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We introduce an efficient dynamical tree method that enables us to explicitly demonstrate thermo-
remanent magnetization memory effect in a hierarchical energy landscape. Our simulation nicely
reproduces the nontrivial waiting-time and waiting-temperature dependences in this non-equilibrium
phenomenon. We further investigate the condensation effect, in which a small set of micro-states
dominates the thermodynamic behavior, in the multi-layer trap model. Importantly, a structural
phase transition of the multi-layer tree model is shown to coincide with the onset of condensation
phenomenon. Our results underscore the importance of hierarchical structure and demonstrate the
intimate relation between glassy behavior and structure of barrier trees.

I. INTRODUCTION

Understanding the nature of spin-glass dynamics re-
mains a challenging task in modern statistical and con-
densed matter physics. The glass phase is intrinsically
non-stationary: a glass system in the thermodynamic
limit continues to relax toward its ground state with
an ever slower rate. A hallmark of spin glasses at low
temperatures is the aging phenomena, which originate
from a history-dependent relaxation dynamics of these
systems [1–4]. One particularly intriguing dynamical be-
havior related to aging is the memory effect [5]. For ex-
ample, in the so-called zero-field-cooled (ZFC) aging ex-
periments [6–8], a spin glass is quenched below its freez-
ing temperature in the absence of magnetic field. After
a waiting time tw, an external magnetic field is turned
on and the resultant magnetization M often depends on
the duration of the waiting period. Various experimental
setups with different cooling and heating protocols have
been employed to investigate the memory effect of glassy
systems [9–19].

The memory effect is intimately related to the rejuve-
nation phenomena, which are manifestations of the ex-
treme sensitivity of spin-glass systems to temperature
changes [11–14]. Specifically, for example, when a spin-
glass is subject to a small negative temperature jump
in the glass phase, the system behaves as if it had been
quenched from above the glass transition temperature Tf .
However, a perfect memory of the time spent at the ini-
tial temperature below Tf is somehow kept, as demon-
strated by the so-called memory-dip experiments [13–
19]. These intriguing nonequilibrium behaviors are be-
lieved to be related to a certain “coherence” length that
keeps on growing in an aging spin glass [20–24]. The
relaxation dynamics in the glass phase is thus charac-
terized by multiple time scales that govern the dynam-
ics of the spin glass at different length scales. This dy-
namic temperature-chaos picture that involves multiple
time and length scales is supported by numerical sim-
ulations based on the real-space droplet models [25–27]
and recent large-scale Monte Carlo simulations of three-
dimensional Edwards-Anderson spin-glass model [28].

While valuable insights and intuition on the aging dy-

namics can be gained from the real-space approaches [22–
24, 28–33], the multi-scale nature of the memory and
rejuvenation phenomena makes such direct simulations
computationally very difficult, if not impossible. On the
other hand, theoretical approaches based on the state-
space or energy landscape methods have long been suc-
cessfully applied to quantitatively model the aging phe-
nomena in glass systems. This is because multiple energy
and time scales can be easily encoded into dynamical
models based on energy landscapes [34–51]. A canonical
example is the random energy model [34, 35], in which
the lifetime of the many metastable states of the glass
system is assumed to be a random variable described by
a broad, power-law distribution. The aging phenomenon
in such models can be attributed to a divergent relaxation
time when averaged over all the local minimum states.

Various studies have emphasized the hierarchical struc-
ture of the energy landscape for spin glasses [41–45, 52–
55]. A diffusion process in such hierarchical structures
can naturally lead to nontrivial relaxational dynamics
such as stretched exponential decay or power-law decay
with a temperature dependence exponent [41–43]. More-
over, the hierarchical diffusion problem can be mapped
into a random walk problem on a tree structure, with its
nodes corresponding to the many metastable states of the
energy surface. Highly nontrivial glassy phenomena can
be quantitatively reproduced by such tree models coupled
with a master-equation approach. For example, the mag-
netization response observed in the standard ZFC exper-
iments can be nicely reproduced by the binary tree mod-
els [42–44]. Nonequilibrium dynamical responses, such as
the ac-susceptibility memory effect, can be described by
the tree models with random-walk dynamics [46–48]. In
addition to phenomenological hierarchical tree models,
quantitative barrier tree representation of specific spin
models can also be realized based on the concept of dis-
connectivity graphs [56–64].

In this paper, we develop a new hierarchical tree model
and apply it to simulate the thermoremanent magnetiza-
tion (TRM) memory-dip phenomena observed in several
spin glasses [12–19]. In such experiments, the sample
is first cooled down from well above Tf to a base tem-
perature with a single stop for a waiting time, tw, at
an intermediate temperature Tw, in zero magnetic field.
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Once at the base temperature, the system is heated back
to high temperature and its magnetization M is mea-
sured with a small probing field. The waiting period
allows the system to evolve toward equilibrium at the
temperature Tw. Interestingly, the quasi-equilibrium es-
tablished during the stop seems to be kept in memory,
and the dc magnetic susceptibility exhibits a remarkable
dip at Tw when heated back. Our random-walk simula-
tions on the proposed dynamical tree model capture es-
sential features of the TRM memory effect, particularly
the nontrivial waiting-time and waiting-temperature de-
pendences of the susceptibility dip.

We further show that the magnitude of the memory ef-
fect depends crucially on the structure of the hierarchical
tree, which is quantitatively characterized by a parame-
ter λ. Essentially, this parameter controls the branching
probability of the backbone tree, which consists only of
saddle points. In the tree representation, a node with
large branching indicates a larger configuration entropy
associated with this saddle point. In order to efficiently
model the effect of large branching, a dynamical tree
method where the relevant nodes are generated on-the-fly
is introduced. We find that the hierarchical tree of the en-
ergy landscape exhibits a structural phase transition at a
critical λc above which glassy behaviors disappear. This
critical point is further associated with the condensation
phenomenon that results from a competition between en-
ergy and entropy.

The rest of the paper is organized as follows. In Sec. II,
we review the basics of barrier tree representation of the
hierarchical energy landscape. We next discuss the dy-
namical tree method and the random walk simulations
for simulating the TRM memory dip experiments. The
effect of the tree structure on the memory effect is further
explored in Sec. III. We show that a structural transition
of the tree at λc = 1 coincides with the condensation
transition, which plays an important role in the nonequi-
librium behaviors of the glassy systems. Finally we pro-
vide a summary in Sec. IV.

II. DYNAMICAL HIERARCHICAL TREE
MODEL FOR MEMORY EFFECT

We begin with a discussion of the tree representation of
the hierarchical energy landscape [41, 60]. Two examples
of the barrier trees are shown in Fig. 1. Each node of the
tree, denoted by a circle, represent either a saddle point
or a local energy minimum. The full and open red circles
correspond to boundary and internal saddle points, re-
spectively, of the energy landscape. Each line emanating
from a circle represents a downward path from the saddle
point of the energy landscape. These lines could end at
another saddle point at a lower energy, or at a local mini-
mum. For simplicity, both types of nodes descended from
a saddle point are called the “daughters” of the saddle
node. A boundary saddle point (full red circle) only has
local minima as its daughters, while an internal saddle

FIG. 1: (Color online) Schematic diagram of hierarchical bar-
rier trees with (a) λ = 0.5 and (b) λ = 2.0. Each node, repre-
sented by a circle, of the tree corresponds to either a saddle
point or a local minimum. Red full (open) circles denote the
boundary (internal) saddle points, while black circles repre-
sent local minima. The backbone of the tree is highlighted
by red lines, which also show the connectivity of the saddle
points. Note that the level index l increases from top to bot-
tom.

(open red circle) could also have other saddle nodes at
a lower level as its daughter. Each local minimum node
(black circles in Fig. 1) in the tree represents a phase-
space pocket in which the system can be trapped. The
edge between two nodes indicates a possible dynamical
pathway; the corresponding barrier height is indicated by
the edge length. Finally, a level index l is introduced to
count the “distance”, or the number of branching, of a
node from the root.

The barrier energy εl of local minima at the l-th level
or that of saddle points at (l + 1)-th level is a random
number drawn from an exponential distribution

ρl(εl) = e−εl/Tl/Tl. (1)

Importantly, this probability density gives rise to a di-
vergent trapping time for minima at level l when the
temperature T < Tl. In order to compute the mag-
netic susceptibility χ, a magnetization parameter ml is
assigned to each node following the random magnetiza-
tion model [46–48], where ml is a random number uni-
formly distributed in the interval [−Ml,Ml]. One can
then characterize the system trapped at the l-th level
of the tree by a series of energy {ε0, ε1, ε2, · · · , εl} and
magnetizations {m0,m1,m2, · · · ,ml}. The energy and
magnetization of the system is given by the sum

E = ε0 + ε1 + ε2 + · · ·+ εl,

M = m0 +m1 +m2 + · · ·+ml. (2)

The characteristic temperatures Tl at different levels are
assumed to decrease geometrically with l, i.e. Tl = T0 r

l,
where r < 1 is a constant. This provides a simple
way to encode multiple energy scales into the tree struc-
ture, while maintaining a finite average total energy
〈E〉 = 〈ε0〉 + 〈ε1〉 + 〈ε2〉 + · · · + 〈εl〉 for all l. Consis-
tent with the energy barriers which become smaller with
increasing level, we assume the range of magnetization
Ml also decreases geometrically with increasing l.
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Following previous works on the hierarchical diffu-
sion models, the relaxation dynamics in a barrier tree is
modeled by a random-walk Markov chain process. The
transition probability from node α to β is governed by
the Metropolis dynamics:

Pα→β = Qα→β min
{

1, e−β(Fβ−Fα)
}
. (3)

Here Fα = Eα −HMα is the effective energy of node α,
H is a small external probing magnetic field, β ≡ 1/kBT
is the inverse temperature, and the coefficient Qα→β en-
codes the structural information of the tree. As in stan-
dard Metropolis dynamics, at every time-step, there is a
finite probability Pα→α that the walker stays at the same
node; it is determined by the conservation of probability:
Pα→α = 1−∑

β 6=α Pα→β .
Given a complete representation of the barrier tree,

which requires careful labeling of all the nodes at different
levels and their connections, the standard Monte Carlo
method can be used to simulate the random walk on the
barrier. However, although it is possible to explicitly
build simple tree structures such as binary trees or single-
layer trees, explicit construction of the hierarchical trees
with a large number of branching is a computationally
demanding task, which requires large runtime memory
for storing the tree data. It is also highly inefficient as
most of the nodes will not be visited by the walker. To
overcome this difficulty, here we develop a dynamical tree
method such that new nodes are generated on the fly
according to the statistical properties of the tree.

Explicitly, the history of a random walker at level l is
kept in two dynamical lists: Lε = {ε0, ε1, ε2, · · · , εl} and
Lm = {m0,m1,m2, · · · ,ml}. These are the energy bar-
rier and magnetization, respectively, of the nodes visited
by the walker at each level. If the walker decides to make
a down-transition to a lower level, random variables εl+1

and ml+1 are sampled from their respective probability
density and added to the respective history list. On the
other hand, the last entries εl and ml are deleted from
the respective lists if the walker decides to go up. In
doing so, we neglect the possibility that the walker will
later visit exactly the same state at l-th level. Nonethe-
less, this is a reasonable approximation for barrier trees
with a large number of branchings which is usually the
case in the thermodynamic limit.

We note that our dynamical tree method is similar to
the multi-layer random energy model (MREM) used in
Ref. [46–48]. The main difference is that their MREM
model assumes infinite of daughters from each node, and
all nodes except the one at the lowest (outermost) level
are saddle points. By excluding local minimum states
at intermediate levels, the MREM model of [46–48] can-
not describe barrier trees of the type shown in Fig. 1(a),
which, as will be shown below, exhibits a strong TRM
memory effect.

As discussed above, the structure of the barrier tree is
encoded in the coefficients Qα→β in Eq. (3). In our dy-
namical tree method, these coefficients can also be viewed
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FIG. 2: (Color online) (a) Protocol for temperature variation
for simulating memory effect in multi-layer trap model. The
system is initially cooled with a constant rate until the tem-
perature reaches Tw. The system then stays at Tw for a finite
period of waiting time tw before further cooling to a base
temperature. During the subsequent measurement, a small
magnetic field is applied to induce magnetization while the
system is heated with a constant rate. (b) shows the system
energy averaged over many independent runs as a function
of time. Panels (c)–(e) show the temperature dependence of
zero-field cooled DC magnetic susceptibility χ, generated by
Monte Carlo simulations. The data is taken after a waiting
during the cooling process with the waiting time tw in units
of 5× 106 MC steps at (a) Tw = 0.2Tf , (b) Tw = 0.4Tf and
(c) Tw = 0.6Tf .

as a set of transition probabilities that define a separate
Markov chain process. Compared with the random-walk
governed by transition probabilities Pα→β , the Markov
process corresponding to Qα→β can be viewed as a ran-
dom walk process on the tree without the energy con-
straint. Here, we assume these probabilities are given by
a few parameters depending on the types of node α and
β. Explicitly, for a walker stuck in a local minimum α, it
can only make a transition to the saddle node β above it.
On the other hand, there are three possible transitions
that can take place at a saddle point at the l-th level:
the walker can go to a local minimum of the same level
with probability p0, jump to a saddle node at the upper
level l − 1 with probability p−, or to a saddle node at
the lower level l+ 1 with probability p+. We summarize
these transition probabilities in the following:

Qmin→saddle = 1,

Qsaddle→min = p0, (4)

Qsaddle→saddle = p±.

Here we have assumed that the probabilities p0 and p±
are independent of the levels for simplicity. Physically,
the probability p0 that the system will make a transition
from a saddle point α to a local minimum depends on the
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FIG. 3: (Color online) (a) Memory effect in terms of max-
imum depth of the relative change of magnetization (M −
Mref)/Mref versus the structural parameter λ = p+/p−. The
red line is a guide to eye. A few examples of the temperature
dependence of (M −Mref)/Mref are shown in panel (b).

number of downward pathways from α to one of minima.
For a randomly generated barrier tree with a fixed struc-
ture, the number of downward pathways varies from one
saddle node to another. Consequently, some saddle node
might have more local minima attached to it, hence a
larger p0. The simplification that these probabilities p0
and p± are constant independent of nodes thus amounts
to a mean-field approximation for the tree structure. We
note that the introduction of two different probabilities
p± for moving down and up the backbone tree is similar
to the degeneracy factor in, e.g. the binary tree models
of Refs. [41–44].

The above dynamical tree generation and the Metropo-
lis random-walk dynamics are used to simulate the TRM
memory-dip experiments [18]. The cooling and measure-
ment protocol is summarized in Fig. 2(a). The system
is first cooled down from well above Tf to the base tem-
perature with a single stop at an intermediate tempera-
ture Tw for some period of time tw under zero field. Once
cooled down to the base temperature, the susceptibility
χ = 〈M〉/H is measured by applying a small field upon
heating at a constant rate. As demonstrated in Figs. 2(c)-
(e), our simulations successfully reproduce the memory
effect which manifests itself as a prominent dip at Tw
when the system is heated back. Moreover, the dip be-
comes more pronounced with increasing waiting time tw.
The sensitive dependence on both waiting temperature
Tw and waiting time tw is the hallmark of memory effect
in thermo-remanent magnetization measurement [15–19].

To gain a better insight of this remarkable phe-
nomenon, we plot the average energy 〈E〉 as a function
of time (in terms of Monte Carlo steps) in Fig. 2(b). The
energy 〈E〉 decreases with time initially until the cool-
ing stops at Tw. During this waiting period, the walker
cannot efficiently explore those levels l∗ whose charac-
teristic energy scales Tl∗ & Tw. This is because the
average energy barrier separating nodes at these levels
ε∗B ∼ Tl∗ is greater than or of similar order of the wait-
ing temperature Tw, hence a small transition probability
P ∼ exp(−Tl∗/Tw). However, a longer waiting time tw at

Tw, allows the walker to overcome the energy barrier ε∗B
through thermal activation and find energetically lower
nodes in those levels l∗. This partial equilibration thus
gives rise to an additional energy reduction ∆Ew from
this waiting period; see Fig. 2(b). Upon reheating, again
the average energy and level increases with time initially.
As the temperature approaches Tw, the system needs to
overcome this additional energy barrier ∆Ew, leading to
a dip in susceptibility.

Having demonstrated the memory effect in the hier-
archical trap model, one natural question is how it is
affected by the tree structure. To answer this question,
we examine the dependence of memory effect on a crucial
structural parameter

λ ≡ p+/p−, (5)

which is the average branching ratio of the backbone
tree, i.e. the tree with all local minima removed; see
Fig. 1. The backbone tree consists of only the saddle
points. Fig. 3(a) shows the λ dependence of the relative
change of magnetization (M −Mref)/Mref that provides
a quantitative measure of the memory effect, where M
and Mref are the magnetization at Tw with and without
waiting (Fig. 3(b)). Our results show that pronounced
memory effect is obtained with a small λ, corresponding
to barrier trees with a smaller probability of descending
to lower levels. A representative example of such trees is
shown in Fig. 1(a).

III. STRUCTURAL PHASE TRANSITION AND
CONDENSATION PHENOMENON

Interestingly, the memory effect quickly disappears
as λ approaches 1, indicating a potential critical λc = 1.
Here we show that this critical pint λc = 1 corresponds
to the critical point of a structural transition of barrier
trees. To this end, we consider a random walk process
which is unaffected by the energy barrier. As discussed
above, this Markovian process is governed by the transi-
tion probabilities Qα→β , which only depend on the statis-
tical property of the barrier-tree. Since a walker at a local
minimum will always return to the saddle node according
to Eq. (4), we can focus only on the random walk among
the saddle nodes, or the backbone tree. The finite prob-
ability p0 that the walker visits the local minima from a
given saddle point translates to a finite probability that
the walker stays at the same saddle point. The effect of
this finite p0 can then be accounted for by a re-definition
of the time-step which corresponds to the average time
the walker stays at the same saddle node. The Markov
chain process described by Qα→β is now effectively re-
duced into a random walk problem along a line. In this
mapping, the position x of the walker corresponds to the
level l of the tree, see Fig. 4(a). At each time-step, the
walker can move to a lower level with probability p+

p++p−
,

or to the upper level with probability p−
p++p−

.
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FIG. 4: (Color online) (a) Schematic diagram of a semi-
infinite 1D random walk. In this 1D model, all the saddle
nodes at the same level are treated identically, which are rep-
resented by red dots. (b) Averaged position 〈x〉 of the walker
as a function of time for different value of λ = p+/p−. Here
the average is computed from 105 independent Monte Carlo
runs.

A crucial observation here is that the walker cannot
go above level l = 0, which means that the random walk
problem has a perfectly reflecting boundary condition at
the top. Fig. 4(b) shows the time dependence of the
average position 〈x〉 (in units of the level index l) of the
walker who is initially at level-0. Our results clearly show
two distinct dynamical regimes separated by the critical
λc = 1. For small λ < λc, the average 〈x〉 saturates
to a finite value in the large time limit. Physically, this
can be understood as a balance between the tendency
of the walker to move upward, and the reflection at the
boundary l = 0. As a result of this balance, the walker
never wanders too far away from the root. This is consis-
tent with the analytical calculation showing that a walker
starting at position l 6= 0 will always visit the root in fi-
nite time, i.e. the return probability is 1 [65–67]. On the
other hand, for λ > λc, the average position 〈x〉 increases
linearly with time, which is expected for a biased random
walk without boundary. In the special case of λ = λc,
corresponding to p+ = p−, we find that, even in the
presence of a reflecting boundary, the walker obeys the
well known time dependence 〈x〉 ∼ t1/2 for a symmetric
random walk; see Fig. 4(b).

The two distinct dynamical regimes of the 1D random
walk indicates a structural transition of the barrier trees
at the critical point λc = 1. The average position 〈x〉 of
the walker provides a measure of the average depth of the
hierarchical tree. The above results indicate that trees
with λ ≥ λc could grow indefinitely in depth in our dy-
namical tree scheme, which means local minima at deep
levels (l� 1) contribute significantly to the “volume” of
the phase space. It is worth noting that although the hi-
erarchical trees could have infinite number of levels, our
choice of temperature parameters Tl ensures that the av-
erage energy is bounded, as discussed above. Moreover,
the exponential distribution of barrier energy Eq. (1) in-
dicates that local minima at lower levels (larger l) are
not necessarily deep in terms of energy.

For barrier trees with λ < λc, the fact that the average
position 〈x〉 is finite indicates that such barrier trees are
dominated by local minima at shallow levels. This can
also be understood from the detailed balance condition
that is required for the steady-state random walk. Let Nl
be the average number of saddle nodes at level l, the de-
tailed balance meansNl p+ = Nl+1 p−. Consequently, we
have Nl ∼ N0 λ

l, which means that the number of saddle
nodes decreases geometrically with increasing levels for
trees with λ < λc = 1, example of such trees are shown
in Fig. 1(a).

Importantly, our simulations in Sec. II show that the
sub-critical trees with λ < λc exhibit strong memory ef-
fect. The fact that such trees are dominated by local
minima at a few shallow levels plays an important role in
the emergence of the memory effect, and is also related
to the so-called condensation phenomenon of glassy sys-
tems. To this end, we numerically compute the average
participation ratio Y (T ), which provides a measure of
the glassy behavior. It is essentially the sum of squared
Boltzmann probabilities [68, 69]:

Y (T ) ≡
〈∑

α

Wα(T )2

〉
=

〈
1

Z2

∑
α

e−2Eα/kBT

〉
, (6)

where the summation is over all local minima α, Z =∑
α e
−Eα/kBT is the partition function, and 〈· · · 〉 denotes

average over different realization of the barrier trees. The
participation ratio Y (T ) is used to quantitatively charac-
terize the so-called condensation phenomenon, in which
a smaller-than-exponential set of micro-states dominates
the Boltzmann measure. Intuitively, the inverse 1/Y (T )
gives an estimate of the effective number of configurations
that contribute to the partition function. In the case that
a large number of micro-states contribute equally to the
Boltzmann sum, the participation ratio Y ≈ 0. Con-
densation happens when the sum is dominated by a few
states. The participation ratio can be computed ana-
lytically for the random energy model (REM) [70, 71],
which is similar to a one-layer random trap model. In
the thermodynamic limit, REM exhibits a critical tem-
perature Tc, above which Y = 0. Condensation occurs at
T < Tc and the participation ratio grows linearly upon
lowering the temperature: Y (T ) ∼ (1− T/Tc).

Here we perform the Monte Carlo simulation to nu-
merically compute Y (T ) for the randomly generated hi-
erarchical trees. It is worth noting that, with our dy-
namical tree method encoded in transition probabilities
Qα→β , the Monte Carlo simulation based on Pα→β au-
tomatically provides both thermal and disorder average
for the calculation of participation ratio. The numerical
temperature dependence of Y is shown in Fig. 5(a) for
varying structure factor λ. The behavior of Y (T ) here is
similar to the REM for λ < 1. Moreover, the condensa-
tion temperature Tc decreases with increasing λ. We can
introduce an order parameter

A =

∫ ∞
0

Y (T )dT, (7)
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FIG. 5: (Color online) (a) Participation ratio Y vs tem-
perature for barrier trees obtained from the dynamical tree
method. (b) A glassy order parameter A, defined as the area
under of the Y (T ) curve, vs the tree-structure parameter λ.

which is the area under the Y (T ) curve, to characterize
the overall degree of condensation or the glassy behav-
ior. Consistent with our random walk simulation results,
the λ dependence of A indeed shows a critical point at
λc = 1, above which the glassy order parameter A van-
ishes; see Fig. 5(b). The glassy transition at λc = 1 can
be viewed as a result of the competition between energy
and entropy. While the glassy phase (λ < 1) is charac-
terized by condensation of a few dominant micro-states,
the proliferation of energetically shallow minima in trees
with λ > 1 overwhelms those few deep minima, leading to
the disappearance of glassy behavior and memory effect.

IV. CONCLUSION

To summarize, we have numerically demonstrated the
memory effect in a dynamical model of hierarchical bar-
rier trees. To the best of our knowledge, this is the first
numerical simulation that successfully shows the nontriv-
ial dependence of memory effect on waiting time as well
as waiting temperature. Our results strongly support
the crucial role of hierarchical structure in memory ef-
fect. We further show that trees with a smaller branch-
ing ratio, i.e., fewer and fewer saddle points as one goes
deeper, tend to exhibit a strong memory effect. In fact, a
structural transition of the barrier tree is found to coin-
cide with the glassy transition. This picture is supported
by our result showing that condensation phenomena, in
which a few deep local minima dominates the partition
function, only occurs in trees with small branching ratio.

We further establish a structural transition at the criti-
cal point λc = 1 above which the memory effect vanishes.
In fact, trees with large branching ratio λ > λc do not
exhibit glassy behavior due to the exponential increase
of the number of energetically shallow minima. This pic-
ture is supported by our result showing that condensation
phenomena, in which a few deep local minima dominates
the partition function, only occurs in trees with small
branching ratio. The glassy transition at λc = 1 can also
be viewed as a result of the competition between energy

and entropy. While the glassy phase (λ < 1) is charac-
terized by condensation of a few dominant micro-states,
the proliferation of energetically shallow minima in trees
with λ > 1 overwhelms those few deep minima, leading to
the disappearance of glassy behavior and memory effect.

Appendix A: Dynamical Tree Method

In the appendices, we provide the pseudo-codes for
the algorithms used in this work, including the dynami-
cal tree methods for the thermo-remanent magnetization
simulation, the one-dimensional (1D) random walk sim-
ulation, and the participation ratio simulation. Details
of the simulations are also discussed.

In order to avoid the extremely large memory for pre-
create the entire tree, we generate the tree nodes on the
fly. In the dynamical tree method, only the node level, l,
the list of barrier energy and magnetisation, i.e., Lε, Lm,
are kept tracked during the simulation. An additional pa-
rameter is min is used to label whether the current node
is a local minimum or a saddle point. The simulations
are performed on a temperature series, Ts, along with
a magnetic field series, Hs. At each temperature point,
the total magnetic moment is averaged over nsweep it-
erations and recorded in a list, Ms. In each iteration,
the system can choose to walk up, l → l − 1, or down,
l→ l+1 based on the node condition and the Metropolis
Hastings algorithm. See Algorithm 1 for details.

The parameters we used to produce Fig. 2 in the main
text are: total number of tree levels, L = 100; branching
number at each saddle point, Nb = 20; both the char-
acteristic energy, Tl, and characteristic magnetisation,
Ml, follow geometric distributions, i.e., Tl = T0r

l and
Ml =M0r

l, where T0 = 1, M0 = 0.5, r = 0.97; the pa-

rameter λ is also level-dependent, λ = 1−pL−1−l

Nb
, where

p = 0.9998.
Based on the thermo-remanent magentisation exper-

iments, the temperature and magnetic field series’s, Ts
and Ms, are set to be four processes: i) zero-field cooling,
with no magnetic field, H = 0, and a linearly decreasing
temperature from T = Tmax to T = Tw in Tmax−Tw

Tmax−TminNc
steps; ii) zero-field waiting, H = 0 and T = Tw in Nw
steps; iii) zero-field cooling, with H = 0 and from T = Tw
to T = Tmin in Tw−Tmin

Tmax−TminNc steps; iv) field reheating,
with H = 1 and from T = Tmin to T = Tmax in Nh linear
steps, where the minimum temperature is Tmin = 0.01,
the maximum temperature is Tmax = 3.00, the waiting
temperature is Tw = 0.2Tf , 0.4Tf , 0.6Tf (Tf ≈ 1.22), the
total number of cooling steps is Nc = 2×104, the number
of heating steps is Nc = 5 × 104, the number of wait-
ing steps is Nc = 0, 103, 104, 105, 106. And the iteration
number at each temperature point is nsweep = 50. In
addition to the thermal average, the final temperature-
dependent magnetisation and susceptibility is averaged
over nsample = 105 simulations.

In order to simulate the λ-dependence in Fig.
3 in the main text, we changed the λ parameter
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Algorithm 1 Dynamical Tree Method

l← 0 . start from root at level 0
is min← false . label local minimum
Lε ← [0]× (L+ 1) . keep record of εl
Lm ← [0]× (L+ 1) . keep record of ml

Ms← [0]× len(Ts) . magnetic moment

for i in 0...len(Ts)− 1 do
T ← Ts[i] . temperature
H ← Hs[i] . magentic field
for j in 0...nsweep − 1 do

if l = 0 or is min = false and rand() > 1
1+Nb

then

. go down if at level 0 or saddle point (rand() > 1
1+Nb

)

εl ← −Tl log (rand())
ml ←Ml(2 · rand()− 1)
∆E ← −εl −Hml

if rand() < e−∆E/T then
Lε[l]← εl
Lm[l]← ml

is min← rand() > λ
Nb

l← l + 1
end if

else
. go up if at minimum or saddle point (rand() < 1

1+Nb
)

εl−1 ← Lε[l − 1]
ml−1 ← Lm[l − 1]
∆E ← εl−1 +Hml−1

if rand() < e−∆E/T then
Lε[l − 1]← 0
Lm[l − 1]← 0
l← l − 1

end if
end if
M ← sum(Lm) . total magnetic moment

Ms[i]← i∗Ms[i]+M
i+1

. keep running average
end for

end for

to a level-independent uniform value, and the to-
tal tree level is extended from L = 100 to L =
200. Furthermore, Tmax is changed to accommo-
date the different Tf values, i.e. Tmax = 1.2Tf ,
where Tf ≈ 1.24, 1.40, 1.59, 1.87, 2.37, 3.54, 5.16 for λ =
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and the waiting tempera-
ture is set at Tw = 0.5Tmax.

Appendix B: 1D Random Walk

As is discussed in the main text, to map the dynamical
tree method to a one-dimensional (1D) random walk, the
probability to move to a lower level and a high level from
l > 0 should be p+

p++p−
= λ

λ+1 and p−
p++p−

= 1
λ+1 . The

algorithm for the 1D random walk simulation is shown
in Algorithm 2, where the parameter λ are chosen to be
0.8 ∼ 1.2. And the results were taken for t = 106 steps
and averaged over nsample = 105 samples.

Algorithm 2 1D Random Walk

l← 0 . start from root at level 0
Ls← [0]× (t+ 1) . keep record of walker’s level

for i in 1...t do
. go down if at level 0 or rand() < λ

λ+1
, go down otherwise

if l = 0 or rand() < λ
λ+1

then
l← l + 1

else
l← l − 1

end if
Ls[i]← l

end for

Algorithm 3 Participation Ratio Simulation

l← 0 . start from root at level 0
is min← false . label local minimum
Lε ← [0]× (L+ 1) . keep record of εl
B1s = [0]× len(Ts)
B2s = [0]× len(Ts)
PRs = [0]× len(Ts) . keep record of PR

for i in 0...nwait + ncount − 1 do
if l = 0 or is min = false and rand() > 1

1+Nb
then

. go down if at level 0 or saddle point (rand() > 1
1+Nb

)

if rand() < λ
Nb

then

Lε[l]← Tl log (rand())
l← l + 1

else
is min← true

end if
else
. go up if at minimum or saddle point (rand() < 1

1+Nb
)

if is min = true then
is min← false

else
Lε[l − 1]← 0
l← l − 1

end if
end if

if i > nwait and is min = true then
. count at minimum after waiting

T ← Ts[j]
E ← sum(Lε) + Tl log (rand())
for j in 0...len(Ts)− 1 do

B1s[j]← B1s[j] + e−E/T

B2s[j]← B2s[j] + e−2E/T

PRs[j]← B2s[j]

B1s[j]2

end for
end if

end for

Appendix C: Participation Ratio Simulation

The algorithm for participation ratio simulation is
shown in Algorithm 3, which is the T → 0 limit of the
dynamical tree method. The parameters used are the ge-
ometrically distributed characteristic energy Tl = T0r

l,
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where T0 = 1, r = 0.95, branching number Nb = 100,
and λ = 0.00 ∼ 1.20. The participation ratios are
calculated based on a linear temperature series, Ts =
{0.005, 0.010, 0.015, ..., 1.995, 2.000}, and averaged over
nsample = 104 samples and over ncount = 106 iterations
after thermal equilibrium in nwait = 106 walking steps.
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