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In this work we analytically derive the exact closed dynamical equations for a liquid with short-
ranged interactions in large spatial dimensions using the same statistical mechanics tools employed
to analyze Brownian motion. Our derivation greatly simplifies the original path-integral-based
route to these equations and provides new insight into the physical features associated with high-
dimensional liquids and glass formation. Most importantly, our construction provides a route to
the exact dynamical analysis of important related dynamical problems, as well as a means to devise
cluster generalizations of the exact solution in infinite dimensions. This latter fact opens the door
to the construction of increasingly accurate theories of vitrification in three-dimensional liquids.

I. INTRODUCTION

The motion of interacting particles in a liquid is so
complex that a complete, microscopic description of liq-
uid state dynamics generally requires in silico experi-
ments that directly integrate the equations of motion one
particle at a time. However, these simulations are impos-
sible to perform close to the glass transition, as the dras-
tic slowing of dynamics precludes modern-day processors
from describing long-time relaxation via this painstaking
technique. Instead, one generally relies on approximate
microscopic and coarse-grained theories to gain an under-
standing of the long time dynamical behavior of complex
processes such as vitrification.

The main difficulty in developing such theories is that
glassy slowing down is a strongly interacting problem
which eludes perturbative treatments [1]. One impor-
tant aspect of the glass transition is that the dramatic
growth of the relaxation time is accompanied by a very
modest growth of the length scale lcoop characterizing
the spatial extent over which cooperative motion takes
place[1, 2]. A theory able to accurately describe dynam-
ics over the scale lcoop would therefore provide a complete
description of the phenomenon. In the case of strongly
correlated electrons, a problem that shares similar techni-
cal challenges, following the path paved by this intuition
has paid off handsomely via the creation of a dynamical
mean-field theory (DMFT) able to describe the physics
at the shortest scale[3], and then cluster extensions able
to capture non-perturbative physics below and at scale
lcoop[4, 5]. Developing an analogous approach for glassy
liquids is of tremendous importance. In this work we fo-

cus on the very first step, which is development of DMFT
for liquids. The recent exact solution of glassy liquids in
the limit of infinite dimensions d was a complete break-
through in this respect. Using two independent routes,
a super-symmetric path-integral treatment and an ap-
proximate cavity approach, DMFT for the dynamics of
interacting particle systems was derived in the d → ∞
limit [6–8] [9]. These two tools, however, cannot easily be
generalized to develop cluster methods since the former
is somewhat cumbersome whereas the latter is based on
approximations whose validity is unclear. The aim of this
work is to present a general approach to obtain a liquid-
state DMFT that is direct, versatile and physically trans-
parent, hence suitable to be generalized to more complex
cases and in particular to cluster methods.

As a remarkable byproduct, our approach bridges the
gap between the theoretical methods behind the Mode-
Coupling Theory (MCT) of the glass transition[10, 11]
and the techniques at the basis of the Random First
Order Transition (RFOT) theory[12–14]. While it was
believed that MCT is exact in the d → ∞ limit[15], it
was later demonstrated that MCT is actually increasingly
less accurate as the spatial dimension increases[16, 17].
Such behavior is unexpected for a mean-field theory, and
this failure of MCT temporarily clouded the connection
between statics and dynamics that lies at the heart of
foundational theories of the glass transition such as the
Random First-Order Theory (RFOT)[14]. As mentioned
above, the original derivation of DMFT uses highly com-
plex path-integral techniques, which are very different
from the projection operators used to derive MCT, and
thus does not establish a direct connection. In this work,
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by properly identifying the correct tagged degree of free-
dom, which allows to treat the rest of the system as a
self-consistent thermal bath, we derive DMFT by the
projection operator method. We thus unify seemingly
disparate routes to dynamics in d→∞ and show how to
modify the MCT derivation to obtain the correct infinite
dimensional limit. This unification enables the exact,
physically clear description of the dynamical behavior of
Newtonian and Brownian fluids for d→∞, opens a sim-
ple route to the exact solution of distinct models of slow
dynamics (e.g. the Lorentz gas), and sets the stage for
the extension of DMFT to lower space dimensions via
the introduction of a “cluster” dynamical mean-field ap-
proach. We describe all of these facets in this work.

Our derivation applies to an equilibrium system com-
posed of a large number N of identical particles interact-
ing through a pairwise, short-ranged potential v(r) with
the dynamics

mR̈i + ζṘi = −
∑
j(6=i)

∇v(Rij) + ξi, (1)

where Rij=̂Ri − Rj , and the thermal noise satisfies
〈ξµ(t)ξν(s)〉ξ = 2Tζδµνδ(t− s). The particles are labeled
by i = 0, 1, 2, . . . , N and the Euclidean components by
µ, ν ∈ {1, 2, . . . , d}. In order to obtain a well-defined
large-d limit one has to assume that the interaction po-
tential depends on the dimension as v(r) = v(d(r/`− 1))
[6], where the interaction range ` ≡ 1, and v is a function
independent of d (see Appx.A for details). Thus the n-th
derivative v(n) is of order O(dn). Furthermore, to de-
scribe correlated dynamics, which determines long-time
transport properties and transient localization upon ap-
proaching the glass transition, it is enough to focus on
the evolution of the mean squared displacement of in-
dividual particles on a scale 1/d, i.e. u2

i ∼ d−1 with
ui=̂Ri(t) −Ri(0), and accordingly on a scale 1/d for a
given component, i.e. ui,µ ∼ d−1. This scaling of a given
component is crucial, as we will see below. For consis-
tency, we must also take the following scaling relations
ζ ∼ d2, m ∼ d2, ξi,µ ∼ d for all i, µ [7].

As we have already stressed, the key concept is to
identify the correct tagged degree of freedom. Using
the large-d scaling one finds that for times t ∼ O(d0)
the force between a pair of particles i and j is only
non negligible along the initial relative direction, i.e.
∇v(Rij) ≈ R̂ij(0)v′(Rij). This allows us to write the
equation of motion for particle i along direction α as

müi,α + ζu̇i,α = −
∑
j(6=i)

R̂ij,α(0)v′(Rij) + ξi,α. (2)

where all terms are of order O(d) and hence lead to a well
defined equation in d→∞ (details in Appx.A). Remark-
ably, the interaction term resembles that of mean-field
spin glasses, where the role of the disordered quenched
magnetic coupling Jij is now played by R̂ij,α(0). This
suggests that the correct degree of freedom to develop
DMFT is the component of the displacement of a tagged

particle (say particle 0) along a fixed direction α uncorre-

lated with the interparticle directions R̂ij(0). The main
physical requirement is that this degree of freedom must
act as a small perturbation for the rest of the system,
and that this perturbation can be accounted by a linear
response. This naturally leads to a feedback from the
rest of the system which is akin to a thermal bath. The
theoretical frameworks we develop below show that this
is indeed the case for the displacement of particle i along
direction α, and that other choices of the tagged (or “cav-
ity”) variable, such as the full displacement vector of a
given particle, do not lead to a closed self-consistent dy-
namical process.

We now present our general derivation of the DMFT
equations. Our paper is organized as follows. First, we
discuss the key steps of the projection operator-based
analysis of the Newtonian case (Sec.II & Sec.III), where
the friction term and the noise are absent in Eq.(1). We
then show how such procedure can be generalized to the
full form of Eq.(1) (Sec.IV & Sec.V), discuss an alter-
native derivation based on the cavity method (Sec.VI &
Sec.VII), and relate the two methods through a general
argument showing only diagonal terms occur in force cor-
relations (Sec.VIII). Remaining details may be found in
Appx.E. The final self-consistent equations are presented
in Sec.IX. Some important remarks are made in Sec.X
before presenting an application of our method on the
random Lorentz gas [18] in Sec.XI. A cluster extension
of DMFT is sketched in Sec.XII

II. NEWTONIAN PROJECTION OPERATOR
FORMALISM

The first method we employ is one that has been used
to derive the exact Langevin equation for a heavy par-
ticle in a bath of light particles. Following Mazur and
Oppenheim[19], we derive a Langevin equation for the
tagged particle momentum along a fixed direction α that
is exact in any dimension, then we show how this equa-
tion simplifies in the d→∞ limit.

We define the full and unperturbed Liouvillians explic-
itly as

iL =
p0,α

m
∇0,α + F0,α∇p0,α + iL0, (3)

where L is the Liouville operator that encodes the New-
tonian dynamics, namely iLA = {A,H}, and iL0 is the
Liouville operator that corresponds to the dynamics with
the α coordinate of the tagged particle being blocked.
Explicitly,

iL0=
∑
j>0

∇pjH0 · ∇Rj −
∑
j>0

∇RjH0 · ∇pj

+
∑
ν 6=α

[p0,ν

m
∇0,ν + F0,ν∇0,ν

]
, (4)

where H0 =
∑
ν 6=α

m
2 u̇

2
0,ν +

∑
j>0

∑d
ν=1

m
2 u̇

2
j,ν +



3∑
i>j>0 v(Rij)+

∑
j>0 v(R0j) and F0,ν is the νth compo-

nent of the force on the tagged particle. The projection
operator is defined as

PA=
1

Z0

∫
dR⊥0,αdp

⊥
0,α

N∏
i=1

dRi

N∏
i=1

dpiA exp(−βH0)

= 〈A〉0, (5)

where dp⊥0,α =
∏
ν 6=α dp0,ν , Z0 =∫ ∏N

i=1 dRi

∏N
i=1 dpidR

⊥
0,αdp

⊥
0,α exp(−βH0). Using

the exact operator relationship

e(A+B)t = eAt +

∫ t

0

eA(t−τ)Be(A+B)τdτ, (6)

and applying this operator identity to the αth component
of the tagged particle’s force at t = 0 with the choices
A = iL and B = −iPL, we find

ṗ0,α(t) = F †α(t)

+

∫ t

0

dτeiL(t−τ)(∇p0,α −
p0,α

mkbT
)〈FαF †α(τ)〉0, (7)

where F †α(t) = ei(1−P)LtF0,α(0) and Fα ≡ F †α(0).
This is the exact starting point derived by Mazur and
Oppenheim[19]. Note that the Langevin equation de-
rived above is deceptive because it is non-linear and does
not have the typical form of a Langevin equation. In par-
ticular, the factors eiL(t−τ) and ∇p0,α act completely on
all terms to the right. Only if the force-force term does
not depend on the system variables u0,α and p0,α will the
equation result in a standard Langevin form. Below we
show how this simplification occurs exactly in the d→∞
case.

We first show how the fluctuating force simplifies for
d → ∞. We expand the generator of time evolution to
lowest non-trivial order as

F †α(t) ∼ (eiL0t

+

∫ t

0

dτeiL0(t−τ)(1− P)(OP +OF )eiL0τ )F0,α(0) (8)

where OP =
p0,α
m ∇0,α and OF = F0,α∇p0,α .

This leads simply to

F †α(t) ∼ F̃0,α(t)− tp0,α(0)

m
(k̃α(t)− 〈k̃α(t)〉0), (9)

where kα(0) =
∑
j>0∇α∇αv(R0j(0)) and the notation Ã

denotes that the time dependence occurs with the motion
along the α direction blocked, namely it is generated by
L0, in particular F̃0,α(t) = eiL0tF0,α(0). Aside from the
factor of t, the correction to the bare force term scales as
1
d ·d

3/2 ∼ d1/2 (see discussion following Eq.(66)) which is

smaller than the O(d) bare force by a factor of d1/2. It
is not difficult to show that it is true that the expansion
leads, order by order, to terms that are smaller than the
leading term in d. The secular aspect of the correction

term suggests that the limit d→∞ must be taken before
t→∞.

The expansion of the force-force term is that of a direct
Dyson series. In particular

〈FαF †α(t)〉0 = 〈F0,αe
iL0tF0,α〉0 + I2 + I4 + ..., (10)

where

I2 =

∫ t

0

dτ1

∫ τ1

0

dτ2G2(t, τ1, τ2), (11)

G2(t, τ1, τ2)

= 〈F0,αe
iL0(t−τ1)(1− P)(OP +OF )eiL0(τ1−τ2)

×(1− P)(OP +OF )eiL0τ2F0,α〉0. (12)

We will only look at I2 for now. Since the bare force-
force correlation function is O(d2), we need I2n to be
o(d2). Each factor of eiL0τF0,α imparts a time depen-
dence only to coordinates uj>0 and the set u⊥0,α (the
coordinates of particle 0 orthogonal to the α direction)
with no p0,α dependence. Thus OF e

iL0τ2F0,α = 0 and

OP e
iL0τ2F0,α = −p0,α(0)

m k̃α(τ2). One can continue this

procedure (ignoring the future action of ∇0,α on k̃α as
subleading and assuming 〈F0,α〉0 = 0), yielding

G2 = − 1

m
〈F̃0,α(0)F̃0,α(t− τ1)[k̃α(t)− 〈k̃α(t)〉0]〉0. (13)

This term is O(d3/2). A proof that all I2n are sublead-
ing follows from considering the additional factors of Fαα
that pair with factors of 1

m to bound the d-dependence,

yielding a scaling Gn ∼ d(2−n/4) for n even and 0 for n
odd.

By translational invariance, and the fact that no I2n
terms survive and thus no explicit p0,α dependence sur-
vives, then the simple expression

mü0,α(t) = F̃0,α(t)− 1

kbT

∫ t

0

dτM(τ)u̇0,α(t− τ), (14)

where M(τ) = 〈F̃0,α(0)F̃0,α(τ)〉0, holds exactly with
time evolution of the random force given by the unper-
turbed dynamics as long as d → ∞. It is amusing to
compare this with the three dimensional case treated by
Mazur and Oppenheim of a heavy particle immersed in
a bath of light particles. In their case, the projected dy-
namics conspires to produce corrections to a frictional
memory term (the clamped particle bare force-force cor-
relator) that vanishes only at long times if the mass ra-
tio of the tagged particle to that of the bath particles
is large. In our case we also recover a simple general-
ized Langevin equation (GLE) of the same form (with
a slightly different definition of the special coordinate)
where the corrections vanish for any mass ratio for all
times if d→∞.

Note that if we take as the tagged variable the full
displacement u0(t) instead of the displacement compo-
nent u0,α(t), then the expansion of the memory kernel
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would lead to terms that are not subleading with d. To
see this, one can reconsider the calculation of G2(t, τ1, τ2)
with the vector force on the tagged particle. The calcu-
lation is similar, but an extra unconstrained summation
over particle direction renders the leading correction of
order d5/2 instead of d3/2, and thus non-negligible in the
d→∞ limit. This fact clearly illustrates the importance
of choosing the correct variable in the derivation of the
closed equations for the infinite dimensional fluid.

Since the direction α is arbitrary, by isotropy, Eq.(14)
is valid for any direction and thus can be seen as one
component of a vector equation. To proceed further, we
will first focus our analysis on a direction α which is fixed
and uncorrelated from the interparticle directions R̂ij(0).

In the large d limit, the kernelM(τ) = 〈F̃0,α(0)F̃0,α(τ)〉0
reads〈∑

j,k

R̂0j,α(0)R̂0k,α(0)v′(R̃0j(τ))v′(R̃0k(0))

〉
0

, (15)

with the distance R̃0j(τ) written as

R̃0j(τ) = R0j(0) + ỹ0j(τ) + ∆u(τ)/2R0j(0) , (16)

where ỹ0j(τ) = R̂0j(0) · (ũ⊥0,α(τ) − ũj(τ)) and ∆u(τ) =

(ũ⊥0,α(τ)−ũj(τ))2. Eq.(16) is correct to order 1/d, which
is all that is required to evaluate the interaction poten-
tial v(r) = v(d(r/` − 1)). Note that the second term in
the right-hand side of Eq.(16) is fluctuating in magnitude
O(d−1), whereas the last term concentrates on its aver-
age with sub-leading O(d−3/2) fluctuations (see Appx.A
for details). The sum over off-diagonal, j 6= k, contribu-
tions to the memory kernel in Eq.(15) can be neglected
since it contains terms with random uncorrelated signs
which, as illustrated in Sec.VIII and detailed in Appx.E,
give a subleading contribution [20]. Finally for the diag-
onal contributions in Eq.(15): (i) the restricted average

〈·〉0 is replaced by the full average 〈·〉 and (ii) R̃0j(t) is
replaced with R0j(t). We show in (the second part of)
Appx.E that the differences between these replacements
and the original expressions are subleading in the large d
limit[21]. In conclusion, the final expression of the mem-
ory kernel is

M(τ) =
1

d

∑
j

〈v′(R0j(τ))v′(R0j(0))〉. (17)

Note that the same reasoning also proves that the fluc-
tuating force F̃0,α is Gaussian as F̃0,α sums up a large
number O(d) of independent terms. In fact, by analyz-

ing the higher-order averages of F̃0,α(t) one can show that
the leading contribution is obtained by pairing the par-
ticle indices in distinct couples. This effectively leads to
Wick’s theorem and Gaussian moments in d→∞.

FIG. 1. Illustration of two particle dynamics and interactions
which manifest in d = ∞.

III. NEWTONIAN TWO-PARTICLE PROCESS

In order to evaluate the memory kernel (17), we must
determine the time dependence of the the distance be-
tween a pair of particles. To this end, in this section we
generalize the analysis of a single particle dynamics pre-
sented in Sec. II to a pair of particles. For concreteness of
notation, we label the two particles under consideration
as 0 and 1. We follow the analysis of Deutch and Oppen-
heim [22]. This analysis needs to be modified because in
our case we must define the projection operator as

P2A=
1

Z2

∫ ( N∏
i=2

dRi

N∏
i=2

dpi

)
dp⊥0,αdp

⊥
1,α

·dR⊥0,αdR⊥1,αA exp(−βH0) = 〈A〉2, (18)

where dp⊥i,α =
∏
ν 6=α dpi,ν , dR⊥i,α =

∏
ν 6=α dRi,ν , Z2 is

defined, as usual, as the integral above with A = 1, and

H2 =
∑
i>j v(Rij) +

∑
j>1

p2
j

2m +
∑
ν 6=α

p20,ν+p21,ν
2m . Note

that this differs from the projector defined by Deutch
and Oppenheim because all components of the coordi-
nated of the two “tagged” particles 0 and 1 are averaged
over aside from one arbitrary direction α, whereas in the
standard approach the averaging completely excludes the
coordinates and momenta of the chosen pair of particles.
This difference necessitates a small but crucial modifi-
cation of the approach as outlined below, as well as a
careful comparison of the final averaging with the stan-
dard configurational averaging, as discussed in Appx.D.
Consider the Newtonian equation of motion

ṗ0,α = F01,α(R01(t)) +
∑
j>1

F0j,α(R0j(t)), (19)

with F0i,α = −∇αv(R0i(t)) for all i. Within the stan-
dard approach to the dynamics of a pair of tagged par-
ticles, there is no need to separate the force on a tagged
particle into its contribution from the other tagged par-
ticle and the remaining particles. Here, this splitting
is necessary as otherwise, given the form of our pro-
jection operator, the treatment of the direct dynamics
becomes unduly complicated. We use the same iden-
tity as used in the previous section, namely e(A+B)t =

eAt +
∫ t

0
eA(t−τ)Be(A+B)τdτ with A = iL, B = P2iL,
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L =
p0,α
m ∇0,α +

p1,α
m ∇1,α + F0,α∇p0,α + F1,α∇p1,α + iL2,

and iL2 defined from H2 as given above, but we apply
this identity only to the term

∑
j>1 F0j,α(R0j(t)), while

the term F01,α(R01(t)) evolves completely with the stan-
dard Newtonian dynamics generated by exp(iLt). Mak-
ing use of the fact that P2iL2B = 0 for any B, and
defining the fluctuating force term for tagged particle
n K†n,α(t) = exp (i(1− P2)Lt)

∑
j>1 Fnj,α(R0j(0)) along

with the definition ∆̂n =
[
∇pn,α −

β
mpn,α

]
, we find the

coupled equations

ṗ0,α(t)= F01,α(t) +K†0,α(t)

+

∫ t

0

dτeiL(t−τ)∆̂0〈F0,αK
†
0,α(τ)〉2

+

∫ t

0

dτeiL(t−τ)∆̂1〈F1,αK
†
0,α(τ)〉2, (20)

ṗ1,α(t)= F10,α(t) +K†1,α(t)

+

∫ t

0

dτeiL(t−τ)∆̂0〈F1,αK
†
0,α(τ)〉2

+

∫ t

0

dτeiL(t−τ)∆̂1〈F1,αK
†
1,α(τ)〉2. (21)

Note that 〈K†n,α(0)〉2 = 0. In addition, note that the
memory term is unbalanced; the correlations involve the
total force on a tagged particle, e.g. F0,α = F01,α(R01) +∑
j>1 F0j,α(R0j) and the fluctuating force K†n,α(t) which

excludes the interactions between the two tagged parti-
cles (0 and 1). Lastly, note that these equations appear
to be coupled through a friction (memory) matrix. The
latter two aspects greatly simplify in d =∞. Other sim-
plifications occur in a manner outlined in the previous
section on the one-particle process.

As mentioned earlier, in infinite dimensions all off-
diagonal terms in the frictional memory functions may be
dropped because they involve correlations between pairs
of particles that are distinct and thus uncorrelated (de-
tails may be found in Appx.E). This means that we may
remove the off-diagonal terms in the memory matrix as

subleading, and, in addition, ignore 〈F1,αK
†
0,α(τ)〉2 and

〈F0,αK
†
1,α(τ)〉2 since both contain only either terms of

off-diagonal nature or terms of even weaker correlation.
Finally, following the same procedure outlined for the
one particle case, for d → ∞ an expansion in orders of
powers of d shows that to leading order one can drop
the projected dynamics in both the fluctuating force and
memory tensor. The leading order terms that now appear
in the fluctuating force and memory terms are functions
of R̃ij , where motion along α is blocked for the tagged
particles.

Thus we arrive at the equations

mü0,α(t) = −v′(R01(t))δα,γ + F̃0,α(t)

− β
∫ t

0

〈F̃0,α(0)F̃0,α(τ)〉2u̇0(t− τ), (22a)

mü1,α(t) = v′(R01(t))δα,γ + F̃1,α(t)

− β
∫ t

0

〈F̃1,α(0)F̃1,α(τ)〉2u̇1(t− τ), (22b)

where we have converted our notation for the fluctuating
force from K† to F̃0,α as there is no potential confusion
between the total force on a tagged particle and the fluc-
tuating force. Note as well, that the equations above are
valid for a general direction α, however if α is chosen
along a direction other than the initial inter-particle one
between the tagged pair, namely the direction labeled γ

defined as êγ ≡ R̂01(0) = R0(0)−R1(0)
|R0(0)−R1(0)| , then the lead-

ing direct force terms vanish in d = ∞. To arrive at
the final closed theory, the same arguments concerning
the restoration of the motion along the α direction put
forward in the discussion of the 1-particle case may be
made, which imply R̃ij(t) → Rij(t). Then, as justified
in Appx.D, applying either 〈·〉2 or 〈·〉0 in Eq.(22) makes
a sub-leading difference, which allows the replacement
〈·〉2 → 〈·〉0. In order to obtain the full, closed DMFT
equations, we must determine the equations for the rel-
ative displacement between a pair of particles for com-
puting the memory kernel Eq.(17). Similarly to Eq.(16),
one can decompose R01(τ) as

R01(τ) = R01(0) + w01(τ) + ∆w(τ)/2R01(0), (23)

where w01(τ) = R̂01(0) · (u0(τ) − u1(τ)) and ∆w(τ) =
(u0(τ)−u1(τ))2. The squared displacements e.g. u2

1, are
self-averaging quantities for d → ∞. As a consequence,
they are equal and can be obtained by the Langevin equa-
tion Eq.(14) leading to

∆w(τ) ≡ 2∆(t) = 2d〈(u0,α(t))2〉. (24)

The relative displacement of particles 0 and 1 along the
direction R̂01(0), i.e. w01(τ), is instead a fluctuating vari-
able. This direction is special compared to α in that the
force −∇v(R01(τ)) acting on particle 0 from particle 1
is aligned with the initial condition (see Eq.(2) and re-
member that the initial conditions play the same role as
quenched disorder). Thus, along direction R̂01(0), the
contribution to the force on particle 0 coming from the
(0, 1) interaction is not small and needs to be treated ex-
plicitly. The interactions with all particles other than
particle 1 play the same role as before, as the direc-
tion R̂01(0) is random for these particles thus leading
to the same Gaussian random force and memory ker-
nel of Eq.(14), see Fig.1. The same reasoning extends
to particle 1. Thus, the equations for u0,γ=̂êγ · u0 and
u1,γ=̂êγ · u1 read

mü0,γ(t) = −v′(R01(0)+w01(t)+∆(t)/R01(0))+F̃0,γ(t)

− β
∫ t

0

M(τ)u̇0,γ(t− τ), (25a)

mü1,γ(t) = v′(R01(0)+w01(t)+∆(t)/R01(0))+ F̃1,γ(t)

− β
∫ t

0

M(τ)u̇1,γ(t− τ), (25b)
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where the random forces F̃0,γ and F̃1,γ are independent
and Gaussian with covariance equal to the kernel M(τ)
as defined previously. By taking the difference between
Eq.(25a)) and Eq.(25b) one obtains a closed stochastic
equation for w01(t) = u0,γ(t)− u1,γ(t):

mẅ01(t) = −2v′(R01(0) + w01(t) + ∆(t)/2R01(0))

+F̃ 01
w (t)− β

∫ t

0

M(τ)ẇ01(t− τ), (26)

where the random force F̃ 01
w (t) is Gaussian and with co-

variance 2M(τ)[23].
We now have a full set of self-consistent equations.

Given ∆(t) andM(t), the stochastic Eq.(14) and Eq.(26)
for u0,α(t) and w0j(t) are fully determined. The stochas-
tic processes associated with these equations allow us to
obtain ∆(t) and M(t) as averages over u0,α(t), w01(t)
and the initial interparticle distances, see Eq.(17) and
Eq.(24). This closes the self-consistent loop. The DMFT
therefore consist of equations (14, 17, 23, 24, and 26)
which govern the evolution of the particle displacement
and the distance between two particles. They can be sim-
plified further, as done in [6, 24] and detailed in Sec.IX.

IV. BROWNIAN DYNAMICS PROJECTION
OPERATOR FORMALISM

For a system evolving with Brownian dynamics, the
derivation based on projection operators is fundamen-
tally similar to that for a system evolving with Newto-
nian dynamics. However, it is technically more involved
due to the presence of the noise. The noise is a stochastic
process independent of the dynamics of the system and
thus it is equivalent to a set of external time-dependent
forces acting on all the particles. This fact necessitates
a generalization of the Liouville operator, which is now
time dependent and contains an additional term origi-
nating from adopting the Ito convention [25].

We start by adapting equations of motion (1) to a sys-
tem evolving with overdamped Brownian dynamics,

ζṘi = −
∑
j( 6=i)

∇iv(Rij) + ξi. (27)

Like for Newtonian dynamics, the time evolution given
by Eqs.(27) can be represented by a Liouville operator, L.
In the present case, since the evolution equation involves
a stochastic process, it is a stochastic Liouville operator
[26]

L(t) =
1

ζ

∑
i

(Fi + ξi(t) + T∇i) ·∇i, (28)

where Fi = −
∑
j(6=i) ∇iv(Rij) and the second derivative

term originates from the Ito convention. The important
technical feature of the stochastic Liouville operator is
its explicit dependence on time, coming from the time
dependence of a given noise realization. We note that

in contrast to the more usual Liouville operator corre-
sponding to the Newtonian equations of motion, Eq.(3),
operator (28) is customarily defined without the imagi-
nary factor i.

The time dependence of the stochastic Liouvillian im-
plies that the corresponding evolution operator is given
by a time-ordered exponential. As lucidly explained in
Sec. 7.7 of Ref. [27], the Liouville operators in the evo-
lution operator U [L](t; t′) should be ordered from left to
right as time increases, i.e.

U [L](t; t′) = exp

(∫ t

t′
dt1L(t1)

)
. (29)

Correspondingly,

∂tU [L](t; t′) = U [L](t; t′)L(t). (30)

As explained in the Introduction, the crucial step is
to recognize that we should consider a component of the
equation of motion for tagged particle, labeled 0, along
an arbitrary direction α,

ζṘ0,α = F0,α + ξ0,α. (31)

We note that this equation is not closed in that the evo-
lution of R0,α depends on other coordinates of particle 0
and on the coordinates of all the other particles.

To analyze Eq.(31), we start with a definition of the
projection operator, P, which is the close analog of the
projection operator (5) introduced in Sec. II, Eq.(5),

PX ≡ 〈X〉0

≡

〈∫
dR⊥0 dR1 . . . dRNe

−β
∑
i6=j v(Rij)X∫

dR⊥0 dR1 . . . dRNe
−β
∑
i6=j v(Rij)

〉
ξ1,...,ξN

,(32)

where dR⊥0 denotes the integration over all the compo-
nents of the coordinate vector of the tagged particle ex-
cept for the specific component of interest, 〈. . .〉ξ1,...,ξN
denotes averaging over the noise associated with the all
the particles, including the tagged particle. Note that
there is no averaging over the position of the tagged par-
ticle along the special selected direction. However, due to
translational invariance, if X depends only on the rela-
tive positions of the particles along the selected direction,
i.e. R0,α − Ri,α, then PX is independent of the specific
component of the coordinate vector of the tagged parti-
cle.

We use the projection operator (32) to project the force
due to other degrees of freedom on the space spanned
by the selected coordinate of the tagged particle. We
also use it to define the irreducible Liouville operator
Lirr, which is the analogue of the projected Liouvillian
“(1− P)iL” introduced in Sec. II,

Lirr = L− 1

γ
(F0,α + ξ0,α + T∇0,α)P∇0,α = L− δL.

(33)
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Next, we generalize the identity Eq.(6) to time-
dependent Liouville operators,

U [Lirr](t; 0) = U [L](t; 0) (34)

−
∫ t

0

dτU [L](τ ; 0)δL(τ)U [Lirr](t; τ).

We use Eq.(34) to rewrite the α component of the force
on the tagged particle as

F0,α(t) ≡ U [L](t; 0)F0,α = U [Lirr](t; 0)F0,α (35)

+

∫ t

0

dτ U [L](τ ; 0) δL(τ)U [Lirr](t; τ)F0,α.

The first part of the right-hand side of Eq.(35) is the fluc-
tuating force and the second part is the memory function
term. To demonstrate the latter, we note that integration
by parts leads to

δL(τ)U [Lirr](t; τ)F0,α (36)

= −β
ζ

(F0,α + ξ0,α)PF0,αU [Lirr](t; τ)F0,α

= −Ṙ0,αβPF0,αU [Lirr](t; τ)F0,α,

where we also used the fact that for a variable X that
depends only on relative coordinates along the selected
direction PX is independent of R0,α.

Thus, the second term in Eq.(35) gives

−
∫ t

0

dτ U [L](τ ; 0)Ṙ0,αβPF0,αU [Lirr](t; τ)F0,α

= −
∫ t

0

dτ Ṙ0,α(τ)βPF0,α(τ)U [Lirr](t; τ)F0,α(τ).

(37)

We note that in principle in the projection in the second
line should be performed with the selected coordinate of
the tagged particle fixed at its position at time τ and R0,α

everywhere to the right of P should also be taken at time
τ . However we also note that the whole expression to the
right of Ṙ0,α(τ) is translationally invariant in space and
(after averaging over all components of the noise) in time.
Thus,

βPF0,α(τ)U [Lirr](t; τ)F0,α(τ)

= βPF0,αU [Lirr](t− τ ; 0)F0,α

≡ β
〈
F †0,α(0)F †0,α(t− τ)

〉
0

= M irr(t− τ), (38)

where we introduced fluctuating force F †0,α evolving with
the irreducible dynamics,

F †0,α(t) = U [Lirr](t; 0)F0,α. (39)

and so-called irreducible memory function M irr that de-
scribes the internal friction for a Brownian system.

Now we show that the fluctuating force and memory
function simplify in the same way as in the Newtonian

case. First, we consider the fluctuating force: at short
times we have

F †0,α(t) ≈ F0,α + tLirrF0,α (40)

= F0,α + t

[
1

ζ
(F0,α + ξ0,α + T∇0,α)Q∇0,α

+
1

ζ

(
F⊥0 + ξ⊥0 (t) + T∇R⊥0

)
·∇R⊥0

+
1

ζ

∑
i≥1

(Fi + ξi(t) + T∇Ri) ·∇Ri

F0,α,

where Q = I − P is the orthogonal projection opera-
tor and superscript ⊥ indicates components orthogonal
to the selected component α. One can show that the
the first term in square brackets on the right-hand-side
is O(d1/2) whereas each of the remaining two terms is
O(d1). Thus, the first term is negligible and in the ex-
pression for the fluctuating force one can replace the ir-
reducible operator Lirr by the operator

L0 =
1

ζ

(
F⊥0 + ξ⊥0 (t) + T∇R⊥0

)
·∇R⊥0

(41)

+
1

ζ

∑
i≥1

(Fi + ξi(t) + T∇Ri
) ·∇Ri

.

The operator (41) is the close analogue of the unper-
turbed Liouvillian “iL0” introduced in Sec. II, see
Eq.(4). This operator describes the evolution of all the
degrees of freedom except for the selected coordinate of
the tagged particle, which remains blocked. This shows
that, like in the Newtonian case, the fluctuating force

F †0,α(t), Eq.(39), evolves due to motion of all the other
degrees of freedom while the selected coordinate is kept
unchanged,

F †0,α(t) = F̃0,α(t) ≡ U [L0](t; 0)F0,α. (42)

where notation F̃0,α is borrowed from Sec. II to denote
the force that evolves according to Brownian dynamics
with the α coordinate of the tagged particle blocked.

Likewise, the expansion of the memory function works
similarly to that in the Newtonian case, see Eqs. (10–12).
We have

M irr(t) = β
〈
F0,αU [Lirr](t; 0)F0,α

〉
0

(43)

=
〈
F0,αU [L0](t; 0)F0,α

〉
0

+

∫ t

0

dτGirr
2 (t; τ) + ...

where

Girr
2 (t; τ) =

〈
F0,αU [L0](τ ; 0)δL0(τ)U [L0](t; τ)F0,α

〉
0

(44)

and δL0 = Lirr − L0. Girr
2 can be analyzed similarly to

the above outlined analysis of the fluctuating force. The
result is that Girr

2 and other terms in Eq.(43) involving
δL0 can be neglected.
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In this way we arrive at the following equation of mo-
tion for the α component of the tagged particle position
vector

ζṘ0,α(t) = F̃0,α(t)− β
∫ t

0

dτ
〈
F̃0,α(τ)F̃0,α(t)

〉
0
Ṙ0,α(τ)

+ξ0,α(t). (45)

We note that in contrast to Eq.(31), the above equation
is closed in that the evolution of component α of the
coordinate vector of particle 0 is due to a well defined
stochastic force F̃0,α. In the rest of this section we argue
that in the large dimensional limit this stochastic force
can be further simplified.

The specific arguments are similar to those described
in other sections (and detailed in Appx.E). First, we
note that the dominant term in the memory function
originates from the so-called diagonal terms,

M irr(t) = β
〈
F̃0,α(0)F̃0,α(t)

〉
0

=
∑
i

β
〈
F̃0i,α(0)F̃0i,α(t)

〉
0
, (46)

where F0i,α(t) is the α component of the force acting on
the tagged particle due to particle i, evolving due to the
motion of all other particles while the α coordinate of
the tagged particle is blocked. Second, we note that in
the expression at the right-hand-side of Eq.(46) we can
replace the dynamics with the α coordinate being blocked
by the full dynamics of the system,

M irr(t) =
∑
i

β
〈
F̃0i,α(0)F̃0i,α(t)

〉
0

=
∑
i

β 〈F0i,α(0)F0i,α(t)〉 . (47)

Third, we note that in the final expression Eq.(47), α is
an arbitrary direction and due to rotational invariance
we can average over all possible α’s, which results in the
following expression for the memory function,

M irr(t) =
∑
i

β 〈F0i,α(0)F0i,α(t)〉

= d−1
∑
i

β 〈F0i,α(0) · F0i,α(t)〉 . (48)

We close this section observing that the final expression
Eq.(48) for the irreducible memory function implies that
in order to calculate the memory function we need to
analyze the relative dynamics of a pair of particles, e.g.
the dynamics of particles 0 and 1. This will be done in
the next section.

V. BROWNIAN TWO-PARTICLE PROCESS

First, we note that to evaluate the memory function
(48) we need to analyze trajectories of particles 0 and 1
that start at the initial time, t = 0, within each other’s

interaction range (to make the force at the initial time
non-vanishing) and end at time t also within each other’s
interaction range. In the large dimensional limit the dis-
placements of these two particles between the initial time
and the final time are on a scale d−1, i.e. for i = 0, 1,
u2
i ∼ d−1 with ui=̂Ri(t) −Ri(0), and accordingly on a

scale 1/d for a given component, i.e. ui,µ ∼ d−1.

From the physical point of view there is a difference
between the single-particle motion considered in the pre-
vious section and the two-particle motion considered in
the present section. In principle, in both cases the mo-
tion of a given particle is unbounded (as it should be in a
fluid). However, in the present section we are only inter-
ested in these parts of the two-particle trajectories that
contribute to the memory function. During these parts
of the two-particle trajectories the displacements of the
two particles are on a scale d−1.

Initially, our variables of interest will be components
of the coordinate vectors of particles 0 and 1 along an
arbitrary direction α. Subsequently, we will specify this
direction to be along the direction along the initial inter-
particle vector R01(0) = R0(0) − R1(0), referred to in

Sec. III as the γ direction, êγ = R̂01(0).

We start by writing down equations of motion for α
components of the coordinate vectors of particles 0 and
1,

ζṘ0,α = F01,α +
∑
j≥2

F0j,α + ξ0,α, (49)

ζṘ1,α = F10,α +
∑
j≥2

F1j,α + ξ1,α. (50)

We note that in Eqs. (49-50) we decomposed the forces
acting on particles 0 and 1 to separate the direct force
between these particles from forces due to all other par-
ticles of the fluid. We note that, as argued in Appx.B, in
the d→∞ limit the particles interacting with particle 0
are different from the particles interacting with particle
1.

In the following we will present the analysis of Eq.(49).
Eq.(50) can be analyzed in the same way.

We define the two-particle projection operator, P2, as
follows

P2X ≡ 〈X〉2

≡

〈∫
dR⊥0 dR

⊥
1 dR2 . . . dRNe

−β
∑
i6=j v(Rij)X∫

dR⊥0 dR
⊥
1 dR2 . . . dRNe

−β
∑
i6=j v(Rij)

〉
ξ1,...,ξN

(51)

where dR⊥i , i = 0, 1 denotes the integration over all the
components of the coordinate vector of particle i per-
pendicular to the direction of interest α. The projection
operator Eq.(51) is the close analogue of projection op-
erator Eq.(18) introduced in Sec. III.

We use the projection operator (51) to define the two
particle irreducible Liouville operator L2irr, which for
Brownian dynamics plays the role of the two-particle pro-
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jected Liouvillian,

L2irr = L− 1

γ
(F0,α + ξ0,α + T∇0,α)P2∇0,α

− 1

γ
(F1,α + ξ1,α + T∇1,α)P2∇1,α = L− δL2.

(52)

We use the two particle irreducible Liouville operator
(52) to rewrite the α component of the force on particle
0 due to other particles as∑

j≥2

F0j,α(t) ≡ U [L](t; 0)
∑
j≥2

F0j,α (53)

= U [L2irr](t; 0)
∑
j≥2

F0j,α

+

∫ t

0

dτ U [L](τ ; 0) δL2(τ)U [L2irr](t; τ)
∑
j≥2

F0j,α.

Again, the first part of the right-hand-side of Eq.(53) is
the fluctuating force and the second part is the memory
function term. To show the latter, we note that

δL2(τ)U [L2irr](t; τ)
∑
j≥2

F0j,α = (54)

1

ζ
(F0,α + ξ0,α + T∇0,α)P2∇0,αU [L2irr](t; τ)

∑
j≥2

F0j,α

+
1

ζ
(F1,α + ξ1,α + T∇1,α)P2∇1,αU [L2irr](t; τ)

∑
j≥2

F0j,α.

Then, integration by parts leads to

δL2(τ)U [L2irr](t; τ)
∑
j≥2

F0j,α (55)

= −β
ζ

(F0,α + ξ0,α + T∇0,α)P2F0,αU [L2irr](t; τ)
∑
j≥2

F0j,α

−β
ζ

(F1,α + ξ1,α + T∇1,α)P2F1,αU [L2irr](t; τ)
∑
j≥2

F0j,α.

We note that Eq.(55) is considerably more compli-
cated than the corresponding equation at the one-
particle level, Eq.(36). The differences between these
two equations parallel those between two-particle and
one-particle memory function terms in the case of
Newtonian dynamics. First, in principle we need to
keep gradient terms T∇i,α, i = 0, 1, which implies
that the memory function term cannot be fully inter-
preted as the time delayed friction. Second, expressions
P2Fi,αU [L2irr](t; τ)

∑
j≥2 F0j,α, i = 0, 1, are unbalanced

in that they involve correlations between forces due to
other particles at time t and forces due to all the par-
ticles at an earlier time. Third, we have a cross term
which correlates forces acting on particle 0 at time t and
on particle 1 at an earlier time.

As for Newtonian dynamics, in the limit d → ∞ all
these complications disappear. In fact, the arguments

used in the Newtonian dynamics derivation can be used
also here. At the end we find that expression Eq.(55)
reproduces the one-particle memory function term,

U [L](τ ; 0)δL2(τ)U [L2irr](t; τ)
∑
j≥2

F0j,α (56)

= −Ṙ0,α(τ)P
∑
j≥2

F0j,α(τ)U [L0](t; τ)
∑
j≥2

F0j,α(τ).

Thus we find the following equation of motion for par-
ticle 0,

ζṘ0,α = F01,α(R01(t)) + F̃0,α(t) (57)

− β
∫ t

0

dτ
〈
F̃0,α(τ)F̃0,α(t)

〉
0
Ṙ0,α(τ) + ξ0,α(t),

where F̃0,α(t) and β
〈
F̃0,α(τ)F̃0,α(t)

〉
0

are the same

quantities that we introduced in the previous section.
At this point we recall that during the two particle

trajectories we are interested in particles 0 and 1 which
move very little, and ui,α(t) = Ri,α(t) − Ri,α(0) ∼ d−1.
Furthermore, we recognize the fact that the direct force
F01,α(R01(t)) is only important along the direction of the
original interparticle vector R0(0) −R1(0) (the γ direc-
tion). Finally, we recall that, as discussed Sec. III, the
interparticle force along R0(0)−R1(0) can be expressed
in terms of relative displacements of particles 0 and 1
along the original interparticle vector and along all the
other directions,

R̂01(0) · F01(R01(t))

= −v′(R01(0) + w01(t) + ∆w(t)/2R01(0)), (58)

where w01(t) and ∆w(t) have the same meaning as in Sec.
III and can be further analyzed in the same way.

The final result is the following equation of motion for
fluctuating quantity w01(t),

ζẇ01 = −2v′(R01(0) + w01(t) + ∆u(t)/2R01(0))

+F̃0,γ(t)− F̃1,γ(t) (59)

−β
∫ t

0

dτ
〈
F̃0,γ(τ)F̃0,γ(t)

〉
0
ẇ01(τ) + ξ0,α(t)− ξ1,α(t).

This is the Brownian analogue of the two particle New-
tonian equation, Eq.(26).

VI. CAVITY METHOD: ONE PARTICLE
PROCESS

Lastly, the cavity method [28] also allows us to obtain
the very same DMFT equations but follows an alterna-
tive, more explicit route. In particular, one writes down
the full dynamical equations of motion in the absence of
the cavity degree of freedom u0,α(t), and treats the addi-
tional terms due to u0,α(t) as a perturbation. At zeroth

order u0,α(t) only evolves due to the force F̃0,α(t). When
d → ∞, one only needs to consider the linear order cor-
rection in perturbation theory since all other terms are
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subleading. Again, this is very similar to the derivation
of the Langevin equation for a system coupled to a bath
[29]. The force term F̃0,α(t) is corrected to linear order
since the dynamics of all the other particles is perturbed
by u0,α. By taking into account this perturbatively linear
correction one obtains the memory kernel Eq.(14). From
there the derivation follows the one we have sketched
here. We present details of the cavity derivation in the
two following sections. Note that one advantage of the
cavity method compared to the previous derivations is
that it allows to directly obtain DMFT equations valid
also for non-equilibrium dynamics [24].

We consider the over-damped limit of Eq.(1) chose u0,α

as the cavity variable. We intend to derive the effective
equilibrium dynamics of the cavity variable. Developing
the interactions up to the first order in u0,α in Eq.(1) of
the main text, we find for the cavity

ζu̇0,α = ξ0,α(t)−
∑
j>0

∇αv(Xα
0j)−

∑
j>0

∇α∇αv(Xα
0j)u0,α

+O(u2
0,α), (60)

and for the other degrees of freedom

ζu̇0,ν = ξ0,ν(t)−
∑
j>0

∇νv(Xα
0j)

−
∑
j>0

∇α∇νv(Xα
0j)u0,α +O(u2

0,α),

ζu̇j,µ = ξj,µ(t)−
∑

i>0,i6=j

∇µv(Rji)−∇µv(Xα
j0)

+∇α∇µv(Xα
0j)u0,α +O(u2

0,α), (61)

where ν 6= α and Xα
0j=̂R0j(0) + u⊥0,α − uj . It is also

important to realize that, in the limit d → ∞, the sum-
mation

∑
j>0 · over interaction-related quantities associ-

ated with all particles other than the one labelled “0”
effectively runs only over the particles lying in the first
coordination shell of particle “0”, as detailed in Appx.B.
Since in a amorphous structure, the number of particles
lying in the first coordination shell is proportional to the
dimension d, we shall use hereafter indifferently

∑
j>0

and
∑∼d
j .

In general, we have (
∏n
i=1∇µi)v ∼ (

∏n
i=1 R̂µi)v

(n) ∼
dn/2. Thus ∇nα∇µv(R)un0,α ∼ d−(n+1)/2dn+1d−n ∼
d(1−n)/2. We first discuss high orders of the cavity vari-
able, un0,α, with n > 1. In this case, individual terms are
of negative order of magnitude in d. In particular, we
have log

(
∇nα∇µv(Xα

0j)u
n
0,α

)
≤ − 1

2 log d, which implies

the summation
∑∼d
j is of order of magnitude in d no

larger than d× d(1−n)/2 ∼ d(3−n)/2. Thus it is clear that
high order (n > 1) terms in u0,α scale at most as d1/2, and
hence are negligible in all terms in Eq.(60) and Eq.(61).
The situation is slightly more complicated when n = 1.

Note that we used
∑∼d
j ∼ d to estimate the upper bound

when summing up terms, which is correct if individual

terms are of the same sign. In the case when individual
terms alternate in sign with equal probability, we should

use
∑∼d
j ∼ d1/2 by the central limit theorem. When

n = 1, individual terms such as ∇α∇µv(R)u0,α ∼ 1 are
negligible. However when summing up over j, the order
of magnitude depends on whether µ = α. In the case
where µ = ν 6= α, we have ∇α∇νv ∼ R̂0j,αR̂0j,νv

′′ which
alternates in sign over all j due to the fact that ν is or-
thogonal to α. Thus the sum is of order d1/2 which is
subleading. When µ = α, i.e. the correction in Eq.(60),

we have ∇2
αv ∼ (R̂0j,α)2v′′ which is always positive thus

the sum gives a linear correction of order d, the same
order as the other terms in Eq.(60) [30].

To summarize the above discussion, the interaction
force acting on the cavity u0,α can be accounted for ex-
actly by retaining terms up to the first order in u0,α

and the trajectories of the non-cavity variables, namely
u⊥0,α and uj>0, receive negligible contributions from the
motion of the cavity u0,α when d → ∞. Thus the dy-
namics of the non-cavity variables, when discarding the
cavity-related perturbations, is associated with the real
system potential energy V =

∑
i<j v(Rij), but subjected

to the constraint that the tagged particle 0 is blocked
in direction α. The perturbation can be regarded as
coming from a linear coupling with an “external field”
u0,α by ∆V = −

∑
j>0∇αv(Xα

0j)u0,α. This perturba-

tion gives rise to corrections δu⊥0,α[u0,α] and δuj [u0,α]
which are negligible with respect to the non-perturbed
trajectories denoted with an “tilde” by ũ⊥0,α(t) and ũj(t).
Nonetheless, the summed effect on the dynamics of u0,α

in Eq.(60), which can be accounted for in linear response,
is non-negligible.

Since we are interested in the equilibrium dynamics, we
shall consider the equilibrium distribution of the initial
configurations. We denote the entire equilibrium average
as

〈·〉 =
1

Z

∫ N∏
i=0

D[ξi]dRi(0) exp (−βV ) ,

where V =
∑

0≤i<j≤N

v(Rij(0)). (62)

We introduce the equilibrium average of the non per-
turbed system

〈·〉0 =
1

Ẑ0

∫
D[ξ⊥0,α]

N∏
i=1

D[ξi]dR0i(0) exp (−βV ) .(63)

It is worth noticing that the equilibrium average over
the real system initial condition coincides with the that
of the non-perturbed system, defined via Eq.(61), when
averaging over quantities that are translation-invariant
(This has also been mentioned in Appx.D after Eq.(D1),
i.e. the equivalence between the equilibrium thermal av-
erage and P). We use the same notation as in the main

article, namely F̃0,µ = −
∑
j>0∇µv(R̃0j), µ = 1, 2 . . . , d

for the forces evaluated along the trajectories of the non-
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perturbed system and we denote k̃α =
∑
j>0∇2

αv(R̃0j)

with R̃0j = R0j(0) + ũ⊥0,α − ũj .

Applying linear response to take into account the
summed feedback effect on the dynamics of u0,α, we
rewrite Eq.(60), for one realization of the initial condition
and thermal noises, as

ζu̇0,α = ξ0,α(t) + F̃0,α + δF̃0,α − (k̃α + δk̃α)u0,α,(64)

where

δF̃0,α(t) =

∫ t

0

dsχF (t, s)u0,α(s)=̂

∫ t

0

ds
δF̃0,α(t)

δu0,α(s)

∣∣∣∣
R̃

u0,α(s),

δk̃α(t) =

∫ t

0

ds
δk̃α(t)

δu0,α(s)

∣∣∣∣
R̃

u0,α(s). (65)

The correction δk̃α ∼ O(u0,α) can be dropped, as we
only need to keep up to the first order in u0,α in Eq.(64).
Eq.(64) illustrates more transparently how the trajectory
of the cavity variable is determined given one realization
of the non-cavity trajectories. Now all non-cavity vari-
able involved terms can be regarded as stochastic input,
just as for the thermal noise ξ0,α, which defines the ef-
fective stochastic dynamics of u0,α. We can separate the
non-cavity variables involved terms into their averages
and the fluctuations, which leads to

ζu̇0,α = ξ0,α(t) +

[
F̃0,α − 〈F̃0,α〉0

]
+

∫ t

0

ds〈χF (t, s)〉0u0,α(s)− 〈k̃α〉0u0,α + 〈F̃0,α〉0 ∼ O(d)

−(k̃α − 〈k̃α〉0)u0,α +

∫ t

0

ds
[
χF (t, s)− 〈χF (t, s)〉0

]
u0,α(s) ∼ O(d1/2), (66)

where the second line represents the fluctuation of a sum
over ∼ d weakly correlated terms, each of which has fluc-
tuations of order one (as the average of the sum is order
d in the first line). Hence the second line is order d1/2,
which is sub-leading and thus can be dropped. Note that
by symmetry of inverting the α direction, 〈F̃0,α〉0 = 0 as

well as individual terms that sum up to F̃0,α and, as we

showed above, the fluctuation F̃0,α − 〈F̃0,α〉0 is order d
and non-negligible.

Applying the fluctuation-dissipation theorem for the
averaged linear response 〈χF 〉0 and integrating by parts
leads to

ζu̇0,α = ξ0,α + F0,α(t)− β
∫ t

0

ds〈F0,α(t)F0,α(s)〉0u̇0,α(s) + F eff
α (u0,α),

with F0,α=̂F̃0,α − 〈F̃0,α〉0 and F eff
α (u0,α) = 〈F̃0,α(t)〉0 − 〈k̃α(t)〉0u0,α + β〈

[
F̃0,α(t)− 〈F̃0,α(t)〉0

]2〉0u0,α(t).

(67)

Now we are going to show F eff
α = 0. We have the partition

function of the non perturbed system

Ẑ0 =

∫ ∏
i>0

dR0i exp (−βV ) ,

V =
∑
i>0

v(R0i) +
∑

0<i<j

v(R0i −R0j), (68)

which does not depend explicitly on R0. Thus the po-
tential mean force −∂R0,α

[
− β−1 lnZ0

]
= 0 for all R0.

By changing variables R0 → R0 + u0,αêα, it is easy to

verify that

−∂R0,α

[
− β−1 ln Ẑ0

]∣∣∣∣
R0+u0,αêα

= F eff
α (u0,α) +O(u2

0,α). (69)

As a result, F eff
α = 0.

We explicitly justify in Sec.VIII and Appx.E the key
step for obtaining the final equation, which is

〈F0,α(t)F0,α(s)〉0= 〈F̃0,α(t)F̃0,α(s)〉0 (70)

d→∞
=

∑
i>0

〈∇αv(R0i(t))∇αv(R0i(s))〉

Namely we can neglect the off-diagonal terms and restore
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the true trajectories within the diagonal terms in the
force-force correlation.

Now we can write the final version of the one particle
effective process by promoting Eq.(67) to a vector form,
as the choice of α is completely arbitrary.

ζu̇0 = ξ0 + F0 − β
∫ t

0

dsM(t− s)u̇0(s),

with 〈F0,µ(t)F0,ν(s)〉F = δµνM(t− s), (71)

and the memory function carries the following physical
meaning

M(t− s)d→∞=
1

d

∑
i>0

〈v′(R0i(t))v
′(R0i(s))〉

=
1

dN

∑
i,j,i 6=j

〈v(Rij(t))v(Rij(s))〉 (72)

As we have discussed before, the vector form above holds
in any direction that is not correlated with the initial
inter-particle distances.

VII. CAVITY METHOD: TWO PARTICLES
PROCESS

To solve for the memory kernel, we need the mean field
effective process of the distance between two particles,
say the two particles labelled 0 and 1. Recall the distance
can be written R01 = Ro+R̂o ·(u0−u1)+∆/Ro+o(d−1),
where ∆ = 1

2 (u0−u1)2 = 1
2 (u2

0+u2
1)+u0·u1 and we used

Ro for R01(0) for convenience. As u2 concentrates on its
average and u0 ·u1 ∼ d−3/2 is sub-leading, we have ∆ =
〈u2〉 representing a typical one particle mean squared
displacement, which will be solved self-consistently. Then
the remaining task is to find out the effective process for
w=̂u0,γ−u1,γ=̂êγ ·u0−êγ ·u1, if we now identify êγ = R̂o.

The mean-field limit d → ∞ implies that the typical
distance between two neighboring particles of particle 0,
say R1j for particle 1 and j(> 1), is far beyond the inter-
action range (knowing that at long range v(r) ∼ r−d−δ

with δ > 0 for the system to be stable). Thus, the effec-
tive random forces F0 and F1 are not correlated, as the
effective neighbors of particle 0 and those of particle 1 are
effectively out of the interaction range. When consider-
ing the effective dynamics of w, we can copy Eq.(71) for
u0,γ and u1,γ , but with the exception that now the direc-

tion êγ is not arbitrarily chosen, but is êγ = R̂01(0).
In this direction the force ∇v(R01) must be retained
as its projection on êγ alone is already significant, i.e.

êγ ·∇v(R01)
d→∞

= v′(R01) ∼ d. As a result, we have the
dynamics for u0,γ and u1,γ

ζu̇0,γ = ξ0,γ + F0,γ − β
∫ t

0

dsM(t− s)u̇0,γ(s)− v′(R01),

ζu̇1,γ = ξ1,γ + F1,γ − β
∫ t

0

dsM(t− s)u̇1,γ(s) + v′(R01).

(73)

Taking the difference, we find the effective process for w:

ζẇ =−2v′(Ro + w + ∆/Ro)

+ξw + Fw − β
∫ t

0

dsM(t− s)ẇ(s), (74)

with zero mean Gaussian noises such that

〈ξw(t)ξw(s)〉ξw = 4Tζδ(t− s),
〈Fw(t)Fw(s)〉Fw = 2M(t− s). (75)

The mean square displacement is formally given by
Eq.(71) through

∆(τ) = d〈u2
0,α(τ)〉ξ,F (76)

According to Eq.(72), the solution is self-consistently
given by

M(τ)=
1

d
〈〈v′(Ro)v′(Ro + w(τ) + ∆/Ro)〉ξw,Fw〉Ro

=̂
1

d

∫
dRo〈

1

N

∑
i 6=j

δ(Ro −Ri +Rj)〉init

×〈v′(Ro)v′(Ro + w(τ) + ∆/Ro)〉ξw,Fw

=
ρ

d

∫
dRog(Ro)〈v′(Ro)v′(Ro + w(τ) + ∆/Ro)〉ξw,Fw ,

xx (77)

where 〈·〉Ro stands for the average over equilibrium initial
configurations and the radial distribution function g(r) =
e−βv(r) in the large dimensional limit [31–33].

VIII. DIAGONAL APPROXIMATION

The key step in the all of our three derivations is the so-
called diagonal approximation for the memory function,
namely Eq.(17), Eq.(46) and Eq.(70) respectively in the
three methods, which is exact for the mean-field limit
d → ∞. We provide extensive details of its justification
in Appx.E, but here we outline the physical essence.

Take the memory function Eq.(15) as the example,
which is copied here:〈∑

j,k

R̂0j,α(0)R̂0k,α(0)v′(R̃0j(τ))v′(R̃0k(0))

〉
0

, (78)

with the distance R̃0j(τ) written as

R̃0j(τ) = R0j(0) + ỹ0j(τ) + ∆u(τ)/2R0j(0) , (79)

where ỹ0j(τ) = R̂0j(0) · (ũ⊥0,α(τ) − ũj(τ)) and ∆u as
mentioned before concentrates on its typical value.

It is clear that the correlation for a fixed pair (j, k)
(j 6= k) in Eq.(78) comes from two elements: the ini-
tial condition and the fact that ỹ0j and ỹ0k are coupled
through the motion of ũ⊥0,α. The second element has two
implications:
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• ỹ0j and ỹ0k share the same random (ξ⊥0,α) and

fluctuating (
∑
l(6=0,j,k) ∇⊥

α v(R̃0l)) forces, but pro-

jected into different and almost orthogonal direc-
tions, namely R̂0j(0) · R̂0k(0) ∼ d−1/2. It makes
that the correlation due to share some common
random forces is very weak when j 6= k. In par-
ticular a factor of d−1/2 smaller than when j = k,
see Appx.E.

• ỹ0j and ỹ0k are directly coupled in a way such as
(detailed in Appx.E):

˙̃y0j = −λ(j, k)v′(R̃0k) + other terms ,

˙̃y0k = −λ(j, k)v′(R̃0j) + other terms .

Owing to the fact that u0,α is blocked in the ref-
erence system, the coupling coefficient λ explicitly
reads

λ(j, k) =
∑
β( 6=α)

R̂0j,β(0)R̂0k,β(0) ∼ d−1/2 . (80)

These two implications together with the initial condition
induces that the total off-diagonal correlations, i.e. the
sume

∑
j,k,j 6=k in Eq.(78), is schematically (see Appx.E

for details)∑
j 6=k

[
R̂0j,αR̂0k,αCrr(j, k) + R̂0j,αR̂0k,αλ(j, k)Crr(j, j)

]
,

where Crr(i, j) stands for the correlation between a pair
before averaging over initial conditions and as just men-
tioned here above Crr(j, k) = d−1/2Crr(i, i) with arbi-
trary i and j 6= k. From the above expression, the fact
that j 6= k and that λ(j, k) does not contain the α com-
ponent implies that the total off-diagonal correlation is
a factor d−1/2 smaller than the diagonal contribution.
Hence the diagonal approximation is exact in the mean-
field limit d→∞. The interested reader can investigate
the detailed justifications as outlined in Appx.E.

IX. FINAL SET OF EQUATIONS

To solve the liquid-state dynamics in the mean-field
limit d → ∞ where all motion occurs on a length scale
∼ 1/d, we need to bring the discussion of the physics
back to a scale of order one. For this purpose, we rewrite
Eq.(74) and the self-consistent condition Eq.(77) in terms
of the gap variable h = d(R/` − 1) where ` ≡ 1 and
correspondingly rescale all quantities to order one. The
following calculations are in line with one section 5.1.2 of
reference [24] up to a factor 2. We define

ζ̄=̂ζ/d2, m̄=̂m/d2, ξ̄w=̂ξw/d, F̄w=̂F/d . (81)

Note that v′(R) = dv̄′(h), thus we define

M̄(τ)=̂M(τ)/d2 = 〈〈v̄′(ho)v̄′(h(τ))〉ξ̄w,F̄w〉ho , (82)

where ho = d(Ro − 1). We then have

h(τ) = ho + w(τ)d+ ∆̄(τ) +O(d−1) ,

∆̄(τ)=̂∆(τ)d = 〈(ū(τ))2〉F̄w ,
ū(τ)=̂du0,α(τ) . (83)

In the case where we take into account inertia, the one
particle dynamics, e.g. Eq.(71) along one arbitrary com-
ponent is expressed as

m̄¨̄u+ ζ̄ ˙̄u = ξ̄ + F̄ − β
∫ t

0

dsM̄(t− s) ˙̄u(s) (84)

with ξ̄ and F̄ Gaussian noises satisfying

〈ξ̄(t)ξ̄(s)〉ξ̄ = 2ζ̄T δ(t− s) ,
〈F̄(t)F̄(s)〉F̄ = M̄(t− s) . (85)

The two particle process Eq.(74) now reads

m̄ḧ+ ζ̄ḣ = B(t)− 2v̄′(h) +
√

2ξ̄ +
√

2F̄

−β
∫ t

0

dsM̄(t− s)ḣ(s) ,

B(t)=̂m̄ ¨̄∆(t) + ζ̄ ˙̄∆(t) + β

∫ t

0

dsM̄(t− s) ˙̄∆(s) .

(86)

where the mean square displacement can be formally
computed using Eq.(84):

∆̄(t) = 〈(ū(t))2〉ξ̄,F̄ , (87)

which after a lengthy calculation [24] reduces to the tem-
perature, i.e. B(t) = 2T , in the equilibrium case. Fi-
nally taking advantage of the isotropy of the integral in
Eq.(77) by working in polar coordinate, we rewrite the
self-consistent condition

M̄(τ)=
ρ

d

∫
ΩdR

d−1
o dRoe

−βv̄(ho)〈v̄′(ho)v̄′(h(τ))〉ξ̄,F̄

=
ρ

d2

∫
Ωd(1 +

ho
d

)d−1dhoe
−βv̄(ho)〈v̄′(ho)v̄′(h(τ))〉ξ̄,F̄

= ϕ̂

∫
dhoe

ho−βv̄(ho)〈v̄′(ho)v̄′(h(τ))〉ξ̄,F̄ , (88)

where Ωd the solid angle and ϕ̂ = ρΩd
d2 the rescaled pack-

ing fraction if the interaction range ` ≡ 1 is considered
roughly to be the diameter of particles.

X. GENERAL REMARKS ON THE d→ ∞
DERIVATION

All three versions of our derivation rely upon the same
insight: the identification of a variable that, on the one
hand, allows us to describe the tagged particle dynam-
ics but on the other hand perturbs the dynamics of the
remaining degrees of freedom to a sub-leading order of
magnitude in d. This leads to the possibility of neglect-
ing higher-order corrections when d→∞. We note that
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had we chosen as our variable of interest the full tagged
particle displacement u0(t) instead of u0,α(t), then the
perturbation theory would have lead to a series in which
successive terms are of increasing, rather than decreas-
ing, power of dimension (as explicitly discussed in Sec.II,
see also a footnote in Sec.VI). Thus, the DMFT equa-
tions found above can only be obtained if a component of
the tagged particle coordinate is used. As a consequence,
the pioneering work of Ref.[8] can only be considered as
an approximate treatment. As a final note of caution, we
stress that our whole derivation assumes time scales that
do not diverge with d. This is a fundamental ingredient
in all the scalings we have used.

Our simple approach to liquid-state DMFT opens up
the possibility of the controlled description of the d→∞
dynamics for many systems, ranging from the dynam-
ics of active particles to the single particle dynamics in
random environment, e.g. the random Lorentz gas [18].
The latter problem was recently analyzed starting from
a d-dimensional system and then added one additional
dimension rendering the system d + 1 dimensional, see
Biroli et al.[34]. This approach was inspired by an earlier
analysis of the spherical perceptron[35] by Agoritsas et
al.[24]. As outlined in the following section, our present
approach offers an alternative derivation of the random
Lorentz gas in the large dimensional limit [34, 36]. Im-
portantly, it is more transparent and controlled in that it
allows one to estimate the magnitude of terms neglected
in the analysis. Finally, in Sec.XII, we sketch perhaps the
most important use of the approach outline here, namely
the extension to a cluster DMFT, which will be developed
and analyzed in detail in future work.

XI. RANDOM LORENTZ GAS

The random Lorentz gas (RGL) problem can be
defined as follows. Take at random a configura-
tion of particle positions {R0, {Rj}j>0} from the
equilibrium Boltzmann distribution as defined by ∝
exp

(
−β
[∑

k>i≥0 v(Ri −Rk)
])

, then fix particle posi-

tions Rj>0 and let only particle R0 move according to
the following dynamics

ζṘ0 = ξ0 −
∑
j>0

∇v(R0 −Rj). (89)

We note that the random Lorentz gas problem defined
above differs from the problem considered in Ref. [34, 36].
In the latter problem the fixed particles are distributed
independently and thus may overlap. Since in the d→∞
limit three-particle and higher order correlations are neg-
ligible, the difference between these two models disap-
pears in this limit.

The dynamics of the random Lorentz gas can be viewed
as a specific case of the standard N →∞ particle prob-
lem where the particle zero R0 moves as in Eq.(89) and

particles Rj>0 follow

ζ∗Ṙj = ξj −
∑
i6=0

∇v(Rj −Ri), (90)

within the limit ζ/ζ∗ → 0. Using a simple diffusion ar-
gument, one concludes

(Rj(t)−Rj(0))2

(R0(t)−R0(0))2
∼ ζ

ζ∗
→ 0, (91)

i.e. the particles j > 0 are immobile compared with par-
ticle zero. In addition, since we keep the same interaction
potential, the equilibrium measure of the configuration of
particle positions remains the same.

This situation allows us to apply our method for deriv-
ing the mean-field theory of the RLG problem. We only
need to accommodate the previous results of standard
DMFT according to the limit ζ/ζ∗ → 0 to obtain the
correct equations. For the one particle (particle R0) pro-
cess of the RLG, the exact same calculation applies and
leads to the same equation as found in Eq.(71) except
that uj = 0 in the argument of F0 for particles j > 0,
which are immobile.

To solve the memory kernel in the one particle process,
we need the two particle process in the limit ζ/ζ∗ → 0,
for which we may multiply ζ/ζ∗ on both sides of the
second line of Eq.(73) and take the difference to obtain
the dynamics of ζ ddt (R0 − R1). Because of the multi-
plication by ζ/ζ∗ of all members of the second equa-
tion of Eq.(73), all forces coming from the second line
of Eq.(73) are neglected and so is the motion of parti-
cle j inside the bare force term between the two parti-
cles. Thus, defining now w(t)=̂êγ · (W (t)−W (0)) with
êγ=̂(R0(0)−Rj(0))/|R0(0)−Rj(0)|, we have

ζẇ = −v′(R∗0j + w +
∆u

2R∗0j
) (92)

+ ξγ + Fγ(t)− β
∫ t

0

ds〈Fγ(t)Fγ(s)〉ẇ(s), (93)

where ∆u(t)=̂〈u(t) · u(t)〉 = 〈(R0(t) − R0(0))2〉 is the
mean square displacement which can be expressed by the
one particle process of the RLG.

XII. PERSPECTIVE ON CLUSTER DMFT

In order to study the slow dynamics of supercooled liq-
uids in low spatial dimensions, we sketch the construc-
tion of a cluster DMFT (cDMFT) here, inspired by work
in the study of correlated quantum systems [4, 5]. The
sharp dynamical transition found in the DMFT[7, 37] is
smeared out in low dimensional supercooled liquids, a
fact attributable to collective motion of particles within
a spatial range possibly associated to the ”point-to-set”
length [12, 38, 39]. This collective motion is absent in
the mean-field theory, as it accounts only for correla-
tions within a pair of particles. To incorporate corre-
lations among several particles and still keep the theory
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FIG. 2. Illustration of the real-space meaning of liquid-state
cluster dynamical mean-field theory.

tractable, we consider a cluster (containing several par-
ticles), instead of just one particle, embedded in a self-
consistent bath composed of other equivalent clusters.
This idea is sketched in Fig.2. By analogy with DMFT,
we expect this approach to include a subset of higher
order terms in 1/d, leading to equations of the form

ζu̇1 = ξ1 + F1 −∇v(R12) + F pmf(R12)− β
∫ t

0

Mself(τ)u̇1(t− τ)dτ − β
∫ t

0

Mcross(τ
′)u̇2(t− τ ′)dτ ′,

ζu̇2 = ξ2 + F2 −∇v(R21) + F pmf(R21)− β
∫ t

0

Mself(τ)u̇2(t− τ)dτ − β
∫ t

0

Mcross(τ
′)u̇1(t− τ ′)dτ ′,

(94)

where F pmf is the potential mean force due to the inter- action between the cluster and its environment and the
fluctuating forces F1 and F2 satisfy

〈F1,µ(τ)⊗F1,ν(s)〉= 〈F2,µ(τ)⊗F2,ν(s)〉 = δµνMself(τ − s),
〈F1,µ(τ)⊗F2,ν(s)〉= 〈F2,µ(τ)⊗F1,ν(s)〉 = δµνMcross(τ − s). (95)

Since physically, F1 = −
∑
j>2 ∇v(R1j) and F2 =

−
∑
j>2 ∇v(R2j), to solve the memory kernelsMself and

Mcross, one needs to write down a two-cluster process dy-

namics. If a second cluster is composed of particles 3 and
4, the entire set of two-cluster equations is written

ζu̇1 = ξ1 + F1 + F pmf(R12)−∇v(R12)−∇v(R13)−∇v(R14)− β
∫ t

0

Mself(τ)u̇1(t− τ)dτ − β
∫ t

0

Mcross(τ
′)u̇2(t− τ ′)dτ ′,

ζu̇2 = ξ2 + F2 + F pmf(R21)−∇v(R21)−∇v(R23)−∇v(R24)− β
∫ t

0

Mself(τ)u̇2(t− τ)dτ − β
∫ t

0

Mcross(τ
′)u̇1(t− τ ′)dτ ′,

ζu̇3 = ξ3 + F3 + F pmf(R34)−∇v(R31)−∇v(R32)−∇v(R34)− β
∫ t

0

Mself(τ)u̇3(t− τ)dτ − β
∫ t

0

Mcross(τ
′)u̇4(t− τ ′)dτ ′,

ζu̇4 = ξ4 + F4 + F pmf(R43)−∇v(R41)−∇v(R42)−∇v(R43)− β
∫ t

0

Mself(τ)u̇4(t− τ)dτ − β
∫ t

0

Mcross(τ
′)u̇3(t− τ ′)dτ ′.

(96)

From these equations, the memory kernels can be solved self-consistently by computing the correlations among
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the bare forces among the four particles. A full derivation
of these equations and their numerical treatment will be
contained in a future publication.

XIII. CONCLUSIONS

In this paper we outline an interconnected set of direct
and physically transparent routes to obtaining the exact
dynamics of a liquid interacting via short ranged forces
in d → ∞. The unifying feature of these approaches
is the identification of the tagged particle displacement
along a single component of space as the “cavity” variable
whose influence on all other degrees of freedom is control-
lably small. Along with a dimensional scaling analysis,
the use of this variable allows us to connect the cavity
and projection operator methods of statistical mechan-
ics, unify the behavior of Newtonian and Brownian fluids,
and find facile solutions to the exact closed dynamics of
venerable models of slow dynamics, such as that of the
Lorentz gas in d → ∞. Future work will be focused in
two directions. First, our approach should provide a sim-
ple route to the full dynamics of other interesting liquid
state problems in the high dimensional limit. One such
example is the behavior of active hard spheres, where
the d → ∞ steady-state properties have recently been
explicated[40]. Perhaps more ambitiously, we plan to
take inspiration from the treatment of correlated elec-
tronic problems, where, for example, the exact behavior
of local properties of the Hubbard model in d→∞ can be
extended systematically to lower dimensions via a “clus-
ter” DMFT approach. The scaling approach presented
here enables the formulation of such cluster approaches
for classical fluids, providing a promising path towards
the grand challenge goal of a theory that can quantita-
tively treat glassy dynamics in low space dimensions.
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Appendices
The appendix provides all supporting information that is
not found in the main text. Appx.A, B, C discuss general
aspect of dimensional scales of various dynamic variables
in the d→∞ mean-field limit, as well as simplifications
implied purely by geometry, which serve to show in detail
(Appx.D) that the memory kernels for one and two par-

ticle processes are identical in the d→∞ limit. Appx.E
justifies explicitly the key element of our work, the diag-
onal approximation, corresponding to Eq.(17), Eq.(46)
and Eq.(70) in the main text for the three methods.
Appx.E presents some important general arguments, and
can be read independently.

Appendix A: Dimensional scale of displacement

There is an intuitive way to derive the scaling of the
displacement u with the dimension d large. It is estab-
lished that for the energy of the system to be extensive
in large dimensions, the interaction potential needs to
satisfy

v(r) ∝ |r/`|−d−δ with δ > 0, (A1)

where ` ≡ 1 sets the interaction range [14]. Assuming
that we study the system within a time scale where the
interaction potential plays a role for the physics, meaning
that v(r) neither diverges nor vanishes, implies that r
should be close to 1 and in particular the fluctuation of
∆r=̂r − 1 should satisfy

v(1 + ∆r) ∝ (1 + ∆r)−d−δ ∼ 1. (A2)

Discarding the δ ∼ 1 in front of d, ∆r should be of order
d−1 for the above equation to be satisfied. Since v ∼ 1
as well as d∆r = d(r − 1) ∼ 1, a natural variable change
leads to

v(r) ≡ v̄(d(r/`− 1)), (A3)

as mentioned in the main text.
If r(t) = r(0) + u(t), where r(0) = |r(0)| ∼ 1 and

u = u0 − u1 is the relative displacement between two
interacting particles, labeled “0” and “1”, then we have,
up to the first order in the Taylor expansion,

r(t) ≈ r(0) + r̂(0) · u(t) +
u2

2r(0)
. (A4)

We deduce r̂(0) · u + u2 ∼ ∆r ∼ d−1, where r̂(0) · u
can be viewed as an arbitrary component of u. This
implies uµ ∼ u0,µ ∼ u1,µ ∼ d−1 for arbitrary compo-

nent µ and u2 =
∑d
µ=1 u

2
µ ∼ d(d−1)2 ∼ d−1. Note that

uµ is fluctuating in amplitude of order d−1 around 0,
while u2 has a positive value of order d−1. Actually we
have u2 = u2

1 + u2
2 − 2u1 · u2. The cross product is

sub-leading as 2
∑d
µ=1 u0,µu1,µ ∼ d1/2d−1d−1 ∼ d−3/2,

where the summation
∑d
µ=1 contributes an order d1/2

since it runs over terms alternating in sign. The square

term e.g. u2
0 =

∑d
µ=1 u

2
0,µ sums up d positive terms of

order d−2, thus gives a positive value of order d−1. The
fluctuation of u2

0 can be estimated using central limit

theorem as
√
d(〈u4

0,µ〉 − 〈u2
0,µ〉2) ∼

√
dd−4 ∼ d−3/2, thus

sub-leading. That is ∆u and ∆w (defined in the main
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text) concentrate on the its average as twice of the mean-
square displacement.

In Eq.(2) of the main text, the dimensional scaling of
the summation of the forces due to effectively interacting
particles (i.e. nearest neighboring particles see Appx.B)
along an arbitrary component is estimated based on v′ =

dv̄′ ∼ d and
∑d
µ=1 R̂

2
µ = 1 =⇒ R̂µ ∼ d−1/2:

∼d∑
j( 6=i)

∇αv =

∼d∑
j(6=i)

R̂ij,αv
′ ∼ d1/2d−1/2d ∼ d. (A5)

where we assumed in a large d dimensional space, the
number of nearest neighbor is orderO(d) and the summa-

tion
∑∼d
j( 6=i) contributes an order of d1/2 as the summed

terms alternates in sign. All other scaling relations such
as ζ ∼ m ∼ d2 (which implies ξµ ∼ d) are natural for
balancing along each component the exact dynamic equa-
tions Eq.(1) of the main text.

Appendix B: General considerations of the dynamics
in d→ ∞ limit

In this section, we justify, from a geometric point of
view, that the dynamics in the mean-field limit d → ∞
reduces to a canonical form, namely: (i) For each parti-
cle, only the interactions with its first neighbors play a
role for its dynamics. (ii) The probability that a third
particle interacts simultaneously with two particles that
are first neighbors to each other is exponentially small
in d, i.e. there are effectively no loops of interactions,
which makes an infinite dimensional system behave as
the Mari-Krzakala-Kurchan model [41].

According to the infinite dimensional potential
Eq.(A1), the force received from a particle lying in the
second coordination shell is O(2−d) times smaller than
from a first neighbor particle. Knowing that the force
along an arbitrary component êα due to a particle of
the nearest neighbors is order r̂αv

′ ∼ d−1/2d ∼ d1/2,
the same component of the force from a second nearest
neighbor particle is order 2−dd1/2. Meanwhile, there are
a much larger number of particles in the second coordi-
nation shell, as the volume of the second coordination
shell is about 2d times larger than the first coordination
shell. However when summing up forces coming from
all directions, the summation over particles in the sec-
ond coordination contributes only a order of magnitude
2d/2d1/2, given that there are O(d) particles in the first
coordination shell. Thus the overall α component of the
force coming from the second nearest neighbors is order
2d/22−dd ∼ 2−d/2d, which is exponentially smaller in d
than the force from the nearest neighbors. As a conse-
quence, each particle effectively interacts only with its
nearest neighbors.

To justify the second statement mentioned at the be-
ginning of this section, we consider two particles labelled
0 and 1 lying in the shell of the nearest neighbors of each

other, i.e. |R0 −R1| ∼ ` ≡ 1 . We define a region I

I=̂{x|(x−R0)2 = (x−R1)2 = ` ≡ 1}, (B1)

where particles lie in the shell of the nearest neighbors of
both particles 0 and 1, thus interacting with them both.
We set R0 = 0 and R1 = ê1, where ê1 is one component
direction of the Cartesian coordinates. The region I can
then be explicitly written as

x1 = 1/2,

d∑
µ=2

x2
µ = 3/4, (B2)

which defines a d − 1-ball of radius
√

3/2 giving a vol-

ume VI of order (
√

3/2)d−2 π(d−1)/2

Γ((d−1)/2) . Knowing that the

first coordination shell is a d-ball of radius 1 occupying

a volume V1st of order πd/2

Γ(d/2) , the portion of particles in-

teracting with both particles 0 and 1 among the nearest
neighbors of either one is then VI/V1st ∼ (

√
3/2)d, which

is exponentially small in d. Thus the interaction loops of
third or higher orders can be neglected in the mean-field
theory.

With the above arguments, we derive the following
statement. In the mean-field limit, when considering the
dynamics of two interacting particles embedded among
others, the fluctuating forces and the associated respond-
ing friction on each of the two particles are exactly the
same as when considering the dynamics of only one par-
ticle embedded in the bath of other particles. Because of
(i) and (ii), we can assign a tree graph G(V,E) for the
effective interactions among particles, using particles as
the vertices V and edges E for effective interactions. In
this case, the system is expected to behave similarly to
the Mari-Krzakala-Kurchan model. This simplification
gives way for important implications on the Boltzmann
weight on the configuration space of particle positions in
the mean-field limit d→∞ , which we detail in the next
section.

Appendix C: Boltzmann weight in the limit d→ ∞

The true Boltzmann weight on the configuration space
of particle positions is formally written

e−β
∑
i<j v(Ri−Rj). (C1)

According to Appx.B, the situation such as v(R1 −
R2) ∼ v(R2 − R3) ∼ v(R3 − R1) ∼ O(1), or those
that imply higher order loops are intrinsically extremely
improbable in the limit d→∞ for purely geometric rea-
sons. As a consequence, the Boltzmann weight on the
entire space can be partitioned into sub-domains, each of
them V(G) being associated with a tree graph G(V,E).
A certain tree graph G(V,E) representing effective inter-
actions among particles holds for a configuration {Ri}i,
if and only if {Ri}i ∈ V(G). Each vertex i ∈ V is la-
belled by the particle Ri. An edge (i, j) ∈ E states that
the two adjacent particles stay in the range of interaction,
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i.e. |Ri −Rj | = 1 + hij/d, with |hij | ∼ O(1). A miss-
ing edge (i, k) 6∈ E means the two particles are far apart
|Ri−Rk| & 2. Note that different interaction graphs can
be obtained by permuting vertices labels. Thus all sub-
domains V(G) for different graphs are statistically equiv-
alent and we only need to study the Boltzmann weight
on a sub-domain V(G) of a particular graph, for it is
representative of that on the entire configuration space.

Let’s consider a particular graph G(V,E) where the
“central” vertex labelled by particle R0 interacts with
O(d) neighbors including particle R1. The Boltzmann
weight on V(G) then simplifies to

PC(R0,R1, . . .)=
1

ZC
e−β

1
2

∑
i

∑
j∈∂i

v(Ri−Rj)

=
1

ZC
e−β

∑
(ij)∈E v(Ri−Rj),

with (R0,R1,. . .) ∈ V(G), (C2)

where ∂i ≡ {j|(ij) ∈ E} represents the neighbors of par-
ticle i and ZC , the normalization, reads

ZC =

∫
V(G)

dR0dR1dR2 . . . e
−β
∑

(ij)∈E v(Ri−Rj).(C3)

It is then easy to get rid of the couplings between inte-
grated variables by performing the following changes of
variables. Firstly, thanks to the tree structure, the ver-
tices can be categorized by “layers” at different graph
distances from the “central” vertex particle 0. The m-th
layer Vm consists of all the vertices to be reached from
particle 0 by m edges (the 0-th layer being just particle
0 itself). Hence, Vm contains d(d− 1)m−1 ∼ dm particles
(vertices). Secondly, instead of working with the parti-
cles’ absolute positions, it is convenient to work with the
relative position of a particle of layer Vm with respect to
its unique neighbor in layer Vm−1. For the m-th layer
we have the relative positions Dm ≡ {Rkl=̂Rk −Rl, k ∈
Vm, l ∈ Vm−1, (k, l) ∈ E} and D0 ≡ {R0}.

Yet, the domain of integration V(G) is still a complex
object to be clarified. With the above changes of vari-
ables, it is easy to recognize that V(G) is a subset of V̄(G)
defined as

V̄(G)=̂{R0 ∈ Rd} ×
∏

(ij)∈E

{Rij ∈ Sd−1}, (C4)

where Sd−1 represents a volumetric shell of tiny but finite
O(d−1) thickness attached to the (d−1)-sphere of radius
1 centered at 0. Thus the Boltzmann weight in Eq.(C2)
can be expressed

PC=
1

ZC
e
−β
(∑

ij∈E v(Rij)+
∑
i

∑
k<l,∈∂i

v(Rik−Ril)
)
,

ZC=

∫
V̄(G)

dR0

∏
(ij)∈E

dRij

e
−β
(∑

ij∈E v(Rij)+
∑
i

∑
k<l,∈∂i

v(Rik−Ril)
)
, (C5)

where the first sum contains all effective interactions
stated by the graph and the second term prevents parti-
cles (k and l) neighboring to a common one (particle i)

from overlapping. However, a pure geometric argument
similar to the one of Appx.B leads to the conclusion that
two particles both sitting in the first coordination shell
(Sd−1) of a third one have extremely small (exponentially
small in d) probability to overlap even without interac-
tions between them. Formally one can show, with θ(x)
denoting the Heaviside function

1

S2
d−1

∫
S2d−1

dRdR′θ(1 + d−1 − |R−R′|) . (

√
3

2
)d.

That is, we can release the domain-constraint V(G) to
V̄(G) for the Boltzmann weight in Eq.(C2) and conclude

PC=
1

ZC

∏
(ij)∈E

e−βv(Rij), Rij ∈ Sd−1, ∀(ij) ∈ E

(C6)

Thus we not only decouple the integrated variables but
also we integrate them independently and freely in Sd−1.
This effectively simplified Boltzmann weight on the con-
figuration space plays an important intermediate step
when investigating the derived force-force correlations us-
ing the projection operator formalism in the following
sections.

Note that Eq.(C5) and Eq.(C6) neglect the boundary
condition for a finite system, which is necessary for com-
puting the equation of state by direct integration of the
partition function as the thermodynamic limit is taken
only after the free energy is obtained for a finite system.
For our purpose (in Appx.D) of discussing the dynamics,
these equations help to clarify the fact locally the inte-
gration variables Rij can be treated as independent from
each other in the large system size limit.

Appendix D: Negligible difference between P and P2

The difference between the averages using P = 〈·〉0 and
P2 = 〈·〉2 comes from the different domains of integration
over the configuration space of particle positions. Using
the Boltzmann weight of Eq.(C6), the projection P, after
integrating out momentum, can be expressed as

P• =
1

Ẑ0

∫
Sd−1

dR01e
−βv(R01)

·
∏

(ij)∈E\(01)

∫
Sd−1

dRije
−βv(Rij)•,

(D1)

where the integration over dR⊥0,α is discarded by trans-
lation invariance and thus P is equivalent to the equilib-
rium thermal average. Similarly, the projection for the
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two particle computation is expressed as

P2• =
1

Z∗2

∫
Sd−1

dR01δ(R01,α −R∗α)e−βv(R01)

∏
(ij)∈E\(01)

∫
Sd−1

dRije
−βv(Rij)•,

(D2)

where R∗α is the chosen fixed distance along direction α
between the two particles and Z∗2 depending on R∗α is the
adapted normalization factor.

By changing to polar coordinates, the restricted inte-
gration Eq.(D2) and its relation with P can be clearly
illustrated because of the spherical symmetry of the in-
tegration domain Sd−1 and the energy v(R). We will
use R for R01(0) (the “(0)” is retained to emphasize the
initial condition when considering dynamics) throughout
this section for shortening the notation. The polar coor-
dinates (R,φ1, φ2, . . . , φd−1) are defined in the following
way, setting the direction α as the ”first” direction by an
arbitrary choice

Rα ≡ R1= R cosφ1,

R2= R sinφ1 cosφ2,

R3= R sinφ1 sinφ2 cosφ3,

. . .

Rd−1= R sinφ1 sinφ2 . . . sinφd−2 cosφd−1,

Rd= R sinφ1 sinφ2 . . . sinφd−2 sinφd−1. (D3)

The restricted integral∫
Sd−1

dRδ(Rα −R∗α)e−βv(R)• (D4)

is expressed in polar coordinates∫
|R−1|.d−1

Rd−1dR

(
d−2∏
s=1

∫ π

0

dφs(sinφs)
d−1−s

)
∫ 2π

0

dφd−1δ(R cosφ1 −R∗α)e−βv(R) • . (D5)

Integrating first over φ1 leads to∫
|R−1|.d−1

Rd−2dR

(
d−2∏
s=2

∫ π

0

dφs(sinφs)
d−1−s

)
∫ 2π

0

dφd−1(sinφ∗1)d−3e−βv(R)•,

≡
∫
Sd−2

dR⊥(sinφ∗1)d−3e−βv(|R⊥|)•, (D6)

where φ∗1 satisfies cosφ∗1 = R∗α/R. Note that R∗α ∼ d−1/2.
To the leading order, we have φ∗1 ≈ π/2 − R∗α/R and
thus sinφ∗1 ≈ 1 − (R∗α/R)2, implying (sinφ∗1)d−3 ≈
exp(−d(R∗α/R)2). Since R = 1 + h/d with h ∼ 1, we
have to the leading order (sinφ∗1)d−3 ≈ exp(−dR∗2α ) and
the integration in Eq.(D4) becomes

e−dR
∗2
α

∫
Sd−2

dR⊥e−βv(|R⊥|) • . (D7)

This implies that P2 can be written as

P2• =
1

Ẑ2

∫
Sd−2

dR⊥01,αe
−βv(R01)

∏
(ij)∈E\(01)

∫
Sd−1

dRije
−βv(Rij)•,

(D8)

with the normalization factor Ẑ2 = e−dR
∗2
α /Z∗2 no longer

depending on R∗α. From Eq.(D7), we deduce that in the
mean-field limit d → ∞, the component of the parti-
cle distance along a fixed direction is actually given by
a Gaussian distribution independent of the other direc-
tions. Thus, the projector P can be expressed, letting A
being an arbitrary physical quantity,

PA =

∫ √
d

π
dRαe

−dR2
α (P2A) , (D9)

which explicitly shows that the difference between PA
and P2A depends on how A varies with Rα in the range
from 0 to O(d−1/2). Any polynomial dependence, i.e.
|A(Rα, . . .) − A(Rα = 0, . . .)| ∼ c|Rα|k gives rise to a
difference

|PA− P2A| ∼ O(cd−k/2). (D10)

In the case where A is a force-force product, we can
show that the modification made by varying R01,α(0)(≡
Rα) from 0 to O(d−1/2) is quadratic in Rα and the the
total modification in switching integration domains is of
order d−1/2. Let

A=̂F0j,α(R̃0j(t))F0j,α(R̃0j(s)) (D11)

for j 6= 1, which simplifies for d→∞ (see the main text):

A=̂R̂0j,α(0)2v′(R̃0j(t))v
′(R̃0j(s)). (D12)

To the leading order, we have

R̃0j ≡ |R̃0j | ≈ R0j(0) + R̂0j(0) · (ũ⊥0,α − ũj) + u2

(D13)

where the last symbolic term u2 concentrates on its typ-
ical value with negligible fluctuations and thus is effec-
tively deterministic. Only ỹ0j=̂R̂0j(0) · (ũ⊥0,α − ũj) de-
pends non-trivially on the initial condition. Recall that
the dynamics described by the Liouvillian L0 implies that
the evolution of ỹ0j depends on R01(0)(≡ R) through

m¨̃y0j = . . .+ R̂0j(0) · R̂⊥v′(R+ ỹ01 + u2), (D14)

where the left-hand side can be replaced by ζ ˙̃y0j when
considering Brownian dynamics and we have used the
self-averaging property of the ỹ variables. Using polar
coordinates Eq.(D3) for R, the last term in Eq.(D14)
becomes

d∑
ν≥2

R̂0j,ν(0) sinφ1

(
ν−1∏
l=2

sinφl

)
(cosφν)

∑d−1
q=2 δq,νv′(R+ ...).

(D15)
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Here R̂0j,ν(0) is a scalar component of the initial relative
vector between particles 0 and j. Then the modification
on ỹ0j due to the change of Rα from 0 to R∗α ∼ d−1/2

can be estimated by developing up to the leading order
of sinφ∗1 with φ∗1 satisfying cosφ∗1 = (R∗α/R)2. Recalling
that m ∼ ζ ∼ d2, we arrive at

δỹ0j∼
1

m

(
R∗α
R

)2 [ d∑
ν≥2

R̂0j,ν(0)

(
ν−1∏
l=2

sinφl

)

(cosφν)
∑d−1
q=2 δq,ν

]
v′(R+ ...),

=
1

m

(
R∗α
R

)2 d∑
ν≥2

R̂0j,ν(0)x̂νv
′(R+ ...)

with

d∑
ν≥2

x̂ν ≡ 1, (D16)

implying

δỹ0j ∼ d−2+ 1
2−

1
2−

1
2 +1R∗2α ∼ d−3/2R∗2α . (D17)

Then considering Eq.(D12), to the leading order, we have

|A(R∗α)−A(0)|∼ R̂2
0j,αv

′v′′δỹ0j ∼ d1/2R∗2α . (D18)

From Eq.(D10), the integrals over the force-force corre-
lations differ by O(d−1/2), which is a sub-leading term
compared to the correlation itself which is O(d). We
conclude that the difference of the sum of diagonal terms
of the force-force correlations, either computed using P
or P2, is a sub-leading factor of d, negligible in the large
d limit.

We conclude this discussion by pointing out that the
memory kernels in Eq.(22) for the two particle process is
identical to that in Eq.(10) for the one particle process.

Appendix E: Diagonal Approximation

The passage Eq.(70) is the key identity for all of our
three derivations, which appears also in Eq.(17) and
Eq.(46). We explicitly justify this step adopting the over-
damped dynamics without lost of generality for the New-
tonian dynamics case.

The force-force correlation 〈F̃0,α(t)F̃0,α(s)〉0 is explic-
itly written

〈F0,α(t)F0,α(s)〉0 = 〈F̃0,α(t)F̃0,α(s)〉0
d→∞

=
∑
i,j

〈R̂0i,α(0)v′(R̃0i(t))R̂0j,α(0)v′(R̃0j(s))〉0

=
∑
i,j

〈R̂0i,α(0)R̂0j,α(0)〈v′(R̃0i(t))v
′(R̃0j(s))〉ξ〉init

= 〈
∑
i,j

R̂0i,αR̂0j,α〈v′(R̃0i(t))v
′(R̃0j(s))〉cξ〉init

+〈
∑
i,j

R̂0i,αR̂0j,α〈v′(R̃0i(t))〉ξ〈v′(R̃0j(s))〉ξ〉init , (E1)

where we have introduced 〈·〉0 = 〈〈·〉ξ〉init, with 〈·〉ξ the
average over the thermal noise terms conditioned on ini-
tial conditions R0i(0),R0j(0), and 〈·〉init the full average
over initial conditions. In the last two lines of Eq.(E1), we
omit “(0)” for clarity, and 〈·〉cξ stands for the connected
correlation.

Neglecting off-diagonal terms – We first discuss the
connected correlation and focus on an individual corre-
lation term specified by i, j in Eq.(E1). Recall that (see

Eq.(16) and Eq.(79)) R̃0i ≈ R0i(0)+ ỹ0i+∆u(t)/2R0i(0),

with ỹ0i = R̂0i(0) · (ũ⊥0,α − ũi). The correlation

〈v′(R̃0i(t))v
′(R̃0j(s))〉cξ originates from the correlation

〈ỹ0i(t)ỹ0j(s)〉cξ. For convenience, we use re-scaled quan-

tities ȳi ≡ ỹ0id and v̄(ȳ) ≡ v(d(R̃ − 1)), which are order
one. Then

〈v′(R̃0i(t))v
′(R̃0j(s))〉ξ = d2〈v̄′(ȳi(t))v̄′(ȳj(s))〉ξ .

(E2)

Since both v̄ and ȳ are order one, it is reasonable to
assume

O
(
〈v̄′(ȳi(t))v̄′(ȳj(s))〉cξ

)
= O

(
〈ȳi(t)ȳj(s)〉cξ

)
. (E3)

From Eq.(61), we obtain the dynamics of ȳi and ȳj

ζ̄ ˙̄yi= ηi + fi − 2v̄′(ȳi) + (R̂0i,α)2v̄′(ȳi)

−
d∑

β( 6=α)

R̂0i,βR̂0j,β v̄
′(ȳj),

ζ̄ ˙̄yj= ηj + fj − 2v̄′(ȳj) + (R̂0j,α)2v̄′(ȳj)

−
d∑

β( 6=α)

R̂0i,βR̂0j,β v̄
′(ȳi),

(E4)

where ζ̄ ≡ ζ/d2 ∼ 1 and

ηi= d−1R̂0i(0) · (ξi −
∑
k 6=0

∇v(R̃ik))

ηj= d−1R̂0j(0) · (ξj −
∑
k 6=0

∇v(R̃jk))

fi= d−1R̂0i(0) · (ξ⊥0,α −
∑
k 6=i,j

∇⊥α v(R̃0k))

fj= d−1R̂0j(0) · (ξ⊥0,α −
∑
k 6=i,j

∇⊥α v(R̃0k)) (E5)

All terms on the r.h.s of Eq.(E4) are deterministic in ȳ
except η and f . Firstly we notice that ηi and ηj are
uncorrelated in the d→∞ limit for two reasons: (i) Ac-
cording to the Appx.B, degrees of freedom involved in ηi
are decoupled from those involved in ηj ; (ii) the influence
on ηi from the particle j is negligible and vise versa. As
a consequence ηi and ηj can viewed as two independent
random forces. Thus the correlation between ȳi and ȳj ,
if any, originates from the correlation between fi and fj .

We have O(fifj) ∼ d−2
∑d
µ6=α

∑d
ν 6=α R̂0i,µR̂0j,ν(ξ0,µ −
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k∇µv)(ξ0,ν −

∑
k′ ∇νv). By self-consistency, it is

straightforward to obtain the connected correlations:

〈fifj〉cξ ∼

{
1, if i = j

d−1/2, if i 6= j
. (E6)

The last two terms in each of Eq.(E4) can seen as per-

turbations since (R̂0i,α)2 ∼ d−1 and
∑
β 6=α R̂0i,βR̂0j,β ∼

d−1/2 while all other terms are order one. Let ȳoi de-
note the solution of Eq.(E4) when the perturbations are
absent. Then we have

O
(
〈ȳoi (t)ȳoj (s)〉cξ

)
= O

(
〈fi(t)fj(s)〉cξ

)
∼

{
1, if i = j

d−1/2, if i 6= j
.

(E7)

Performing a linear expansion, the solutions of Eq.(E4)
are

ȳi(t)≈ ȳoi (t) + (R̂0i,α)2

∫ t

0

dt′e−2
∫ t
t′ v̄
′′(ȳoi (s))dsv̄′(ȳoi (t′))

−

 ∑
β(6=α)

R̂0i,βR̂0j,β

∫ t

0

dt′e−2
∫ t
t′ v̄
′′(ȳoi (s))dsv̄′(ȳoj (t′)) ,

ȳj(t)≈ ȳoj (t) + (R̂0j,α)2

∫ t

0

dt′e−2
∫ t
t′ v̄
′′(ȳoj (s))dsv̄′(ȳoj (t′))

−

 ∑
β(6=α)

R̂0i,βR̂0j,β

∫ t

0

dt′e−2
∫ t
t′ v̄
′′(ȳoj (s))dsv̄′(ȳoi (t′)) .

(E8)

For the auto-correlation, it is clear that

O
(
〈ȳi(t)ȳi(s)〉cξ

)
= O

(
〈ȳoi (t)ȳoi (s)〉cξ

)
= O

(
〈fi(t)fi(s)〉cξ

)
= 1 , (E9)

which with Eq.(E3) implies that the diagonal contribu-
tion of the connected correlation in Eq.(E1) scales as

〈
∼d∑
i

(R̂0i,α)2d2〈v̄′(ȳi(t))v̄′(ȳi(s))〉cξ〉init

∼ d2〈
∼d∑
i

(R̂0i,α)2〈ȳi(t)ȳi(s)〉cξ〉init

∼ d2+1−1/2−1/2 ∼ d2 . (E10)

From Eq.(E8), the correlation for i 6= j is estimated to
be

O
(
〈ȳiȳj〉cξ

)
= O

(
〈ȳoi ȳoj 〉cξ

)
+
[
(R̂0i,α)2 + (R̂0j,α)2

]
O
(
〈ȳoi ȳoj 〉cξ

)
−2

 ∑
β(6=α)

R̂0i,βR̂0j,β

O (〈ȳoi ȳoi 〉cξ) . (E11)

Thus the off-diagonal contribution to the connected cor-
relation in Eq.(E1) is estimated as

O

d2〈
∼d2∑
i 6=j

R̂0i,αR̂0j,α〈v̄′(ȳi)v̄′(ȳj)〉cξ〉init


= O

d2〈
∼d2∑
i 6=j

R̂0i,αR̂0j,α〈ȳoi ȳoj 〉cξ〉init


+O

d2〈
∼d2∑
i6=j

R̂0i,α(R̂0j,α)3〈ȳoi ȳoj 〉cξ〉init


+O

d2〈
∼d2∑
i6=j

(R̂0i,α)3R̂0j,α〈ȳoi ȳoj 〉cξ〉init


−O

2d2〈
∼d2∑
i 6=j

R̂0i,αR̂0j,α

d∑
β( 6=α)

R̂0i,βR̂0j,β〉init


= d2+1−1/2−1/2−1/2

+2d2+1−1/2−3/2−1/2

−2d2+1−1/2−1/2+(1/2−1/2−1/2)

= d3/2 . (E12)

We conclude from Eq.(E12) and Eq.(E10) that the off-
diagonal contribution on the connected correlation of
Eq.(E1) is sub-leading and thus negligible.

We now study the very last term in the force-froce cor-
relation Eq.(E1). The diagonal contribution is negligible
as easily estimated:

d2〈
∼d∑
i

(R̂0i,α)2〈v̄′〉ξ〈v̄′〉ξ〉init ∼ d2+1−2/2 ∼ d2 (E13)

To study the off-diagonal contribution, we use the fact
that the α direction is not special in the initial condition,
thus we can write

R̂0i,αR̂0j,α =
1

d
R̂0i · R̂0j , (E14)

and we estimate the upper bound by letting t = s = 0 to
find

O

〈∼d2∑
i 6=j

R̂0i,αR̂0j,α〈v′(t)〉ξ〈v′(s)〉ξ〉init


≤ O

 ∼d∑
i 6=j

d−1〈R̂0i · R̂0jv
′(R0i)v

′(R0j)〉init


≤ O

 ∼d∑
i 6=j

d〈R̂0i · R̂0j〉init

 , (E15)

where v′ ∼ d is used in the last passage. We may use
the average within a sample of a typical configuration to
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evaluate the ensemble average 〈·〉init. That is for each
pair i 6= j we may write

〈R̂0i · R̂0j〉init ≈
1

d2

∑
k 6=l

R̂0k · R̂0l . (E16)

For a given R̂0k, by isotropy, there must be an equal num-
ber of R̂0l terms which give R̂0k · R̂0l ∈ [a − δa, a + δa]

and those which give R̂0k · R̂0l ∈ [−a− δa,−a+ δa] with
|a| < 1. Exceptions only take place when |a| → 1, be-

cause k 6= l implies R̂0k · R̂0l 6= 1, while we still can have
R̂0k · R̂0l ≈ −1 with a probability that scales roughly
as 1/Sd−1 where Sd−1 ∼ exp(d − 1) is the area of the
d − 1 unit sphere. By Eq.(E15), the off-diagonal contri-
bution to the very last term in Eq.(E1) is negligible. To
conclude, the force-force correlation of Eq.(E1) is domi-
nated by the diagonal contribution when d→∞

〈Fαα (t)Fαα (s)〉0
d→∞

=
∑
j>0

〈∇αv(R̃0j(t))∇αv(R̃0j(s))〉0

xx(E17)

Restoring the true trajectories in diagonal terms –
Next, we want to compare the diagonal contribution to
the force-force correlation in the un-blocked system, i.e.∑

j>0

〈∇αv(R0j(t))∇αv(R0j(s))〉, (E18)

where

R0j(t) = R̃0j(t)− δuj + δu⊥0,α + u0,α

With Eq.(E17), in the d→∞ limit, we already now that

∇αv(R0j(t))∇αv(R0j(s))

≈
(
R̂0j,α(0)

)2

v′(R0j(t))v
′(R0j(s)). (E19)

Next, one needs to investigate the difference R0j(t) −
R̃0j(t) due to corrections δuj , δu

⊥
0,α and u0,α. Up to the

leading order correction, we can write

R0j(t)≈ R̃0j(t) + δyj

δyj=̂R̂0j(0) · (δu⊥0,α + u0,α) ∼ d−3/2. (E20)

Plugging this into Eq.(E19) and expanding in δyi, we
arrive at

∇αv(R0j(t))∇αv(R0j(s))

≈ ∇αv(R̃0j(t))∇αv(R̃0j(s))

+
∑
m≥1

1

m!
〈
(
R̂0j,α

)2

v
(1+m)
0j (t)δymj (t)v′(R̃0j(s))〉0

+
∑
n≥1

1

n!
〈
(
R̂0j,α

)2

v′(R̃0j(t))v
(1+n)
0j (s)δynj (s)〉0

+
∑

m≥1,n≥1

1

m!n!
〈
(
R̂0j,α

)2

v
(1+m)
0j (t)v

(1+n)
0j (s)δymj (t)ynj (s)〉0,

xx (E21)
where v

(1+m)
0j (t) ≡ v(1+m)(R̃0j(t)) from which we recog-

nize that the largest correction (when m = 1 or n = 1)

is of order d1/2. Then summing over
∑∼d
j>0 results in a

total difference of order d3/2 of Eq.(E18) when compared
with Eq.(E17). We thus conclude

〈F̃αα (t)F̃αα (s)〉0
d→∞

=
∑
j>0

〈∇αv(R0j(t))∇αv(R0j(s))〉

=
1

d

∑
j

〈v(R0j(t))v(R0j(s))〉

=
1

dN

∑
i,j,i 6=j

〈v(Rij(t))v(Rij(s))〉 ,(E22)

where the last passage relies on the fact that all pair of
particles are equivalent.
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