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We carry out extensive direct path integral Monte Carlo (PIMC) simulations of the uniform
electron gas (UEG) at finite temperature for different values of the spin-polarization ξ. This allows
us to unambiguously quantify the impact of spin-effects on the momentum distribution function
n(k) and related properties. We find that interesting physical effects like the interaction-induced
increase in the occupation of the zero-momentum state n(0) substantially depend on ξ. Our results
further advance the current understanding of the UEG as a fundamental model system, and are of
practical relevance for the description of transport properties of warm dense matter in an external
magnetic field.

All PIMC results are freely available online and can be used as a benchmark for the development
of new methods and applications.

I. INTRODUCTION

The uniform electron gas (UEG) [1, 2] is one of the
most fundamental model systems in theoretical physics
and related disciplines. In particular, the UEG has been
pivotal for the development for groundbreaking concepts
such as Fermi liquid theory [2], the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity [3], and the
quasi-particle picture of collective excitations [4]. Despite
its apparent simplicity, it exhibits a wealth of interesting
physical effects such as Wigner crystallization [5, 6], a
potentially incipient excitonic mode at low density [7–
9], and the possibility of a charge-density or spin-density
wave [2, 10, 11]. Consequently, the accurate description
of the UEG based on ground-state quantum Monte Carlo
(QMC) simulations [12, 13] has been important for many
applications such as the emergence of density functional
theory [14].

Over the last decades, there has emerged a growing
interest in so-called warm dense matter (WDM), an ex-
otic state characterized by extreme temperatures and
densities [15, 16]. In nature, these conditions occur in
astrophysical objects such as giant-planet interiors [16–
19], brown dwarfs [20, 21], and neutron star crusts [22].
Furthermore, WDM plays an important role in cutting-
edge technological applications such as inertial confine-
ment fusion [23], hot-electron chemistry [24], and the dis-
covery of novel materials [25–27]. From a theory point
of view, WDM is defined by two characteristic param-
eters that are simultaneously of the order of unity: 1)
the density parameter (also known as the Wigner-Seitz
radius or quantum coupling parameter [28]) rs = r/aB,
with r and aB being the average inter-particle distance
and first Bohr radius, and 2) the reduced temperature
θ = kBT/EF, with EF being the usual Fermi energy,

∗ t.dornheim@hzdr.de

c.f. Eq. (12).
Phenomenologically, these conditions manifest as the

highly nontrivial interplay of quantum effects, Coulomb
coupling, and thermal excitations, which renders WDM
theory a most formidable challenge [29, 30]. Coming back
to the UEG, it has become clear that previous ground-
state descriptions of the UEG are often not sufficient for
applications in the WDM regime [31–33]. Consequently,
a gamut of theoretical methods has been introduced to
describe electrons at these conditions. A particularly suc-
cessful approach are dielectric theories [34, 35], which
have been adapted to finite temperature mainly in the
works by Ichimaru and co-workers [36, 37] in the 1980s
and are continually being developed [10, 38–42] and used
for various practical applications [43, 44]. Other promi-
nent examples include diagrammatic techniques [45–
47], quantum-to-classical mapping schemes [48–51], and
nonequilibrium Green functions [52, 53]. While all of the
aforementioned methods have substantially improved our
understanding of electrons in the WDM regime, they are
afflicted with systematic errors such that the accuracy of
these data has remained unclear.

This unsatisfactory situation has sparked a surge of
developments in the field of fermionic QMC simulations
at finite temperatures [54–65] (see Ref. [66] for a review),
which has culminated in the first accurate parametriza-
tions of the exchange–correlation free energy of the UEG
at WDM conditions [67–70]. In particular, this allows for
thermal density functional theory simulations on the level
of the local density approximation [31, 32], and consti-
tutes the basis for the development of more sophisticated
functionals that explicitly take into account the tempera-
ture [71, 72]. Further progress on the UEG at WDM con-
ditions includes the characterization of linear-response
properties such as the static local field correction [73–
76], numerical and theoretical results for the nonlinear
electronic density response [77, 78], and even the study
of dynamic quantities based on the analytic continuation
of imaginary-time correlation functions [9, 73, 79–81].
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Another fundamental property of the UEG is the mo-
mentum distribution function n(k), which can be directly
accessed in experiments with positron annihilation spec-
troscopy in metals [82, 83], and which is highly important
for the development of accurate models for the compu-
tation of different transport properties of WDM [84]. At
finite temperatures, the first QMC results have been pre-
sented by Militzer et al. [85, 86] based on approximate
restricted path integral Monte Carlo (PIMC) simulations.
More recently, the momentum distribution of the unpo-
larized UEG has been revisited by Hunger et al. [87],
who have carried out exact configuration PIMC simu-
lations at high densities (rs . 1), and by Dornheim et
al. [88] on the basis of exact direct PIMC simulations
going from metallic densities rs ∼ 2 to the strongly cou-
pled electron liquid regime (rs ∼ 10− 100). More specif-
ically, these studies have addressed interesting phenom-
ena such as the interaction-induced increase in the occu-
pation of the zero-momentum state [47, 85], the related
negative exchange–correlation part to the kinetic energy
Kxc, and the algebraic tail in the limit of large momenta
k, cf. Eq. (14) below.

At the same time, a thorough investigation of the de-
pendence of the momentum distribution function on the
spin polarization ξ = (N↑ − N↓)/N (with N↑, N↓, and
N being the number of spin-up electrons, spin-down elec-
trons, and all electrons, respectively) has yet been miss-
ing. In the present work, we aim to fill this gap by pre-
senting extensive new direct PIMC results for n(k) for
different values of ξ. Firstly, we mention that such an
investigation is interesting in its own right, and helps to
significantly advance our current understanding of the
UEG as a fundamental model system [69, 70]. Secondly,
the impact of the spin-polarization is of central impor-
tance for the properties of WDM in an external mag-
netic field. In the case of strong electronic degeneracy
(θ � 1) in a non-quantizing magnetic field, the effect
of the spin polarization on transport properties is negli-
gible as it scales as ξ ∼ O(θ) [89]. Similarly, quantum
effects are not relevant due to strong thermal excitations
in the regime of very high temperatures, θ � 1. In stark
contrast, the effects of the spin polarization play an im-
portant role precisely in the WDM regime (θ ∼ 1) in an
external magnetic field, as both aforementioned condi-
tions do not apply here. More specifically, the condition
for a non-quantizing magnetic field follows from the re-
quirement that the electron cyclotron energy ~ωc is much
smaller than the characteristic quantum kinetic energy√
E2
F + T 2 [90]. From this condition, one can find that

the range of non-quantizing magnetic fields is given by
B/B0 � 18.4

r2s

√
θ2 + 1 (where B0 ' 2.25 × 105T). For

example, at θ ∼ 1 and rs ∼ 1, non-quantizing strong
magnetic fields B ∼ 10 T−104 T can be generated in ex-
periments related to inertial confinement fusion [91, 92].
Yet, the physical properties of WDM in such strong mag-
netic fields remain largely unknown. We are, thus, con-
vinced that our new results for the impact of the spin-
polarization on the momentum distribution are of direct

importance for the future exploration of WDM at these
extreme conditions.

Furthermore, we mention that, in addition to its rele-
vance for the field of WDM, the UEG at finite T can be
approximately realized in semi-conductors [2, 93], which
can be tuned experimentally to a high degree. Finally,
we note that the employed direct PIMC method consti-
tutes the method of choice for the present study, as it is
capable to give exact results that can be used as a bench-
mark for other approaches like restricted PIMC. At the
same time, we stress that other methods are superior for
other parameters, such as high densities (rs . 0.1), when
relativistic effects become dominant.

The paper is organized as follows: In Sec. II, we intro-
duce the required theoretical background including the
PIMC method (II A), the corresponding estimation of
the momentum distribution function (II B), and the spin-
resolved reduced system parameters (II C). Sec. III is de-
voted to the presentation of our new simulation results,
starting with PIMC data for the fully spin-polarized case
(III A). Subsequently, we extend these consideration to
arbitrary values of the spin-polarization in Sec. III B. The
paper is concluded by a brief summary and discussion in
Sec. IV.

II. THEORY

We assume Hartree atomic units throughout this work.

A. The path integral Monte Carlo method

Throughout this work, we simulate N = N↑+N↓ spin-
restricted electrons in a cubic simulation box of constant
volume V = L3, and at a fixed temperature T = 1/β.
Further, we restrict ourselves to the case of thermody-
namic equilibrium, and the expectation value of a phys-
ical observable Ô is given by

〈Ô〉 =
1

Z
Tr
(
ρ̂Ô
)
. (1)

Here ρ̂ = exp(−βĤ) denotes the (unnormalized) canon-
ical density operator, and the normalization is given by
the corresponding canonical partition function Z. The
basic idea of the path integral Monte Carlo method [94–
96] is the stochastic evaluation of the matrix elements
of ρ̂. More specifically, this requires the evaluation
of extremely high-dimensional integrals, which is ac-
complished efficiently using variations of the Metropolis
Monte Carlo method [97]. While being computationally
involved, the PIMC method is, in principle, capable to
provide a quasi-exact solution of the quantum N -body
problem of interest. The term quasi-exact implies that
PIMC estimations of Eq. (1) can be made arbitrarily ac-
curate in a controlled way when the convergence parame-
ters (typically the number of imaginary-time slices P and
the number of Monte Carlo samples NMC) are increased.
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A more detailed introduction to the PIMC method is be-
yond the scope of the current work, and the interested
reader is referred to Refs. [69, 94, 98].

An additional problem arises due to the fermionic na-
ture of electrons, which manifests as an anti-symmetry
under the exchange of particle coordinates in Eq. (1).
This is the origin of the notorious fermion sign prob-
lem [99–101], which leads to an exponential increase in
computation time with increasing the system size N or
decreasing the temperature T ; see Refs. [101, 102] for an
accessible topical discussion. A popular approach to cir-
cumvent this issue is the application of the fixed-node ap-
proximation [103] (commonly known as restricted PIMC
or RPIMC), which formally removes the sign problem
for simulations in the canonical ensemble. Indeed, the
RPIMC method constitutes at present the only QMC
approach that is capable to simulate real materials in
the WDM regime, e.g., Refs. [104–106]. Unfortunately,
this great advantage comes at the cost of an uncontrolled
approximation, as the exact nodes of correlated quantum
many-body systems are a-priori unknown. More specif-
ically, Schoof et al. [56] have shown that RPIMC leads
to errors of up to 10% in the description of exchange–
correlation properties of electrons in the WDM regime.

For this reason, we do not impose any nodal restric-
tion in the present work. Consequently, our direct PIMC
simulations are computationally extremely demanding,
and we spend up to O

(
105
)

CPUh for a single density–
temperature combination in the most challenging regime.
Still, the sign problem constitutes the main limitation of
our approach, and prevents us from accessing the low-
temperature regime (θ < 1) except for very strong cou-
pling.

B. PIMC estimation of the momentum distribution

The momentum distribution of Nσ (with σ ∈ [↑, ↓]
denoting the spin) electrons is defined as [86]

nσ(k) =
(2π)d

V

〈
Nσ∑
l=1

δ
(
k̂l − k

)〉
, (2)

with the corresponding normalization∑
k

nσ(k) = Nσ . (3)

In addition, we mention that Eq. (2) is related to the
off-diagonal density matrix in coordinate space nσ(s) :=
nσ(r, r′), with s = |r− r′|, by

nσ(k) =

∫
ds nσ(s)e−is·k . (4)

For an ideal (i.e., noninteracting) Fermi system, Eq. (2)
is given by the well-known Fermi distribution

n0(k) =
1

1 + exp (β(Ek − µ))
, (5)

FIG. 1. Schematic illustration of the off-diagonal configura-
tion space Zr,r′;σ including a single open trajectory with dif-
ferent start- and end-points r and r′. Adapted from Ref. [88]
with the permission of the authors.

with µ being the usual chemical potential [2], and the
ideal dispersion relation

Ek =
k2

2
. (6)

Interestingly, the evaluation of Eq. (2) is not straight-
forward in the PIMC method, as it constitutes an off-
diagonal observable in the underlying coordinate repre-
sentation. More specifically, each particle is represented
as a closed path over different coordinates in the imag-
inary time within the PIMC method. In contrast, the
estimation of n(k) requires the presence of a single open
path within the PIMC simulation, thereby resulting in a
modified configuration space. This is illustrated in Fig. 1
for a schematic configuration ofN = 3 electrons on P = 6
imaginary-time slices (with ε = β/P being a discretized
time step), depicted in the τ -x-plane. While the two
right-most paths exhibit the same coordinates for τ = 0
and τ = β, the electronic path on the left is open and
has different coordinates r and r′ at its start and end.

The expression for Eq. (2) in the path-integral picture
is then given by [86, 94]

nσ(k) =
1

V

Zr,r′;σ

Z

〈
eik(r−r

′)
〉
r,r′;σ

, (7)

where the sub-script of the angular brackets indicates this
modified configuration space, and Zr,r′;σ its correspond-
ing normalization. In practice, we use the extended-
ensemble approach presented in Ref. [88] which is based
on the worm algorithm by Boninsegni et al. [98, 107].
One particular strength of this scheme compared to ear-
lier works [86, 94] is the possibility to directly compute
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the normalization of Eq. (7) without the need for a subse-
quent fitting of the off-diagonal density matrix n(r, r′) or
an artificial imposition of the condition in Eq. (3). The
practical implications of this advantage are discussed in
Sec. III A below.

C. Reduced system parameters for arbitrary
spin-polarizations

To understand the effect of an arbitrary spin-
polarization ξ ∈ [0, 1] on physical observables, it is help-
ful to consider modified, explicitly spin-resolved reduced
parameters. To this end, we introduce the spin-resolved
density parameter rσs via the relation

4

3
π (rσs )

3
=

V

Nσ
, (8)

which immediately gives

rσs = rs

(
N

Nσ

)1/3

. (9)

Furthermore, Eq. (9) can be expressed in terms of the
spin-polarization ξ as

r↑s = rs

(
1 + ξ

2

)−1/3
and (10)

r↓s = rs

(
1− ξ

2

)−1/3
.

The dependence of Eq. (10) on ξ is shown in the top
panel of Fig. 2, using a total density parameter rs = 2
as a reference (dashed black line). For ξ = 0, the sys-
tem is fully unpolarized, i.e., N↑ = N↓ = N/2, which
immediately gives r↑s = r↓s = 21/3rs. Upon increasing
ξ, the fraction of spin-up electrons increases, and, conse-
quently, r↑s converges towards the full density parameter
rs in the limit of ξ = 1. In contrast, the number density
of spin-down electrons decreases with ξ and eventually
attains zero. Thus, r↓s actually diverges towards the fully
spin-polarized case.

A second parameter that is relevant to the present
study is given by the spin-resolved reduced temperature,
which we simply express as a function of rσs ,

θσ(β) =
1

βEσF(rσs )
, (11)

with EσF(rσs ) being the Fermi energy for a fully spin-
polarized system with the density parameter rσs ,

EσF(rσs ) =
(kσF)2

2
, (12)

with the corresponding spin dependent Fermi wave num-
ber

kσF =
(
6π2nσ

)1/3
. (13)

FIG. 2. Polarization dependence of the spin-resolved density
parameter rσs (top panel) and reduced temperature θσ (bot-
tom panel) for rs = 2 and θ = 2 (using the Fermi energy of
the unpolarized system as a reference).

The results for Eq. (11) are shown in the bottom panel
of Fig. 2, using θ = 2 as a reference for the unpolarized
case. With increasing ξ, the number density of the spin-
up electrons is increased, which results in a larger Fermi
energy. Therefore, the reduced temperature is decreased
when β (or, equivalently, T ) are being kept constant.
Conversely, both the number density of the spin-down
electrons and the corresponding Fermi energy vanish to-
wards ξ = 1, which means that θ↓ diverges.
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FIG. 3. Momentum distribution of the spin-polarized (ξ = 1) electron gas for θ↑ = 1. The dashed black curve shows results
for the ideal Fermi gas [Eq. (5)], and the data points correspond to our PIMC data for different rs. The left and right panel
shows n(k) on a linear and logarithmic scale, respectively.

III. RESULTS

A. The spin-polarized electron gas

1. Density dependence

Let us start our investigation of spin-effects on the mo-
mentum distribution with an analysis of the fully spin-
polarized case, ξ = 1. To this end, we show the density
dependence of n(k) for θ↑ = 1 in Fig. 3. More specifically,
the dashed black curve shows results for the ideal Fermi
gas [cf. Eq. (5)], which are independent of the density
when the reduced temperature is being kept constant.
In addition, the different symbols show our new PIMC
results that have been obtained for N↑ = 33 electrons for
different values of rs. For completeness, we mention that
the left and right panels correspond to a linear and loga-
rithmic scale, which allows to focus on different features
of n(k) at different k. Furthermore, an extensive analy-
sis of finite-size effects for different densities is shown in
Sec. III B 1 below.

First and foremost, we find that all depicted data sets
are qualitatively quite similar to the ideal Fermi distribu-
tion, which is substantially broadened at these conditions
due to the comparably large thermal energy. For com-
pleteness, we mention that the PIMC data for n(k) have
been obtained within the canonical ensemble, whereas
Eq. (5) is derived for the grand-canonical ensemble [2].
Still, this does not pose an inconsistency, as it is well-
known that the different thermodynamic ensembles con-
verge towards each other in the thermodynamic limit,
and finite-size effects in the PIMC data are shown to be
small in Sec. III B 1 below.

Interestingly, the momentum distribution at zero-
momentum, n(0), is increased compared to n0(0) for

rs = 2 (red circles), rs = 4 (green crosses), and rs = 6
(blue diamonds), and this trend even increases with rs
for these three cases. This fairly counter-intuitive phe-
nomenon was first reported by Militzer and Pollock [85],
and can be explained in terms of a negative mean-field
contribution to the single-particle dispersion. A more
systematic investigation of this trend and its relation to
the kinetic energy is shown in Fig. 4 below. For rs = 40
(yellow triangles), the system becomes strongly corre-
lated and we find n(0) < n0(0), although both are com-
parable in magnitude.

The logarithmic depiction of n(k) shown in the right
panel of Fig. 3 allows to study the behaviour of the mo-
mentum distribution at large momenta, where it rapidly
decays. Consequently, this regime is hard to resolve
with the PIMC method, and the relative noise level in-
creases and eventually surpasses 100%. For the unpolar-
ized UEG, it can be shown analytically that n(k) decays
algebraically in the limit of large k, and the exact relation
is given by [108, 109]

lim
k→∞

n(k) =
4

9

(
4

9π

)2/3 (rs
π

)2 k8F
k8
g↑↓(0) , (14)

with g↑↓(0) being the pair correlation function between
electrons of opposite spin, which has been parametrized
in Ref. [75] for different values of rs and θ. This re-
lation has recently been verified on the basis of highly
accurate numerical data by Hunger et al. [87]. For the
spin-polarized case, on the other hand, Eq. (14) cannot
hold as there is only a single spin-component, and the
on-top pair correlation function is always zero. Instead,
Rajagopal et al. [110] have found the relation

lim
k→∞

n(k) =
4

3

8

9π2
(αrs)

2 g
↑↑′′(0)

2

(
kF
k

)10

(15)
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FIG. 4. Top: rs dependence of n(0) for the spin-polarized
UEG with θ↑ = 1. Bottom: rs dependence of the exchange–
correlation part to the kinetic energy (per particle) Kxc

[Eq. (16)], with the red circles being our new PIMC results
and the dotted green line having been computed from Eq. (17)
using the parametrization by Groth et al. [68].

with α = ( 4
9π )1/3, which depends on the second derivative

of the pair correlation function between electrons of equal
spin, again at zero distance. While being asymptotically
exact, Eqs. (14) and (15) do not give any information
about the particular values of k for which these limits
are attained in practice. The empirical findings for the
unpolarized case in Ref. [87] indicate that this happens
for k & 5kF at these conditions. Therefore, resolving
the asymptotic tail would require to accurately estimate
the momentum distribution over at least eight orders of
magnitude in n(k) itself, which is beyond the capability
of PIMC methods operating in coordinate space. The
same issue has been reported by Dornheim et al. [88] for
the unpolarized case, too.

Let us next get back to the topic of the counter-
intuitive, interaction-induced increase of n(0), which we
analyze in detail in the top panel of Fig. 4. More specif-
ically, the horizontal dashed black line corresponds to
the ideal Fermi gas, which does not depend on rs. In
addition, the red circles show our new PIMC data for
different densities. Firstly, we note the increasing error
bars towards small rs, which are a direct consequence of
the fermion sign problem. More specifically, a decrease

in the coupling strength leads to an increase in the fre-
quency of permutation cycles within the PIMC simula-
tion, and cycles of adjacent length contribute with a dif-
ferent sign. The resulting cancellation of positive and
negative terms then leads to a decreasing signal-to-noise
ratio; see Refs. [101, 111] for more detailed information.

In the limit of rs → 0, the UEG becomes ideal [69]
and the PIMC data approach the horizontal line. With
increasing coupling strength, the occupation at k = 0 sys-
tematically increases, and attains a maximum at rs ≈ 10
at these conditions. Increasing the density parameter
even further leads to the opposite trend and, eventually,
n(0) will even become smaller than n0(0) as the elec-
trons are pushed to larger k by the strong repulsion. The
particular comparison between n(k) and n0(k) strongly
depends on the value of ξ, which is explained in detail
below.

Let us next consider the connection between the
correlation-induced increase in the momentum distribu-
tion at zero momentum to the exchange–correlation part
of the kinetic energy,

Kxc = K − E0 , (16)

where K and E0 are the total kinetic energy of the in-
teracting and noninteracting system, respectively. For
completeness, we mention that Kxc is directly related
to the asymptotic behaviour of the electronic local field
correction at large wave numbers [74, 112, 113]. The rs
dependence of Eq. (16) is shown in the bottom panel
of Fig. 4 for the same conditions as n(0). More specifi-
cally, the red circles have been obtained by taking our
direct PIMC results for K for N = 33 electrons and
subsequently subtracting E0 (taken from Ref. [60]) for
the same system size. The large error bars for small rs
are again a direct consequence of the fermion sign prob-
lem, which is exacerbated by the definition of Kxc as
the difference between two quantities that are more or
less comparable in magnitude. Furthermore, the dotted
green curve has been computed from the parametrization
of the exchange–correlation free energy fxc by Groth et
al. [68] by evaluating the relation [69]

Kxc = −fxc(rs, θ)− θ
∂fxc(rs, θ)

∂θ

∣∣∣∣∣
rs

(17)

−rs
∂fxc(rs, θ)

∂rs

∣∣∣∣∣
θ

.

First and foremost, we note the good qualitative agree-
ment between Eq. (17) and the PIMC data, although
there appear small but significant differences towards
large rs. The most likely explanation for the latter are
finite-size effects in the red circles in either (or both) K
or E0, whereas the green curve has been constructed in
the thermodynamic limit, i.e., in the limit of an infinite
number of particles taken at a constant number density.
A second, somewhat less likely explanation is the finite
accuracy of the utilized parametrization of fxc, which
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FIG. 5. Momentum distribution function of the spin-polarized (ξ = 1) UEG for N = 33 electrons. Top row: rs = 4 and
θξ=1 = 1; center row: rs = 40 and θξ=1 = 1; bottom row: rs = 40 and θξ=1 = 0.5. Left column: n(k), with the red circles, green
crosses, and yellow crosses corresponding to our new direct PIMC results, restricted PIMC results from Ref. [86], and modified
RPIMC results (see text), respectively. Right column: Relative difference between n(k) and n0(k) in per cent, cf. Eq. (18).

might be exacerbated by the evaluation of the derivatives
in Eq. (17).

From a physical perspective, we do indeed find a low-
ering in the kinetic energy due to electronic exchange–
correlation effects for rs . 10, whereas the total kinetic

energy is increased for stronger coupling. Therefore, the
negative values of Kxc are certainly related, but not equal
to the increase in n(0) discussed above, which is con-
sistent to recent findings for the unpolarized electron
gas [88].
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2. Comparison to restricted PIMC

Let us conclude this study of the purely spin-polarized
UEG with a comparison between our new direct PIMC
results for n(k) and the restricted PIMC data by Militzer
et al. [86]. This is shown in Fig. 5 where the top row cor-
responds to rs = 4 and θ↑ = 1, i.e., a metallic density
that is of relevance to contemporary WDM research [29].
The left panel shows results for n(k) itself, and the ideal
Fermi function (dashed black line) has been included as
a reference. Further, the red circles and green crosses de-
pict the PIMC and RPIMC data, respectively, which are
in qualitative though not quantitative agreement. More
specifically, the RPIMC data are systematically higher
than the PIMC data, which is consistent to the recent
findings by Dornheim et al. [88] for the unpolarized UEG.
In the latter study, this discrepancy was explained by the
normalization of n(k), which is computed exactly within
our extended ensemble formalism, but has to be inferred
from the off-diagonal density matrix n(r, r′) in the case
of RPIMC. Therefore, multiplying the RPIMC data by
a constant factor of Q = 0.977 led to perfect agreement
between direct PIMC and restricted PIMC for ξ = 0.

Following the same procedure (with the same factor)
in the present case leads to the yellow crosses, which, in-
deed, are in excellent agreement to the PIMC data over
the entire range of wave numbers. This can be seen par-
ticularly well in the right panel, where we show the rela-
tive deviation between the momentum distribution of the
UEG and the ideal Fermi gas (in per cent) with respect
to n0(0),

∆n

n(0)
[%] =

n(k)− n0(k)

n0(0)
× 100 . (18)

In addition, this depiction also allows one to gain a
more vivid insight into the behaviour of Kxc shown in
Fig. 4 above: for small momenta (k . kF), the mo-
mentum distribution function of the interacting electron
gas plainly exceed the ideal Fermi distribution n0(k),
whereas the relative occupation is decreased in the range
of kf . k . 2kF. Since the total kinetic energy is simply
given by the integral

K =
1

2

∫
dk n(k) k2 , (19)

the observed deviation profile directly indicates the rela-
tion K[n(k)] < K[n0(k)] at these conditions, thus result-
ing in the negative values of Kxc shown above.

We next consider the central row of Fig. 5, where we
show the same analysis for rs = 40 and θ↑ = 1. Phys-
ically, these conditions are located within the strongly
coupled electron liquid regime [9, 11], where the strong
Coulomb repulsion between the electrons predominates
over quantum degeneracy effects such as Pauli block-
ing or quantum diffraction. In particular, this regime
is expected to give rise to a negative dispersion rela-
tion [9, 73, 80, 81], which is of a potentially incipient

excitonic nature [7, 8]. At these conditions, the momen-
tum distribution function of the interacting UEG com-
pares markedly different to the ideal Fermi function, and
the direct PIMC method predicts a depletion in the oc-
cupation at zero momentum, which holds for k . 1.5kF.
While the raw RPIMC data (green crosses) actually pre-
dict an increase in n(0) compared to the ideal system,
this effect is most likely spurious. Specifically, multiply-
ing the RPIMC data by the same factor Q as in the
previous case leads to the yellow crosses, which, again,
results in a perfect agreement to the direct PIMC data.

Let us conclude this comparison between the direct and
restricted PIMC methods by investigating a lower tem-
perature, θ↑ = 0.5, shown in the bottom row of Fig. 5.
For completeness, we mention that such low values of the
reduced temperature cannot be accessed by the direct
PIMC method at metallic densities due to the aforemen-
tioned fermion sign problem. At these conditions, the oc-
cupation of momentum states at small k is substantially
depleted compared to n0(k) as the electrons are pushed
out to large momenta, resulting in a positive value of Kxc.
The comparison between direct and restricted PIMC re-
veals the same issue with the normalization as in the two
previous cases, and the thus modified yellow crosses agree
with the red circles over the entire depicted k-range.

In summary, the only systematic error that we can find
in the RPIMC data both at rs = 4 and rs = 40 are due
to the normalization, and not a consequence of the fixed-
node approximation that has been used to deal with the
fermion sign problem. This is certainly encouraging, as
the extended ensemble approach introduced in Ref. [88]
can easily be incorporated into RPIMC as well, which
would completely overcome this problem.

B. Intermediate polarizations and spin dependence

In the following section, we explicitly go beyond the
purely ferromagnetic case to more closely isolate the ef-
fect of the spin-polarization itself.

1. Analysis of finite-size effects

Being restricted to the description of a finite number
of particles, PIMC results are in general afflicted with
so-called finite-size effects [64, 66, 114–116]. Therefore, a
careful analysis of the dependence of the results on the
system size is usually indispensable. In the present work,
this is shown in Fig. 6 for rs = 10 and θξ=0 = 2 for ξ =
2/3. Note that we always use the reduced temperature
θξ=0 of the unpolarized system as a reference throughout
the remainder of this work. We further mention that the
selected polarization ξ = 2/3 constitutes a particularly
relevant choice for the study of finite-size effects, as there
are, by definition, always five times the number of spin-
up compared to spin-down electrons. For example, we
have N↑ = 50 but only N↓ = 10 for a total system size
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FIG. 6. Top: System-size dependence of the momentum distribution of the UEG at rs = 10, θ = 2, and ξ = 2/3. The left and
right columns correspond to the spin-up and -down electrons, respectively. Bottom: Relative deviation between PIMC data
for nσ(k) and the ideal Fermi distribution nσ0 (k) in per cent, cf. Eq. (18). Note that we use the Fermi wave number of the

unpolarized system kξ=0
F as a reference.

of N = 60 in this case. Since only electron of the same
spin-orientation exchange with each other, it is therefore
reasonable to expect a different manifestation of finite-
size effects in n↑(k) and n↓(k), which needs to be checked.

Let us start our investigation by considering results for
n↑(k) shown in the left column of Fig. 6, where the top
and bottom panels show results for the momentum dis-
tribution itself and for the relative deviation to the ideal
Fermi function [cf. Eq. (18)], respectively. More specifi-
cally, the different data points show our new direct PIMC
data that have been obtained for different values of N .
Remarkably, we find hardly any dependence of n↑(k) on
the system size even for as few as N = 18 electrons.
This can be seen particularly well in the bottom panel,
where small deviations between the different data sets
are noticeable only for small momenta. Still, even here
these differences are clearly below 1%. From a physical
perspective, we find a pronounced interaction-induced in-

crease in n↑(k) compared to n↑0(k), with a maximum of

∼ 8% at zero momentum.
Let us next consider the top right panel of Fig. 6, where

we show our direct PIMC results for n↓(k). Again, hardly
any dependence on N can be resolved on this scale even
for N = 18, where there are only N↓ = 3 spin-down elec-
trons within the simulation. The bottom panel of the
same figure does reveal some systematic deviations for
N = 18 and N = 36, but even the maximum finite-size
effect is below 1%. In addition, we find that the occu-
pation at small momenta is actually depleted compared

to n↓0(k), which is in stark contrast to the behaviour of
the spin-up electrons observed in the left column of the
same figure. A more detailed investigation of this effect
is presented below.

Lastly, we show PIMC results for the offdiagonal den-
sity matrix in coordinate space n(s) [cf. Eq. (4) above] in
Fig. 7. Specifically, the left and right panels show results
for spin-up and spin-down electrons, and the red circles,
green crosses, and yellow starts correspond to N = 18,
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FIG. 7. Offdiagonal density matrix n(s) [cf. Eq. (4)] of the UEG at rs = 10, θ = 2, and ξ = 2/3. The left and right panels
show results for spin-up and spin-down electrons, and the red circles, green crosses, and yellow stars have been obtained for
N = 18, N = 36, and N = 60, respectively.

N = 36, and N = 60, respectively. Evidently, both n↑(s)
and n↓(s) converge towards unity in the limit of s→ 0, as
it is expected [86, 88, 94]. Furthermore, the offdiagonal
density matrix is of an approximately Gaussian shape,
and no oscillations can be found at large separations s.
This negligible impact of permutation cycles involving
a large number of particles further helps to explain the
small manifestation of finite-size effects at these condi-
tions.

While the small magnitude of the finite-size effects ob-
served in Fig. 6 are certainly encouraging, it is expected
from previous studies [64, 69, 115] that they might in-
crease for higher densities. For this reason, we present
a similar analysis for the same conditions at rs = 2 in
Fig. 8. Physically, this corresponds to a metallic density
that is highly relevant to contemporary WDM research,
and can be realized experimentally for example with alu-
minum [75, 117, 118]. For completeness, we mention
that the interpretation of the experiment in Ref. [117]
remains a controversial topic. For example, even a ba-
sic plasma parameter such as the electronic temperature
is still under debate [75, 119]. While the present study
examines a similar density, it is not suitable to resolve
these controversies and a new experiment is likely needed.
In addition, we note that the smaller value of the cou-
pling parameter rs leads to a more pronounced impact of
quantum degeneracy effects, which, in turn, results in a
more severe fermion sign problem. This is conveniently
characterized by the so-called average sign S (see, e.g.,
Ref. [101] for details), which constitutes a straightfor-
ward measure for the amount of cancellations of positive
and negative terms within the simulation. In particular,
the required computation time scales as 1/S2, such that
a value of S = 0.1 would increase the CPU time by a
factor of 100 compared to a PIMC simulation without a

sign problem. For the system at hand, we find an average
sign of S ≈ 0.01 in the extended ensemble for N = 60
and rs = 2, whereas it is S ≈ 0.4 for rs = 10. Therefore,
PIMC simulations of N = 90 electrons are at present not
computationally feasible at the higher density.

Returning to the topic of finite-size effects, again no
deviations between the PIMC data sets for different N
can be seen with the naked eye in the top row of Fig. 8
for either n↑(k) or n↓(k). The relative deviation to the
ideal Fermi function shown in the bottom row allows for
a more detailed perspective, where small differences be-
tween N = 18 and N = 60 of approximately 1% can
be resolved for small momenta. In any case, it is safe
to conclude that direct PIMC simulations with N ∼ 60
electrons allow to reliably estimate the main physical fea-
tures of the momentum distribution function as finite-size
effects are small at the conditions that are considered
in this work. For completeness, we mention that this
changes at very low temperatures, where both the appli-
cation of twisted boundary conditions [120, 121] and an
additional finite-size correction are required [122].

2. Interplay of spin-polarization with density and
temperature

In the following, we will explicitly investigate the im-
pact of the spin-polarization on the momentum distri-
bution n(k) and its spin-resolved components n↑(k) and
n↓(k). To ensure a better comparability, we will always
compare results for the same temperature T for all ξ,
thus resulting in different values of θσ [cf. Eq. (11)]. As
a reference, we always give both θ and kF for the case of
a fully unpolarized system.

In Fig. 9, we show the momentum distribution function
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FIG. 8. Top: System-size dependence of the momentum distribution of the UEG at rs = 2, θ = 2, and ξ = 2/3. The left and
right columns correspond to the spin-up and -down electrons, respectively. Bottom: Relative deviation between PIMC data
for nσ(k) and the ideal Fermi distribution nσ0 (k) in per cent, cf. Eq. (18). Note that we use the Fermi wave number of the

unpolarized system kξ=0
F as a reference.

of the UEG at θ = 2 for different values of ξ for rs =
0.5 (left) and rs = 10 (right). For rs = 0.5, the PIMC
data closely follow the ideal curves for all ξ as electronic
correlation effects are comparably small. In addition,
we observe the following monotonous ordering of nσ(k):
starting at n↑(k) = n↓(k) for the unpolarized case (green
crosses), both the ideal curves and the PIMC data for the
spin-up electrons monotonically increase with ξ. This
is mainly a consequence of the increase in the number
density n↑ (or, equivalently, the decrease in the density
parameter r↑s , cf. Fig. 2). Conversely, we find the opposite
behaviour for the spin-down electrons, with n↓(k) = 0 in
the limit of ξ = 1.

A less obvious question is the behaviour of the total
momentum distribution function n(k) = n↑(k) + n↓(k),
which we show in the left panel of Fig. 10 for these con-
ditions. We note that the curves and data points for
ξ = 1/3 and ξ = 2/3 have been omitted for better visibil-
ity. Interestingly, we observe the opposite ordering com-

pared to n↑(k) shown above, i.e., the largest value around
zero momentum occurs for ξ = 0, both in the PIMC data
and the ideal Fermi distribution function. This is a di-
rect consequence of the fermionic anti-symmetry under
particle exchange and the resulting Pauli blocking, and
can be understood as follows: In the limit of ξ = 1 all
electrons in the system are mutually affected by their
common fermionic nature, which effectively pushes them
towards larger momenta. In the opposite limit of ξ = 0,
only half of the electrons mutually affect each other, and,
consequently, the fermionic push towards larger momenta
is weaker. Naturally, ξ = 1/2 is located between these
two extremes, and, thus, located somewhere in the mid-
dle.

Let us next consider the impact of an increasing den-
sity parameter rs on the spin-resolved components n↑(k)
and n↓(k). This is shown in the right panel of Fig. 9
for the case of rs = 10. Evidently, the effect of the cou-
pling strength is most pronounced for the spin-up elec-
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FIG. 9. Momentum distribution function nσ(k) for θξ=0 = 2. Top left: rs = 0.5; top right: rs = 2; bottom left: rs = 4;
bottom right: rs = 10. The colours distinguish different values of the spin-polarization ξ, and the dashed black curves show the
corresponding results for the ideal Fermi gas nσ0 (k). Finally, the crosses and diamonds correspond to spin-up and spin-down

electrons, respectively. Note that we use the Fermi wave number of the unpolarized system kξ=0
F as a reference.

FIG. 10. Total momentum distribution function n(k) at θξ=0 = 2. Left: rs = 0.5; right: rs = 10. The colours distinguish
different values of the spin-polarization ξ, and the corresponding dotted curves show results for the ideal Fermi gas nσ0 (k). Note

that we use the Fermi wave number of the unpolarized system kξ=0
F as a reference.

trons, where in particular the occupation of the zero-
momentum state is substantially increased compared to
the ideal Fermi distribution. Further, we observe that
this effect increases with ξ. The spin-down electrons, on

the other hand, can hardly be distinguished from n↓0(k)
with the naked eye on the depicted scale.

In order to get a more complete picture of the physics
at play, we analyse the total momentum distribution n(k)
for rs = 10 in the right panel of Fig. 10. As a direct
consequence of the increased coupling strength, the elec-
trons are more strongly spatially separated, and quan-
tum degeneracy effects are less pronounced. Therefore,

spin-effects play a substantially smaller role in the direct
PIMC data for the UEG than for the ideal curves. The
large correlation-induced increase in n↑(0) for large ξ is
thus caused by the substantial spin dependence of n0(0),
which is masked for the UEG by the Coulomb repulsion
at low densities. Furthermore, the data for the UEG are
closer to the unpolarized ideal curve than its polarized
analogue, as spin effects are less important for the ideal
Fermi gas at ξ = 0 as well.

Let us next investigate the effect of the temperature
on the spin dependence of the momentum distribution,
which is analyzed in Fig. 11 for the metallic density of
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FIG. 11. Top: Spin-resolved momentum distribution function nσ(k) for rs = 2. Left: θξ=0 = 1; right: θξ=0 = 4. The
colours distinguish different values of the spin-polarization ξ, and the dashed black curves show the corresponding results for
the ideal Fermi gas nσ0 (k). Finally, the crosses and diamonds correspond to spin-up and spin-down electrons, respectively.
Bottom: Corresponding total momentum distributions n(k) = n↑(k) + n↓(k). Note that we use the Fermi wave number of the

unpolarized system kξ=0
F as a reference.

rs = 4. The left column corresponds to θξ=0 = 1, and the
top panel shows results for the spin-resolved components
n↑(k) (crosses) and n↓(k) (diamonds). Evidently, the
reduction of the temperature by a factor of one half com-
pared to Fig. 9 leads to a more pronounced difference
in n↑(0), in particular for the fully ferromagnetic case.
The spin-down electrons, on the other hand, are hardly
affected by the Coulomb repulsion for ξ > 0. The bot-
tom panel shows the corresponding results for the total
momentum distribution n(k), where again the impact of
the spin-effects is less pronounced for the UEG compared
to the ideal Fermi gas.

The right column of Fig. 11 shows the same investiga-
tion for a higher temperature, θξ=0 = 4. Firstly, we note
that all curves are substantially broadened by thermal ex-
citations, as it is expected. Furthermore, the correlation-
induced increase in the zero momentum state is less pro-

nounced than at lower temperatures, and will eventu-
ally completely vanish in the limit of large T when the
system becomes increasingly ideal. Furthermore, n↓(k)
can hardly be distinguished from the corresponding ideal
curves with the naked eye. Considering the total momen-
tum distribution function n(k) depicted in the bottom
panel, we find that the deviations between the curves for
the different values of ξ are substantially smaller com-
pared to the cases of θξ=0 = 2 and θξ=0 = 1 both in the
PIMC data for the UEG, and in the ideal results. This
is expected as spin-effects, too, will completely vanish
in the limit of large temperatures, where the system be-
comes classical. In particular, n(k) will converge towards
the well-known Boltzmann distribution in this regime.
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FIG. 12. Density dependence of the occupation at zero
momentum n(0) of the UEG at θξ=0 = 2. Top panel: di-
rect PIMC data for the total momentum distribution n(0) =
n↑(0) + n↓(0) for ξ = 0 (red circles), ξ = 1/3 (black stars),
and ξ = 1 (green crosses). The horizontal lines depict the
corresponding ideal values n0(0). Bottom panel: direct PIMC
results for ξ = 1/3, black stars: n(k); red circles: n↑(k); green
crosses: n↓(k).

3. Zero-momentum occupation and exchange–correlation
kinetic energy

Let us conclude our investigation with a more detailed
study of the interaction-induced change in the occupation
at zero momentum and the related lowering of the kinetic
energy. As a first step, we show the density dependence
of the total momentum distribution n(0) at θξ=0 for three
different values of the spin-polarization ξ in the top panel
of Fig. 12. More specifically, the red circles, black stars,
and green crosses show our new direct PIMC data for
the UEG for ξ = 0, ξ = 1/3, and ξ = 1, respectively,
and the horizontal lines depict the corresponding ideal
values n0(0) that do not depend on the density. For
small rs, all three data sets exhibit a qualitatively similar

FIG. 13. Density dependence of the exchange–correlation
part of the kinetic energy Kxc at θξ=0 = 2 for different values
of the spin-polarization ξ evaluated from the parametrization
of fxc by Groth et al. [68] via Eq. (17).

behaviour and monotonically increase starting from the
ideal value at rs = 0. In addition, the data points for
ξ = 0 and ξ = 1/3 remain close to each other over the
entire depicted rs-range and almost agree with each other
at rs = 20. This is, of course, expected, as spin-effects
will eventually completely vanish at large rs due to the
increased coupling strength [11]. Furthermore, the PIMC
results for n(0) at rs = 20 is below the ideal value for both
of these spin-polarization, as the electrons are pushed
towards larger momenta by the Coulomb coupling.

In contrast, the green crosses exhibit a related,
but clearly distinct progression. In particular, the
interaction-induced increase in n(0) is substantially
larger compared to the other data sets and attains a max-
imum for rs ∼ 10. This has already been explained above
by the more pronounced spin dependence of n0(0) com-
pared to n(0) of the UEG, and is thus directly caused by
the large gap between the respective Fermi functions for
the different values of ξ.

For completeness, we also show the rs dependence of
the spin-resolved components of the momentum distribu-
tion function n↑(0) and n↓(0) at ξ = 1/3 in the bottom
panel of Fig. 12. This plot further substantiates our pre-
vious findings that the correlation-induced increase in the
occupation of the zero-momentum state is mostly caused
by the spin-up electrons. In addition, we find that the

PIMC data for n↓(0) are actually smaller than n↓0(0) for
rs & 10, whereas the opposite still holds for n↑(0). A
possible explanation for this effect is given by the compa-
rably increased spin-resolved density parameter r↓s shown
in Fig. 2 above.

Let us next consider Fig. 13, where we show the den-
sity dependence of the exchange–correlation part to the
kinetic energy Kxc (obtained by evaluating Eq. (17) using
as input the parametrization of fxc by Groth et al. [68])
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for different values of the spin-polarization ξ. First and
foremost, we note the similar progression of Kxc · rs for
all ξ, which attain a finite negative value in the limit of
rs → 0, monotonously increase with rs, and eventually
become positive. In addition, we find a strict ordering
of these curves with ξ, and the distancing between indi-
vidual curves increases with the spin-polarization. This
is again directly caused by the comparably larger spin
dependence of the ideal energy E0 for large ξ, whereas
the actual kinetic energy K of the UEG is less affected
by the spin, and thus more closely resembles E0 for the
unpolarized case. From a physical perspective, we note
that the behaviour observed in Fig. 13 might indicate a
substantial negative tail at large momenta in the static
local field correction of the ferromagnetic UEG at WDM
conditions. This prediction can be verified by indepen-
dent PIMC simulations of the spin-polarized UEG, which
constitutes an interesting project for future research.

The final investigation to be presented in this work is
the dependence of the occupation at zero momentum on
the spin-polarization with both the density and the tem-
perature being kept constant. This is shown in Fig. 14
for θξ=0 and three different values of the density param-
eter rs. In particular, the top panel shows results for
rs = 2 and the red circles, green stars, and black crosses
correspond to the spin-up component n↑(0), spin-down
component n↓(0), and the total momentum distribution
n(0). Most obviously, both the individual spin-up and
spin-down components strongly depend on ξ, which is a
direct consequence of the corresponding relative shift in
the number densities n↑ and n↓. Furthermore, the to-
tal distribution n(0) also noticeably depends on ξ both
for the ideal and the interacting case, and monotonically
decreases with ξ. The physical origin of this effect is
the increased impact of the Pauli blocking between elec-
trons of the same species, which pushes the occupation
towards large momenta. Finally, we again find that the
correlation-induced increase in n(0) is nearly exclusively
due to n↑(0), as it is by now expected.

The center panel of Fig. 14 shows the same informa-
tion for a larger value of the coupling strength, rs = 10.
Overall, the results are qualitatively quite similar to the
rs = 2 case shown in the top panel, but the difference be-
tween n(0) and n0(0) is significantly increased at ξ = 1
as the spin-effects are effectively masked in the UEG by
the Coulomb repulsion.

Lastly, the bottom panel shows results for strongly
coupled electron liquid regime, rs = 50. In this case,
the strong Coulomb coupling almost completely removes
the dependence of the PIMC data for the total momen-
tum distribution function on the spin-polarization, and
the corresponding black stars are well reproduced by a
constant fit (dotted grey line). In addition, both spin-
components exhibit a decreased occupation at zero mo-
mentum compared to the ideal Fermi function over the
entire ξ-range.

Let us conclude our investigation with an analysis of
the ξ dependence of the exchange–correlation kinetic en-

FIG. 14. Polarization dependence of the occupation at zero
momentum for rs = 2 (top), rs = 10 (center), and rs = 50
(bottom) at θξ=0 = 2. The red circles, green crosses, and
black stars correspond to the spin-up component n↑(0), spin-
down component n↓(0), and the total distribution function
n(0), respectively. The corresponding lines show the respec-
tive ideal Fermi distribution function.

ergy Kxc. To this end, we again compute Kxc via Eq. (17)
from the accurate parametrization by Groth et al. [68],
and the results are shown in Fig. 15. Overall, the rela-
tive spin dependence is substantial for all depicted val-
ues of the density parameter rs and is of the order of
100%. Even at rs = 20, where most physical observ-
ables of the UEG like the total energy K only weakly
depend on ξ, the strong ξ dependence of E0 is directly
reflected in Eq. (16). In the WDM regime (rs = 0.5, 2, 4),
we find substantially larger values for Kxc for the ferro-
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FIG. 15. Polarization dependence of the exchange–
correlation contribution to the kinetic energy Kxc at θξ=0 = 2
evaluated from the parametrization of fxc by Groth et al. [68]
via Eq. (17). The different lines correspond to various values
of the density parameter rs.

magnetic case, which might be directly reflected in im-
portant material properties like the static local field cor-
rection [73, 74, 113]. In particular, a pronounced nega-
tive tail of the local field correction at intermediate to
large wave numbers could have a noticeable impact on
the spectral properties [9, 73, 79–81] of the system, with
potentially important implications for X-ray Thomson
scattering applications [123].

IV. SUMMARY AND DISCUSSION

In summary, we have presented an extensive study of
the impact of spin-effects on the momentum distribu-
tion function n(k) and related properties. This has been
achieved on the basis of extensive new direct PIMC simu-
lations for different densities rs, temperatures θ, and de-
grees of the spin-polarization ξ. Our central findings can
be concisely summarized as follows: i) the correlation-
induced increase in the occupation of the zero-momentum
state n(0) substantially depends on the spin-polarization
ξ, which is mainly a consequence of the spin-dependence
of the ideal Fermi function n0; ii) previous RPIMC data
for n(k) by Militzer et al. [86] are afflicted with a sys-
tematic error, which is a consequence of the determina-
tion of the normalization and not a consequence of the
employed fixed-node approximation; iii) finite-size effects
in our PIMC data only manifest for small k and hardly
exceed 1% for both n↑(k) and n↓(k); iv) the interaction-

induced increase in n(0) is mainly facilitated by the spin-
up electrons (majority electrons), which can be explained
in terms of the spin-resolved reduced parameters r↓s and
θ↓; and finally v) both the shift in the occupation of
the zero-momentum state and the exchange–correlation
part of the kinetic energy strongly depend on the spin-
polarization even in the limit of the strongly correlated
electron liquid (rs = 50), which can again be traced back
to the ξ-dependence of the noninteracting reference sys-
tem.

Let us conclude this discussion by outlining a few di-
rections for future investigations. Firstly, we mention
that our extensive set of new direct PIMC data are
freely available online [124] and can be used as an ac-
curate benchmark for the development of new methods
and approximations, or as input for parametrizations.
Furthermore, we re-iterate the high importance of the
momentum distribution function of electrons for the de-
scription of transport properties of WDM in an exter-
nal magnetic field [90]. With respect to the UEG itself,
the numerical investigation of the large-momentum tail of
n(k) [cf. Eq. (15)] in the fully polarized case will further
advance or current understanding of this fundamental
model system, but remains out of reach for PIMC meth-
ods operating in coordinate space. In contrast, Hunger et
al. [87] have recently demonstrated that the configuration
PIMC method (which directly operates in k-space) is ca-
pable to resolve the required 8-10 orders of magnitude in
n(k), and its application to the spin-polarized case, thus,
constitutes an enticing possibility. Finally, the substan-
tially negative values of Kxc for large ξ that have been
reported in this work potentially indicate a pronounced
negative tail for large wave numbers in the static local
field correction of the ferromagnetic UEG. Yet, previ-
ous PIMC studies of such linear-response properties have
been limited to ξ = 0, and an extension of these efforts
to other values of ξ is highly desirable.
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