increases to 1, h, smoothly decreases
back to zero. The roughness seen in the plot is due to
numerical precision, as analyzed in Appendix B.

For a large portion of the overlap region, dr sat-
urates at 1.0 due to its threshold condition on the ex-
ponent sum. Figure 9(Bottom) instead plots h,/A; to
show how this quantity smoothly changes across param-
eter space, reaching a maximum at around 1.6. In com-
parison, d, = (h, — hq)/A1 smoothly departs from the
Lyapunov dimension when overlap begins and instead
hugs the underside of the dimension 1 line for much of
the overlap. Again, at a = 1/3 there is the discontinuous
drop to d,, = 0, followed by d, smoothly rejoining with
the Lyapunov dimension as the overlap region ends.

Unsurprisingly, calculating the ambiguity rate in
higher dimensions is more challenging. Although, in prin-
ciple, Ulam’s method still applies and we may in princi-
ple follow the algorithm laid out in Appendix B, higher-
dimensional mapping functions introduce additional er-
ror sources in the approximation. Developing an algo-
rithm to efficiently and accurately calculate the ambigu-
ity rate in higher dimensions is of great interest, but we
leave this task to future work.

VIII. CONCLUSION

Stepping back from our development of ambigu-
ity rate and statistical complexity dimension, let’s po-

sition the new results in the context of the prior two
works in this series [11, 12]. In the first, motivated by
needing a general solution to the Shannon entropy rate
for processes generated by finite-state hidden Markov
chains, we showed how an optimal predictor can be con-
structed for any such process, at the cost of a potentially
uncountably-infinite state space. To address the result-
ing challenge, we introduced hidden Markov-driven iter-
ated function systems and showed that the attractor of a
properly defined DIFS is equivalent to the e-machine for
the process generated by its substochastic matrices.

The result gave benefits beyond a finite-dimensional
description of an infinite-state model. The identification
allowed us to adopt several rigorous results on IFSs, in-
cluding an ergodic theorem that allows us to sample the
DIFS to accurately and efficiently calculate the Shannon
entropy rate of the underlying process. With this, our
original goal was completed.

However, identifying these e-machines as IFSs al-
lowed us to show that the dimension of the mixed-state
set, a quantity well studied for IFSs, is a structural com-
plexity measure for stochastic processes. Reference [12]
then introduced the statistical complexity dimension—
the DIFS attractor information dimension. A longstand-
ing conjecture in dynamical systems theory states that
the Lyapunov dimension, a dimensional quantity calcu-
lated using a system’s Lyapunov spectrum, is equiva-
lent to the information dimension. We showed that for
many DIFSs this is indeed the case, connecting the infor-
mation dimension of the e-machine’s state space to the
e-machine’s statistical complexity dimension—the rate of
divergence of the statistical complexity. This related a
DIFS’s dynamics to the information-theoretic properties
of the underlying process. Additionally, it gave a new



and meaningful measure of structural complexity—one
that differentiates between stochastic processes with di-
vergent state spaces.

That was not the end of the story, since calculating
d,, is difficult due to longstanding problems in the field of
IFS dimension theory. In particular, the overlap problem
posed a significant hurdle—restricting the preceding re-
sults to only nonoverlapping IFSs. This restricted us to
the class of stochastic processes with a one-to-one past-
to-causal state mapping. In a sense, these processes are
the most complex but with structure that is the least in-
teresting. That is, for DIFSs we simply store every past
to build an optimally-predictive model.

This state of affairs led directly to the present de-
velopment and to introducing the ambiguity rate. The
latter allows smoothly varying between e-machines with
countable state spaces (h, = h, and AH[R]| = 0) and
those with perfectly self-similar state spaces (h, = 0 and
AH[R| = h,), including the vast majority lying in be-
tween, with h, > hq > 0 and AH[R] = h,, — hq. This
model class is much more general, generating an expo-
nentially larger family of stochastic processes. As such,
we anticipate that this class will be of great interest and
likely to lead to significant further progress in analyz-
ing the randomness and structure generated by hidden
Markov chains.

To close, we note that the structural tools and the
entropy-rate method introduced by this trilogy were put
to practical application in two other previous works.
One diagnosed the origin of randomness and structural
complexity in quantum measurement [38]. The other
exactly determined the thermodynamic functioning of
Maxwellian information engines [39], when there had
been no previous method for this kind of detailed and
accurate analysis. The lesson from these applications
of finite-state-generated processes is that the resulting
effectively-infinite state processes are very likely generic.
That said, for now we must leave to the future investigat-
ing infinite-state machines and developing the required
algorithmic tools.
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Appendix A: Hidden Markov-Driven Iterated
Function System Examples

We reproduce here the hidden Markov-driven iter-
ated function systems (DIFS) used to create Fig. 4.

First, the “delta” DIFS, from Fig. 4a, is given by
a three symbol alphabet and the substochastic symbol-
labeled matrices:

0.112 0.355 3.901 x 1072
0.434 7.685 x 1072 2.333 x 102
0.215 2.518 x 1072 0.220

1.778 x 102 0.113 0.220
6.465 x 1072 0.272 2.413 x 1072
0.400 8.697 x 1073 9.892 x 103

8.312 x 1072 2.867 x 102 3.096 x 102
4.690 x 1072 5.625 x 10™2 1.807 x 1073
0.114 1.095 x 1072 7.522 x 10—*

7O = NS
T(A) —

) —

Second, the “Nemo” DIFS, from Fig. 4b, is given
by a two symbol alphabet and the substochastic symbol-
labeled matrices:

0.409 0.0 0.091

T =105 00 00 | and (A2)
0.0 0.182 0.0
0.091 0.0 0.409

7™ =105 00 0.0
0.0 0.818 0.0

Finally, the “gamma” DIFS, from Fig. 4c, is given by
a three symbol alphabet and the substochastic symbol-
labeled matrices::

0.355 1.745 x 1072
1.878 x 1072 2.388 x 1074 | ,
2.472 x 1073 0.215

2.479 x 1072
0.410
0.204

7@ _

(A3)

1.672 x 10—3
3.377 x 1072
0.426

0.133 0.235
0.272 8.277 x 1072 |,
1.498 x 10~2 4.286 x 103

8.870 x 102 3.059 x 10~2 0.114
6.918 x 1072 0.112 1.804 x 1073
0.131 1.165 x 1073 8.005 x 10~4

T(&) —

) —

Due to finite numerical accuracy, reproducing the
attractors using these specifications may differ slightly
from Fig. 4.

The mapping images shown in Fig. 5 are produced



by the following three symbol DIF'S:

ay Pz Pz By ax Pz

T = | ax By Bz |, TW) = | B2 ay Bz |, and
ar Bzxr Py Bx ax By
By Bx ax

T7C) = | Bz By az| (A4)
Bx Br ay

with @ = 0.63,x = 0.2 for the overlapping example in
Fig. 5a and a = 0.6,z = 0.15 for the nonoverlapping
example in Fig. 5b.

Appendix B: Numerical Approximation of
Ambiguity Rate

To numerically approximate the ambiguity rate for a
DIFSlying in the 1-simplex, we may use Ulam’s method
to approximate the Blackwell measure, then compute
Eq. (15). Given a partition {A;,... A} of the simplex,
define:

o _ MDA 0 Ay)

G (@ (Ay)) p® (4) ,

where m is the Lebesgue measure over A and A; is the
center of a partition element. Let P = " P(®) and find
the left eigenvalue p = pP. Then, the invariant-measure
approximation is:

:un(A) - ;pz m(Al) .

For this example, let’s walk through estimating the
ambiguity rate for one DIFS-setting x = 0.25 and o =
0.5. The partition {A4;,...Ar} is created by dividing
the 1-simplex into k£ boxes of equal length. The ap-
proximated Blackwell measure pip for the DIFS, using
k = 400, is shown in the top plot of Fig. 10. The over-
lay indicates the region (green) of the state space that
exhibits overlap. Compare the two regions depicted in
Fig. 10 to the overlap shown in Fig. 8, for the vertical
slice at a = 0.5.

Note that the partition may be defined as desired.
We have found that defining the partition by calculat-
ing the set of fixed points of the mapping functions
{p”’ Cf@(pT) = p”}. Then, as many times as is desired,
find all possible iterates of each fixed point, construct-
ing a new set {f(w)(px) rx € Aw e UTJLO A”}, where

N € ZT. Removing duplicates and ordering the set gives
a list of endpoints for a partition of the 1-simplex. In-
creasing N produces increasingly fine partitions. This
method of defining partitions has advantages when cal-
culating h, across parameter space as we have in Sec-
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tion VIIB, since the position of the fixed point iterates
in the simplex are smooth functions of «.

Regardless, once the partition is selected and jip is
determined, we again use the partition. For each cell A;,
we find the probability distribution over the maps that
could have transitioned into A;: by applying Eq. (16)
and assuming invertibility of the mapping functions:

i (1) (4n)
i (4)

x p* ((f(’”))_l(Az)) :

PI‘(XO = CE|R € Al> =

For our example DIFS, the probability of the previ-
ous map given current location in the simplex is plotted
in the middle figure of Fig. 10. For parts of the simplex
outside the overlapping regions, only one prior map is
possible and it has probability one. Within the overlap-
ping regions, the distribution over the possible prior maps
may be very complicated. The Shannon entropy over
the prior map distribution H [X, = z|R € A;] is shown
in the third plot of Fig. 10. Once these entropies are
calculated, the final step is to approximate the integral
equation Eq. (15) with a summation over cells in the par-
tition:

hg = Z@(Al) Z H[X() = (E|R € Az] .
7 €A

In our example, the ambiguity rate is found to be h, =
0.4499. Since the DIFS entropy rate is h, = 1.5596,
this gives an adjusted state space expansion rate of h,, —
h, = 1.1098. Calculating the DIFS’s I' and applying
Eq. (17) results in a statistical complexity dimension of
d, = 0.9815.

The advantage of Ulam’s method is its relative ease
and speed. Additionally, it is deterministic given the par-
tition. We may may increase the accuracy of our approxi-
mation simply by tuning our partition, although increas-
ingly fine partitions increase computation time. Addi-
tionally, when the set becomes highly rarefied, noisiness
will be observed in the calculation of h,. This can be
seen in our example DIF'S on either end of the overlap re-
gion, although it is worst when « € (0.6,0.78). This may
be understood when comparing Fig. 8 to Fig. 9— from
a € (0.6,0.78) are bands of high density in the overlap-
ping region that increase in probability as the overlapping
region itself is shrinking. Calculating the h, accurately
in this region requires increasingly fine partitioning. An
immediate improvement may be made by adapting the
method to use adaptive partitioning as it sweeps param-
eter space, taking into account the structure of the state
set. The method may be applied to any DIFS in the
1-simplex with overlaps.
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FIG. 10. DIFS for z = 0.25 and a = 0.5: (Top) Blackwell Measure pup approximated by Ulam’s method with & = 400. The
two overlapping regions are overlaid and may be compared with Fig. 8. (Middle) Probability of each prior map is plotted.
In nonoverlapping regions, only one prior map is possible. In the overlapping regions, there are complicated, fractal-like
distributions over multiple prior maps. (Bottom) Shannon entropy over the prior map: Nonzero only in the overlapping
regions.
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