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The effect of ionic disorder on the principal Hugoniot is investigated using Multiple Scattering
Theory to very high pressure (Gbar). Calculations using molecular dynamics to simulate ionic
disorder are compared to those with a fixed crystal lattice, for both carbon and aluminum. For the
range of conditions considered here we find that ionic disorder has a relatively minor influence. It
is most important at the onset of shell ionization and we find that, at higher pressures, the subtle
effect of the ionic environment is overwhelmed by the larger number of ionized electrons with higher
thermal energies.
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I. INTRODUCTION

The principal shock Hugoniot is the locus of final states
in single-shock experiments where the material is initially
at standard temperature and pressure. It is a method
with a long history [1], and it is used to measure the
equation of state at high pressures and temperatures. In
flyer plate shock experiments, a pusher is driven into the
material of interest, launching a shock wave. In laser-
driven shock experiments, a layer of ablator material is
laser-heated. The rapid expansion of the ablator launches
a shock wave into the target material. Conservation of
mass, energy and momentum across the shock front, and
the assumption of an ideal shock, translate the measured
pusher and shock front velocities into the desired equa-
tion of state variables.

Recent experiments at the National Ignition Facility
(NIF) [2], have resulted in accurate measurements of the
Hugoniot curve at very high pressures [3], and are of rel-
evance to inertial confinement fusion (ICF) and white
dwarf physics [4]. These experiments at 100’s of Mbar
complement the older, lower pressure techniques, includ-
ing gas-gun [5], Diamond Anvil Cells [6], and lower en-
ergy laser compression [7, 8], that have challenged and
guided EOS models and tables for many years [9].

Models for the equation of state have for many years
used these experiments for validation and testing. Prac-
tical models, used to build equation of state tables, need
to be reasonably accurate, computationally cheap, and
applicable over a huge range of conditions and materials.
These pragmatic restrictions often require the use of sim-
plified models of the EOS physics. For example, many
widely used EOS tables are based on so-called average
atom models. These attempt to capture the properties
of one averaged atom that is representative of the system
[10–15], but do not include the effect of ionic disorder. As
a result, ionic disorder has to be included via a separate
model [16–18].

The effect that a consistent treatment of ionic dis-
order has on Hugoniot curves remains largely untested
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for dense plasmas. Some modeling methods are capable
of evaluating this. For example, the widely used Den-
sity Functional Theory Molecular Dynamics (DFT-MD)
method includes ionic disorder through the use of en-
semble averaging over MD time steps [19, 20]. While
accurate, this method is generally limited to degenerate
systems (read lower temperature, higher density) due to
computational expense, and contains the additional com-
plication of pseudopotentials. Several recent works have
presented solutions to the problem of temperature scal-
ing of the computational expense of DFT-MD [21–26].
Another method that includes ionic disorder is Path In-
tegral Monte Carlo (PIMC) [27]. This is also an accurate
method, but is generally restricted to high temperatures
due to the Fermion sign problem [27].

Recently, a DFT-based method that can reach high
temperatures and that does not use pseudopotentials has
been developed. This method, known as Multiple Scat-
tering Theory (MST), has a long history in solid state
physics [28, 29]. It has recently been adapted to high
temperature, dense plasmas [30, 31]. MST includes a
sophisticated DFT treatment of the electrons, and in-
cludes ionic disorder through ensemble averaging over
ionic configurations obtained with molecular dynamics
simulations.

In this work, we use MST to assess the impact of ionic
disorder on the principal Hugoniots of carbon and alu-
minum. We report results up to several Gbar using both
ionic configurations from molecular dynamics and for a
fixed crystal lattice structure. We also compare to an av-
erage atom model and existing ab initio simulations [27].
We find that inclusion of ionic disorder has a relatively
small effect on the Hugoniot, but this effect is larger for
aluminum than carbon. Further, we find that at high
pressures, where the plasma is significantly ionized, a
crude treatment of ionic disorder is accurate enough for
Hugoniot predictions.

II. METHOD

The methods used here are described in detail in ref-
erences [30, 31]. In this section, we give a broad sum-
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mary, sufficient to allow the reader to assess the results
presented and get a broad understanding of the method
itself, together with calculational details. If more detail
is desired, we refer the reader to references [30, 31].

Multiple Scattering Theory (MST) is based on the idea
that the time-independent Green’s function for a system
containing electrons and nuclei can be found by solving
Dyson’s equation. This equation relates the a priori un-
known Green’s function G(x,x′, ε) to the known Green’s
function of some reference system g(x,x′, ε) [32]

G(x,x′, ε) = g(x,x′, ε)

+

∫
dx1G(x,x1, ε)V (x1)g(x1,x

′, ε) (1)

where V (x) is the potential difference between the ref-
erence system and the desired electron-nucleus system.
Choosing a free-electron reference system,

g(x,x′, ε) = −me

2π

exp (ı | x− x′ |)
| x− x′ |

(2)

where me is the electron mass, V (x) becomes the poten-
tial for the electron-nucleus system.

The next step is to carry-out a multi-center expan-
sion of the Green’s functions using spherical harmon-
ics Ylm(r̂). The positions of the expansion centers were
originally chosen to coincide with the nuclear positions
[28, 29]. This works well for close-packed crystal struc-
tures. However, it is not appropriate for disordered
plasmas, and in addition to these nuclear centers, extra
expansion centers are used [30]. These expansion cen-
ters are used to tessellate space into space-filling, non-
overlapping cells. The result of this multi-center expan-
sion is

G(r + Rn, r′ + Rn′
, z) = Gss(r + Rn, r′ + Rn′

, z)

+Gms(r + Rn, r′ + Rn′
, z) (3)

where Rn is the position vector of the nth expansion
center, r is a vector pointing from this center to a point
within cell n, and z is a (in general, complex) electron
energy. The so-called single-site Green’s function Gss is

Gss(r + Rn, r′ + Rn′
, z) =

2meδnn′

∞∑
L=0

Hn,×
L (r>, z)R

n
L(r<, z) (4)

where L = {l,m}, i.e., the usual orbital angular mo-
mentum and magnetic quantum numbers, Hn

L(r, z) and
Rn

L(r, z) are the irregular and the regular solutions of the
Schrödinger equation, and the notation r> (r<) means
to take r or r′ according to which one is greater (lesser)
in magnitude. This single-site Green’s function corre-
sponds to the Green’s function for a cell with free-electron
boundary conditions. The so-called multi-site Green’s

function is

Gms(r + Rn, r′ + Rn′
, z) =

2me

∞∑
LL′

Rn
L(r, z)Gnn

′

LL′(z)Rn′×
L′ (r′, z) (5)

which can be viewed as a correction to the single-site
Green’s function that modifies the boundary conditions
such that all incoming and outgoing waves from the cells
match at the interfaces. The superscript × means to
take the complex conjugate of the angular part of Hn

L
or Rn

L. Throughout, we use Hartree atomic units with
h̄ = 4πε0 = e2 = 1, leaving me symbolic for easy conver-
sion to Rydberg units. For other normalization and sign
conventions, see reference [30].

The Gnn′

LL′(z) are elements of the so-called structural
Green’s function matrix G(z). This is found by solving
a variation of Dyson’s equation, in what is sometimes
known as the fundamental equation of MST,

G(z) = G0(z) [I − t(z)G0(z)]
−1

(6)

Here t(z) is the t-matrix, found by matching the numer-
ical solutions Rn

L and Hn
L to their free electron forms at

the cell boundaries [33]. G0(z) is the structure constants
matrix. Its dependence on the set {Rn} has been sup-
pressed in the notation. For a given set of expansion
centers and energies, it can be calculated using a cluster
approximation [31] or assuming a periodically repeating
crystal structure [30]. Here we use the cluster approx-
imation for all plasma conditions. For the initial state
calculations for the Hugoniots (see section III) we use
the periodic crystal structure calculation.

In practice these equations are solved using Mermin-
Kohn-Sham density functional theory [34, 35]. For a
given set of expansion centers, the t-matrix, regular and
irregular solutions to the Kohn-Sham equation are found
for all cells, and the Green’s function is then constructed.
Note that the global t-matrix t(z) is block diagonal. Each
block element corresponds to a t-matrix for a particu-
lar cell. In the calculations and results presented here
we use the muffin-tin approximation, where the effective
Kohn-Sham potential in each cell is spherically averaged
inside the muffin-tin radius, and takes a constant inter-
stitial value elsewhere, as detailed in [30]. Further, we
have used the temperature dependent Local Density Ap-
proximation (LDA) of Karasiev et al [36] for the exchange
and correlation functional. The nuclear positions are pro-
vided by an external model: PseudoAtom Molecular Dy-
namics (PAMD) [37], which is thought to be accurate for
all materials and conditions considered here. The equa-
tion of state is then calculated as a time average over
uncorrelated time steps (figure 1).

The infinite sum over L in equation 4 is in practice con-
verged automatically, and only a finite number of terms
are needed 1. The two infinite sums in equation 5 are

1 The number depends on the degeneracy of the system. For cold,



3

0 2 4 6 8 10
time (pico seconds)

0.30

0.35

0.40

0.45

0.50

0.55

0.60
pr

es
su

re
 (M

ba
r)

FIG. 1. Time variation of pressure for aluminum at 1 eV and
2.7 g/cm3. The pressure fluctuates over molecular dynamics
time steps (blue line). The average pressure is shown by the
red horizontal line, and the grey area covers one standard
deviation from this mean value. For this case, the time step
is 2.2 fs, and we calculate the pressure at every fiftieth time
step.

more challenging due to high computational expense. In
practice, we use the method analysed in reference [30],
where only ‘chemically relevant’ terms are retained. Here
we keep terms up to and including l = 2, which should be
sufficient for the cases considered here. Calculations with
higher numbers of terms were considered in reference [30]
but do not lead to significant changes to the EOS.

With the Green’s function determined, the electron
density is calculated

ne(r) = − 2

π
=
∫ ∞
−∞

dεf(ε, µ)G(r, r, ε) (7)

where the 2 is due to spin degeneracy, the integral is
along the real energy axis, and f(ε, µ) is the Fermi-Dirac
function with chemical potential µ. A key advantage of
the MST method is that, because the (retarded) Green’s
function is analytic in the upper-half complex energy
plane, the energy integral in equation (7) can be car-
ried out using Cauchy’s integral theorem [38, 39]. On the
real energy axis, the full structure of the Green’s function
must be resolved. For periodic systems, this means that
one would need to find all the discrete eigenvalues, a noto-
riously difficult problem [38]. By carrying out the integral
in the complex energy plane, this problem is completely
avoided - one no longer solves an eigenvalue problem.
Moreover, the integrand becomes a smooth function of
the energy away from the real energy axis [40], reducing
the number of quadrature points needed.

dense material, only a few terms are needed, while for hot dilute
systems, many are needed

The equations are then solved to self-consistency. We
use Eyert’s acceleration method, which is a quasi-Newton
technique, to speed up convergence [41]. The equation of
state can then be calculated using the method given in
reference [30]. The initial guess for the potential in each
cell is based on the Thomas-Fermi cell model [10].

III. RESULTS

As in reference [31], our physical model is a computa-
tional cube that is periodically repeated. As discussed
above, a cluster approximation is used to solve equation
6. The cluster should contain enough centers in it such
that adding more does not affect the desired quantities.
Our cluster contains, at a minimum, the centers in the
computational cube. We then add centers within a fixed
distance, called the correlation radius, of any center in
the computational cube. Hence, for zero correlation ra-
dius the cluster includes all centers within the computa-
tional volume, which for the cases presented here is 43
centers (8 nuclei + 35 extra centers).

In figure 2 we show the the effect of increasing cluster
size on the pressure for density and temperature points
close to the Hugoniot curve for aluminum. Figure 2
shows that for pressure, relative errors of less than 1%
are achieved at 1 eV and 4.29 g/cm3 with a correlation
radius of 1.2 ion-sphere radii, and at the highest temper-
ature case, much smaller relative errors are seen for all
correlation radii. In between these extremes, the relative
error steadily decreases as temperature increases. This
behavior can be explained by noting that the relative con-
tribution of the multiple scattering Green’s function be-
comes smaller as temperature increases. This is because
the scattering electrons have more energy on average,
and are therefore more free-electron like. As such, the
correction to the single site term of the Green’s function
becomes smaller as temperature increases. This effect
was already noted in references [30] and [31]. The con-
vergence of the internal energy is similar, and is discussed
in the accompanying supplementary material.

We have previously explored the effect that the number
of extra expansion centers has on the EOS for aluminum
plasmas (reference [31]). In table I we show the effect of
the number of extra centers on the pressure for carbon
plasmas at two temperatures. Here we show the time
averaged pressure and standard deviation for a compu-
tational box with 8 unique nuclei, for both 30 and 35
extra centers. For both temperatures the pressure is not
significantly affected by the difference in the number of
extra centers. For reference, we have used 8 nuclei and
35 extra centers, and 100 molecular dynamics frames, for
all plasma calculations presented here.

It is worth commenting on whether this number of par-
ticles is sufficient for present purposes. Unfortunately we
cannot definitively answer this question quantitatively, as
the memory requirement of our code currently limits cal-
culations to these small systems. Based on other studies
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FIG. 2. The effect of the correlation radius on the pressure, for aluminum plasmas at conditions close to points on the principal
Hugoniot. Each panel corresponds to a different temperature and density. Each line corresponds to a different molecular
dynamics snapshot. The percent change in the pressure is relative to the value at the largest correlation radius shown. Note
that the correlation radius is in units of ion-sphere radii for each case.

Temperature (eV) Density (g/cm3) Pressure (Mbar) abs(diff) %diff

8+30 centers 8+35 centers

10 3.52 10.205 ± 0.604 10.228 ± 0.627 0.0232 0.23%

100 3.52 140.038 ± 0.953 139.916 ± 1.084 0.1222 0.09%

TABLE I. The effect of the number of extra centers on the pressure of carbon for a simulation with 8 nuclei. No significant
difference is observed at these conditions between 30 and 35 extra centers. We used 35 extra centers for all MD calculations
presented, having checked convergence at other conditions.

[42], and our own experience, we expect that larger sys-
tem sizes will be necessary for more strongly correlated
ionic fluids, i.e., lower temperatures and higher densities.
For the principal Hugoniot, therefore, the points most
effected will be those at low-temperature, near the ini-
tial conditions. To mitigate this issue, we therefore only
calculate Hugoniot points above 1 eV (≈ 11600 K).

The Hugoniot curve is the solution to the Rankine-
Hugoniot equation

1

2
(v0 − v)(P + P0)− (e− e0) = 0 (8)

where v is the specific volume, e the specific internal en-
ergy, and P the pressure. The subscript 0 refers the those
quantities of the initial, unshocked, state of the material.
Given an equation of state P = P (v, T ), e = e(v, T ),
equation 8 has a sequence of solutions (the Hugoniot),
that can be expressed as T (v). For an initial state, the
resulting locus of final states in a single shock experiment

is the principal Hugoniot.

In figure 3 the principal Hugoniot for aluminum is
shown. Let us first consider the full model calculation,
labelled MST MD, which includes disordered, molecular
dynamics determined, nuclear positions. The curve la-
beled MST fcc uses the same MST method but assumes
an fcc crystal structure at all temperatures and densities.
The initial state was calculated assuming a fcc structure
for the structure constants, and it is the same for both
calculations. The differences between the calculations
MST MD and MST fcc are then solely due to the treat-
ment of the ionic disorder.

We see that overall, these calculations are in reasonable
agreement, especially at high pressures, above 100 Mbar,
corresponding to temperatures greater than 40 eV. This
high pressure region is where the ionization of the n = 2
(lower pressure lobe) and n = 1 (higher pressure lobe)
shells occur. The reason that ionic structure does not
strongly influence these features is due to the increased
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FIG. 3. Aluminum Hugoniot with experimental data [43–
58]. Shown are results from the present model with molecular
dynamics configurations (MST MD), the present model with
an fcc lattice (MST fcc), the Tartarus average atom model
[15], as well as results from the FPEOS of Militzer et al. [27,
59]. The “No MS” calculation is a simplified model described
in the text. Note that the initial density was taken to be 2.7
g/cm3.

thermal energy of the ionized electrons. They behave
more free-electron like and are therefore less sensitive to
the ionic structure.

At lower pressures (12 - 100 Mbar) the calculation with
ionic disorder (MST MD) predicts that the plasma is
stiffer (less compressible) than the fcc calculation (MST
fcc). In this pressure region, we find that both pressure
and energy increase relative to the fcc calculation. At
a given temperature, an increase in energy leads to a
more compressible Hugoniot, while an increase in pres-
sure leads to a stiffer, less compressible Hugoniot. Thus,
the overall effect on the Hugoniot depends on a delicate
interplay of these competing effects.

Also show in figure 3, is the result from the average
atom model Tartarus [64], which does not include ionic
disorder. From that point of view, it is even simpler than
the MST fcc model, but is similar in spirit. The agree-
ment between this model and the fcc calculation seems to
bear this out. Some differences between these two mod-
els appear at low compressions and pressures. Clearly,
the MST fcc calculation will give a much more realistic
prediction of the initial state [65] than the average atom
model, leading to the differences observed in the figure.
Unfortunately the experimental data, also shown in the
figure, does not discriminate between the models. Mod-
ern shock experiments at very high pressure are start-
ing to become available [3], and could potentially resolve
some of the differences between models.

Next, we consider a simplified model, labeled “No MS”
in figure 3. This model is identical to the full MST
MD calculation except that we set the multiple scatter-
ing Green’s function, equation (5), to be identically zero.
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FIG. 4. Aluminum Hugoniot focused on the region of ion-
ization of the n = 2 shell. Shown are the present multiple
scattering calculation with an fcc lattice (MST fcc), and the
present model with molecular dynamics configurations (MST
MD), as well as results from the FPEOS of Militzer et al
[27, 59]. The points labeled “Elk” and “VASP” are our own
calculations of a Hugoniot point at 50.1 eV using the Elk [60]
and VASP [61–63] codes, where an fcc lattice has been as-
sumed. The black stars show the effect of reducing the MST
internal energy in steps of 1 EH (right to left stars, starting at
1 EH). The two set of crosses correspond to the temperatures
labeled on the plot.
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FIG. 5. Diamond Hugoniot with experimental data [66–73].
Shown are results from the present MST calculation with an
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model with molecular dynamics configurations (MST MD),
as well as the FPEOS model [27], and the Tartarus average
atom model [15]. Note that the initial density was taken to
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Thus, due to its relative computational simplicity and
rapidity, it is a useful first approximation for including
ionic structure, and as such, represents an intermediate
model between average atom and the full multiple scat-
tering solution. Indeed, it agrees rather well with the full
multiple scattering Hugoniot, figure 3, showing the stiffer
feature for compressions of 2.5 to 4.5 that is seen in the
full calculation. It does not agree perfectly however, and
in particular, disagrees more for lower pressures (temper-
atures), where multiple scattering is more important.

Finally, we show comparison with the FPEOS calcula-
tion of Militzer et al., [27, 59]. The FPEOS approach uses
plane-wave based density functional theory (DFT) molec-

ular dynamics based calculations up to 174 eV (∼700
Mbar), and then switches to Path-Integral Monte Carlo
(PIMC) calculations for higher temperatures. There is
good agreement between this method and MST MD for
pressures below 70 Mbar, and above 1 Gbar. In the re-
gion in between, corresponding to the ionization of the
n = 2 shell, the FPEOS Hugoniot is significantly stiffer.
This lobe on the Hugoniot is in the region covered by the
DFT calculations in FPEOS. Both our calculation and
FPEOS use 8-atom calculations in this region, and both
use an LDA approximation for the exchange and correla-
tion. We have used the temperature-dependent LDA of
Karasiev et al [36], whereas the FPEOS use the zero tem-
perature LDA of [74]. We have recalculated the Tartarus
Hugoniot using a zero-temperature LDA [75], and found
no significant difference (supplemental material). Since
the calculations both use DFT simulations of the same
size, and the difference is not due to the exchange and
correlation functional, this leaves four possible sources for
this discrepancy: 1) Differences in the nuclear positions,
2) some ill-converged numerical parameter, 3) the muffin-
tin approximation in MST, 4) the pseudo-potential ap-
proximation in FPEOS.

Let us address these in turn. 1) The good agreement
of MST with the fcc calculation for the n = 2 feature
strongly indicates that the ion positions should not be
the source of the difference, provided reasonable MD con-
figurations are used. 2) We have checked that our cal-
culation is converged in terms of the number of energy
grid points, the correlation radius, the number of extra
centers, and other internal numerical parameters. 3) The
muffin-tin approximation should perform more poorly at
lower temperatures, where electrons have less energy on
average and are therefore more sensitive to the details of
the potential. As the differences appear at rather high
temperatures (> 40 eV), it is unlikely that the muffin-
tin approximation is to blame. 4) The pseudo-potential
approximation that appears in the plane-wave calcula-
tions does affect core states and has been the source of
numerical issues in other calculations. The effect of the
pseudo-potential approximation on the EOS of aluminum
has been quantified in reference [59], but we are unable
to determine if the observed differences are sufficient to
cause the discrepancies in the Hugoniot (figure 3).

The table in the supplementary data section of refer-
ence [59] gives the EOS from which their Hugoniot curve
was calculated. At a temperature of ∼174.2 eV and com-
pression of 4.5, [59] report energies and pressure from
both their calculation methods: PIMC and DFT-MD.
At that temperature they report that DFT-MD has a in-
ternal energy ∼5.3 EH lower than PIMC, and a pressure
∼1% lower. We have checked the effects on the Hugo-
niot curve such changes would have using our EOS. For
pressure, a reduction of 1% moves the compression at
50.1 eV from 4.86 to 4.89, and at 158.4 eV from 4.94 to
4.97, i.e. relatively small effects. Figure 4 shows the ef-
fect of shifting the internal energy on the Hugoniot. At a
temperature of 50.1 eV, a shift of just 1 EH is sufficient
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FIG. 8. Pressure along the 13.5 g/cm3 isochore. Despite hav-
ing relatively small influence of the Hugoniot curve, the effect
of ionic disorder can be significant. Note that the vertical
lines on the MST MD results show ± one standard deviation,
see figure 2.

to explain the difference between MST and FPEOS. At
a temperature of 158.4 eV, the two calculations can be
reconciled with a shift of 5 EH , which is comparable to
the reported differeence between PIMC and DFT-MD at
174.2 eV.

Further, also shown in figure 4, are our own calcula-
tions of Hugoniot points at 50.1 eV using the Elk code
version 6.8.4 [60] and VASP version 5.4.4 [61–63]. Both
calculations use a fcc crystal structure, adding on the
ideal ion pressure and kinetic energy to determine the
Hugoniot point. In both codes, we use the LDA of
Perdew and Zunger [75]. For Elk calculations, we con-
structed a species file that treats the 1s states as core
states and the 2s and higher energy states as valence
states. This species file is constructed with a 0.6 Bohr
muffin tin radius in order to ensure that nearest-neighbor
atoms in the fcc configuration at the compressions stud-
ied do not overlap (nearest neighbor distance is roughly
3.2 Bohr at the levels of compression studied). In Elk, we
use the built-in “very high quality” parameter set, with
the exception that we further increase the default plane-
wave cutoff energy to a value corresponding to 5,442 eV.
We also use a 12 × 12 × 12 Gamma-centered k point
grid (72 total irreducible k points) and 300 non-spin po-
larized unoccupied states to ensure all states with frac-
tional occupations of 10−10 and above are included in
the calculation. Calculations are converged so that the
total energy changes by less than 10−5 Hartree and the
Kohn-Sham potential changes by less than 10−6 Hartree.
For VASP calculations, we use the Projector Augmented
Wave (PAW) method [76] to treat the 1s core states,
with the 2s and higher energy states treated as valence
states. The PAW potential we use was constructed specif-
ically for LDA calculations, referred to as the Al sv GW

PAW LDA potential in VASP [77]. This potential is con-
structed using a 1.7 Bohr PAW radius, which at the com-
pression studied in the fcc configuration allows the PAW
radii of nearest neighbors to overlap by up to 7%. We also
use a 3000 eV plane-wave energy cutoff, a 12 × 12 × 12
Gamma-centered k-point mesh (72 total irreducible k-
points), and include 200 non-spin polarized bands to en-
sure inclusion of all states with fractional occupations of
10−6 and above. Calculations are converged so that the
total energy changes to less than 10−6 eV. The Hugo-
niot points from both VASP and Elk agree well with our
MST fcc calculation. In addition, we find that for fcc
aluminum, the energies calculated using VASP, Elk, and
MST along the 13.136 g/cm3 isochore, from 1 eV up to
50.1 eV, are in excellent agreement (see Supplemental
Material). Both the agreement in the Hugoniot points
and the isochore provide strong verification of our code
and method.

We have also performed MST calculations for carbon,
assuming a diamond initial structure. The EOS of carbon
is of interest due to its relevance to white dwarf model-
ing [3]. Figure 5 shows the principal Hugoniot for dia-
mond. The crystal structure of diamond in the initial
state presents a difficulty because, unlike an fcc struc-
ture, it is not close-packed. The expansion of the Green’s
function that only includes the nuclear centers is there-
fore inaccurate, in contrast to fcc structures. As a metric
to appreciate this, the percentage of the volume in the
muffin-tin spheres for fcc is 74% (using only nuclear po-
sitions as expansion centers). For diamond the number
is 34%. Hence, we add 8 extra expansion centers, filling
68% of the volume. This improves agreement of the MST
result with our density of states (DOS) calculations for
diamond using Elk and VASP (figure 6). The remaining
small differences are due to different broadening (0.5 eV
for Elk and VASP versus 0.27 eV for MST), and due to
the muffin-tin approximation.

The MST MD diamond Hugoniot agrees very well with
the FPEOS calculation [78, 79]. As for aluminum, the
ionization feature due to the 1s shell is in good agree-
ment between the approaches. The effect due to ionic
disorder appears to be smaller than for aluminum, with
a slight stiffening of the Hugoniot near a compression
of 4. Differences between the full MST MD result and
that assuming a diamond structure are largely confined
to lower compressions. Note that the PAMD method for
producing the nuclear positions is reliable for carbon only
at elevated temperatures, roughly above 5 eV [80], due
to a neglect of chemical bonds in that method. The first
four points on our MST MD curve correspond to tem-
peratures from 1.2 to 3.9 eV, while the fifth point is for a
temperature of 6.3 eV. Hence, the nuclear positions are
probably somewhat unrealistic for the first four points,
where there is a small disagreement with the FPEOS re-
sults.

To explore further why ionic structure seems to have
more influence on the aluminum Hugoniot compared to
that for carbon, in figure 7 we show the average ionization



8

Z̄ along these Hugoniots as predicted by the Tartarus
average atom model. As has been discussed many times,
this quantity is not uniquely definable [15, 81, 82]. Here,
we choose to define ionized electrons as those having
enough energy to escape the average atom potential.
This includes, for example, electrons in resonance states,
but not in bound states. This definition therefore is sen-
sitive to changes in the states close to this threshold,
which are also likely to be sensitive to the ionic environ-
ment. Figure 7 shows that for carbon, the 1s2 state does
not start to ionize until the compression reaches ∼ 3.6.
This ionization corresponds to the slight stiffening of the
Hugoniot near a compression of 4 mentioned above (fig-
ure 5). For aluminum Z̄ ∼ 3 up to a compression of ∼ 3,
then ionization of the n = 2 shell begins. Again, this
corresponds to the stiffening of the MST MD Hugoniot
in figure 3. We therefore conclude that the Hugoniot is
sensitive to ionic structure where shell ionization is be-
ginning, for the two cases we have studied, and this effect
is expected for other materials. In other words, the disor-
dered ionic structure affects the ionization balance, and
therefore the EOS, most strongly when states are close
to the threshold. The size of the effect is larger for alu-
minum, presumably because the n = 2 shell contains 8
electrons before it is ionized (out of a total of 13 per
atom), whereas for carbon, the n = 1 shell contains only
2 out of 6. The observed effects on the Hugoniots due
to a disordered ionic environment are confined to this
weakly ionized-shell region, and do not extend to higher
pressures. This is due to the increased level of ionization
being less sensitive to the ionic environment as these elec-
trons are promoted into higher lying energy states.

Lastly, we note that despite the relatively small influ-
ence of the ionic structure on the Hugoniot curve, the
effect on an EOS point at a given temperature and den-
sity can be more impressive. This is shown in figure 8,
where we compare the MST fcc and MD curves along the
13.5 g/cm3 isochore for aluminum. The effect on pres-
sure is large, with up to a ∼30% increase over the fcc

result observed.

IV. CONCLUSIONS

We have presented calculations of principal Hugoniots
for diamond and aluminum using Multiple Scattering
Theory (MST). Results including ionic disorder, through
the use of molecular dynamics, as well as for fixed crys-
tal structures, were given. It was found that ionic dis-
order has generally a small effect of the Hugoniot for
the conditions considered, and most strongly affects the
Hugoniot curve where bound states are beginning to be
ionized. For higher pressures (temperatures) still, the ef-
fect of ionic disorder is overwhelmed by the higher level
of ionization and increased thermal energy of both the
electrons and ions, which washes out the more subtle in-
fluence of the ionic disorder on the states near the ioniza-
tion threshold. This result should give guidance to exper-
imentalists seeking to understand comparisons of models
with data. We also hope it will be useful to model devel-
opers in assessing the impact of ionic structure on shock
Hugoniots.

Comparison was also made the the FPEOS model [27],
and generally good agreement was found. The one in-
stance of significant disagreement, was the n = 2 shell
ionization feature for aluminum. We have argued that
this could be caused by the precision of the FPEOS re-
ported results for that case.
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Benjamin Bachmann, Lorin X. Benedict, Gilbert W.
Collins, Jonathan L. DuBois, Fred Elsner, Gilles
Fontaine, Jim A. Gaffney, et al. A measurement of the
equation of state of carbon envelopes of white dwarfs.
Nature, 584(7819):51–54, 2020.

[4] Patrick Dufour, James Liebert, G. Fontaine, and N. Be-
hara. White dwarf stars with carbon atmospheres. Na-
ture, 450(7169):522–524, 2007.

[5] W. J. Nellis, A. C. Mitchell, M Van Thiel, G. J. Devine,
R. J. Trainor, and N. Brown. Equation-of-state data for
molecular hydrogen and deuterium at shock pressures in
the range 2–76 gpa (20–760 kbar) a. The Journal of
chemical physics, 79(3):1480–1486, 1983.

[6] Ho-kwang Mao and Russell J. Hemley. Ultrahigh-
pressure transitions in solid hydrogen. Rev. Mod. Phys.,
66:671–692, Apr 1994.

[7] R. Cauble, T. S. Perry, D. R. Bach, K. S. Budil, B. A.
Hammel, G. W. Collins, D. M. Gold, J. Dunn, P. Cel-
liers, L. B. Da Silva, M. E. Foord, R. J. Wallace, R. E.
Stewart, and N. C. Woolsey. Absolute equation-of-state
data in the 10–40 mbar (1–4 tpa) regime. Phys. Rev.
Lett., 80:1248–1251, Feb 1998.
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