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The outcome of an election depends not only on which candidate is more popular, but also on
how many of their voters actually turn out to vote. Here we consider a simple model in which voters
abstain from voting if they think their vote would not matter. Specifically, they do not vote if they
feel sure their preferred candidate will win anyway (a condition we call complacency), or if they
feel sure their candidate will lose anyway (a condition we call dejectedness). The voters reach these
decisions based on a myopic assessment of their local network, which they take as a proxy for the
entire electorate: voters know which candidate their neighbors prefer and they assume—perhaps
incorrectly—that those neighbors will turn out to vote, so they themselves cast a vote if and only if
it would produce a tie or a win for their preferred candidate in their local neighborhood. We explore
various network structures and distributions of voter preferences and find that certain structures
and parameter regimes favor unrepresentative outcomes where a minority faction wins, especially
when the locally preferred candidate is not representative of the electorate as a whole.

I. INTRODUCTION6

Election forecasting is a difficult problem with real-7

world consequences [1–3]. Part of the difficulty is that8

human psychology is murky. How do voters decide which9

candidate they prefer? What makes them change their10

minds? And how do they decide whether to tell pollsters11

what they really think? More broadly, modeling elections12

and voter behavior can shed light on a wide range of13

puzzling issues about human decision-making and hot-14

topic phenomena such as polarization and the formation15

of political echo chambers [4–11].16

There is a rich literature on agent-based opinion dy-17

namics. This literature includes the “voter model” of18

probability theory [12] and its many extensions (see [13]19

for a review), as well as bounded confidence models [14–20

16]. In such models, agents interact on a network and21

change their opinions according to certain rules. For ex-22

ample, the agents can adopt the opinion of one of their23

nearest neighbors chosen at random [12], or they can24

adopt the opinion held by the majority of their neigh-25

bors [17, 18], or they can update their opinion at a non-26

linear rate depending on the opinion distributions of their27

neighbors [19–21]. The update rules can also depend on28

the state of agents’ opinions (e.g., introducing stubborn29

[22] or confident [23] voters who do not change their opin-30

ions easily). A key question is when consensus forms31

among the nodes and what conditions promote it.32

However, opinion dynamics is just one facet of voter33

behavior. In the real world, another important factor is34

voter turnout, defined as the percentage of eligible vot-35

ers who cast a ballot in an election. The turnout rate de-36

pends on many socioeconomic, political, and institutional37

factors, from population size to campaign expenditures38

to registration requirements [24, 25]. The abundance of39

relevant factors makes predicting voter turnout difficult.40
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One factor influencing voter turnout is the closeness of41

the election [26, 27]. Intuitively, one might expect that42

close elections should produce higher turnout, but some43

scholars dispute that this is the case [28, 29]. Here we ex-44

plore the effect of network structure on individual agents’45

perceptions of election closeness and the consequent im-46

pact on turnout and on the election itself.47

Certain network structures and opinion distributions48

can lead to minority nodes mistakenly believing that they49

belong to a majority. The phenomenon whereby local50

knowledge of the network is not representative of the elec-51

torate as a whole is known as the “majority illusion”; a52

“minority illusion” is also possible [30]. We are inter-53

ested in conditions that allow a minority to win elections54

by generating a higher turnout than the majority.55

The phenomenon of the minority defeating the ma-56

jority has been studied previously in many ways. For57

example, Iacopini et al. [31] examine when a minority58

can build a critical mass to cause a cascade on hyper-59

graphs and become the dominant opinion. In a similar60

spirit, Touboul [32] and Juul and Porter [33] examine61

how antiestablishment nodes (nodes that prefer to be-62

long to a minority) can spread their influence and create63

an antiestablishment majority.64

In this paper we consider a model of voter turnout65

that allows for majority and minority illusions. We66

ask: What network structures enable minority factions67

to win? While we do not consider opinion dynamics (our68

model voters never change their minds), the mechanisms69

of voter turnout alone can generate situations where a70

small minority can win in a landslide. This counterintu-71

itive result is one of our main findings. Whether it holds72

in more realistic models remains to be seen.73

The paper is laid out as follows. Section II intro-74

duces the model. In Section III, we apply the model on75

a variety of network structures: Erdős-Rényi networks76

(III A), stochastic block networks (III B), scale-free net-77

works (III C), and random geometric networks (III D).78

Section IV summarizes and discusses the results.79
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FIG. 1. The behavioral assumptions of (a) dejectedness, (b) complacency, and (c) their combination applied to the same ring
network with a 5− 4 split between orange and purple nodes. (a) The top orange node is surrounded by a purple node on either
side. Thus, in its local (one-hop) neighborhood it is outnumbered 2 − 1, so its vote cannot tie or win the upcoming election
in that local neighborhood. Making a myopic (and wrong) estimate of the orange opinion’s chances globally, based solely on its
local neighborhood, the orange node believes its vote cannot affect the upcoming election, so it gets dejected and does not cast
a vote, as indicated by the gray cross. (b) The two bottom nodes are completely surrounded by other orange nodes. Based
on this local information, they erroneously conclude that the upcoming election is a safe win, become complacent, and do not
vote. (c) Because three orange nodes do not vote, purple wins the overall election by 4 − 2.

II. THE MODEL80

Our simplified model of voter behavior is intended to81

spotlight the role of two social effects: complacency and82

dejectedness. In the model, voters have fixed opinions83

and only need to decide whether to participate in an up-84

coming election. Whether a node chooses to vote or ab-85

stain depends on whether its local neighborhood causes86

the node to experience complacency, dejectedness, or nei-87

ther of these effects. Complacency is the effect where88

nodes that are surrounded predominantly by nodes with89

matching opinions do not bother to vote, because they90

are convinced that their preferred candidate is going to91

win in any case. Dejectedness is the effect where nodes92

that are surrounded predominantly by nodes with oppo-93

site opinions tend not to vote, because they are convinced94

that the situation is hopeless and their preferred candi-95

date is going to lose.96

Our model of voter behavior under dejectedness and97

complacency can be introduced formally as follows. We98

assume that N voters live on a network, and each node99

has some opinion θ, drawn from a probability distribu-100

tion f(θ). We shall assume that only two opinions exist,101

although studying the more general case of multiple opin-102

ions is a natural direction for future work. In the context103

of the model, these opinions can be thought of as prefer-104

ences for one of two candidates in an election, but they105

could also represent binary referendum options, or any106

other binary choice.107

Continuing in the spirit of simplicity, we further as-
sume that each node knows the opinion of all its neigh-
bors. The only question is who will vote. Whether a
node decides to vote or not depends on whether it thinks
its vote will make a difference, which in turn depends on
the prevalence of the two opinions among its neighbors

in the network. We assume the following simple-minded
decision rule: A node chooses to cast its ballot if and
only if its vote would cause a tie or a one-vote win in
its one-hop network neighborhood (assuming that all its
neighbors choose to vote). More precisely, if a focal node
with opinion θ has kθ neighbors with opinion θ and kφ
neighbors with the opposite opinion φ, it will vote if and
only if

0 ≤ kφ − kθ ≤ 1.

Figure 1 illustrates the model. In the example shown,108

nine nodes live on a ring graph. Five nodes hold a ma-109

jority opinion (orange) and four nodes hold a minority110

opinion (purple). Figure 1(a) illustrates the effect of de-111

jectedness. When the top orange node decides whether112

to cast its vote, it sees that both of its neighbors hold113

the opposite opinion. Since purple outnumbers orange114

in the top node’s neighborhood, even if the orange node115

decides to vote it cannot tie or win the election locally,116

so it gets dejected and abstains from voting (as indicated117

by the gray cross). Figure 1(b) illustrates the effect of118

complacency. The two orange nodes at the bottom are119

completely surrounded by nodes with the same orange120

opinion. These two nodes conclude that orange is a lo-121

cal majority, even without their votes, and thus abstain122

from voting. Figure 1(c) shows the result of the election:123

3 orange nodes abstain from voting, leading to a 4 − 2124

win by the purple minority.125

As this example shows, the election outcome depends126

on a surprisingly subtle interplay among three factors:127

the network structure, the proportion of nodes that hold128

each of the two opinions, and how the opinions are ar-129

ranged among the network nodes. Thus, this result raises130

several questions: Are some network structures more131

likely to result in minority wins than others, at least132
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under our model? Does homophily (the tendency for133

neighboring nodes to hold identical opinions) increase or134

decrease the likelihood of minority wins? And how does135

the minority size affect the likelihood of a minority win?136

In the remainder of this paper, we pursue these questions137

by simulating our model on various network topologies,138

and with different choices for the arrangement of opinions139

among the network nodes.140

III. MODEL NETWORKS141

Our model networks (“electorates”) consist of N nodes
(“voters”), of which N+ hold the majority opinion and
N− hold the minority opinion. We typically work with
networks of size N = 100, in which case N− can also be
interpreted as the minority fraction, defined as the per-
centage of the electorate that holds the minority opin-
ion. For each class of networks, we treat N− as a control
parameter and explore how the probability of a minor-
ity victory depends on N−. In our analytical work on
stochastic block networks (Section III B), we also find it
convenient to express the results as a function of the ratio

α =
N−

N+
≤ 1,

a parameter that quantifies how closely divided the elec-142

torate is.143

A. Erdős-Rényi networks144

We begin by applying our model to Erdős-Rényi ran-145

dom graphs [34]. In these networks, any given pair of146

nodes is connected by an undirected edge with proba-147

bility p. Since the number of nodes, N , and the edge148

probability, p, define this family of random graphs, the149

family is often denoted G(N, p).150

Figure 2 shows how the average proportion of unrepre-151

sentative outcomes changes as we vary the edge probabil-152

ity p, for fixed network size N = 100 and three different153

choices for the minority fraction N−. In Fig. 2(a), the154

majority nodes outnumber the minority nodes by 80 to155

20, a considerable margin. Under these circumstances it156

is not easy for the minority to pull off an upset win, but157

it is possible, thanks to the complacency of the major-158

ity. The probability that minority wins peaks at around159

p = 0.25, with a corresponding win probability of less160

than 0.2. Figure 2(b) shows the corresponding plot when161

we increase the fraction of minority nodes to 30 out of162

100, and Fig. 2(c) does the same for 40 minority nodes.163

The effects of these changes are mild. The main things164

to notice are that as the electorate becomes more nearly165

evenly split, the peak probability that the minority wins166

becomes slightly higher and there is a widening of the167

range of p-values where minority wins occasionally take168

place. Still, the main message of Fig. 2 is that unrep-169

resentative outcomes are fairly rare on this class of ran-170

FIG. 2. Unrepresentative outcomes are rare on Erdős-Rényi
random graphs. The plots show the proportion of minority
victories on random graphs drawn from the family G(100, p)
as a function of the edge probability p (x-axis) for three dif-
ferent scenarios: (a) a minority that is 20% of the entire elec-
torate, (b) 30% minority, and (c) 40% minority. Each data
point in a plot is based on 106 numerical experiments. For
all three scenarios, the peak probability of a minority vic-
tory occurs for an intermediate p. But note that the minority
never wins more than half of the time; the curves lie below
the dashed red line at all values of the edge probability p.

dom graphs. Indeed, in our simulations of the model171

on Erdős-Rényi networks, there is no parameter regime172

where a minority wins most of the time.173

From Figure 2, we can make two observations about174

when a minority can win: minority victories become more175

likely for larger minorities and for intermediate values of176

p. The first observation makes intuitive sense: A mi-177

nority victory is less likely when the margin between the178

number of majority nodes and the number of minority179

nodes is wider, because fewer minority nodes means that180

more majority nodes must abstain from voting in order181

to ensure a minority win. Second, to understand why mi-182

nority wins are most likely for intermediate values of p, it183

is helpful to consider the extreme network structures that184

can arise in Erdős-Rényi networks. There are two such185

extremes. When p = 0, the network has N components,186

each consisting of a single node, and no node has neigh-187

bors. In the absence of local information, every node188

votes, making unrepresentative outcomes impossible. At189

the other extreme, when p = 1 the Erdős-Rényi network190

becomes a complete graph. On a complete graph, ev-191

ery node has perfect information about the global state192

of the network, which leads to dejectedness for the mi-193

nority nodes and complacency for the majority nodes (if194

the margin is greater than 1). As long as this condition195

holds true, nobody votes, and therefore unrepresentative196

outcomes do not occur in this case either.197

B. Stochastic block networks198

In section III A, we assumed that opinions were dis-199

tributed uniformly at random among the nodes in Erdős–200
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Rényi networks. Distributing the opinions in this way201

meant that there was no homophily in the networks.202

Looking back at Fig. 1, we see that the nodes that are203

resistant to complacency and dejectedness have the ma-204

jority and minority opinions nearly equally represented in205

their local neighborhoods. As such, it is the other nodes,206

the ones in homophilous neighborhoods, that tend not207

to vote and thereby open the door to unrepresentative208

outcomes. In other words, we expect homophily to play209

an important role in enabling the minority to win.210

One way to introduce such homophily into randomly211

generated networks is to create random networks with212

community structure and assume that nodes in the same213

community have the same opinion. We now do exactly214

this by simulating our model on “stochastic block net-215

works” [34].216

It is helpful to think of stochastic block networks as217

a generalization of Erdős-Rényi networks. Whereas in218

Erdős-Rényi networks, the probability of forming an edge219

is the same for any two pairs of nodes, in stochastic block220

networks the node set is partitioned into disjoint subsets.221

The probability of forming an edge between nodes then222

depends on the nodes’ respective subsets. If the nodes are223

in the same subset, they are part of the same community,224

and the probability of them being joined by an edge is225

high. On the other hand, nodes in different subsets are226

assumed to not be part of the same community, and the227

probability of an edge between them is low.228

Since we are interested in the interactions between ma-229

jority and minority nodes, we will use a stochastic block230

network with two blocks. The probability of forming an231

edge between two nodes can be represented as a matrix:232

P =

(
p11 p12
p21 p22

)
, (1)

where pij is the probability of forming an edge for any233

pair of nodes from block i and block j. For the sake of234

simplicity, we pick one in-block probability (p11 = p22 =235

pin) and one inter-block probability (p12 = p21 = pout)236

to reflect the in-group/out-group differences. These rela-237

tive probabilities serve as a homophily parameter. When238

pin/pout is high, the network exhibits high homophily,239

since nodes are more likely to form edges within their240

block. When pin/pout is low, the network exhibits low,241

or even anti-homophily, since the nodes are more likely to242

form edges across blocks. In the special case pin = pout,243

we obtain Erdős-Rényi networks.244

1. Numerical experiments on stochastic block networks245

Figure 3 shows the proportion of unrepresentative out-246

comes as a function of pin and pout for networks where247

majority nodes outnumber minority nodes by varying248

amounts. The color represents the proportion of sim-249

ulations in which the minority wins. Parameter values250

leading to unrepresentative outcomes are conspicuous as251

the bright yellow regions.252

FIG. 3. Introducing community structure to random graphs
allows for a prevalence of unrepresentative outcomes within
some parameter regions (the diagonal yellow regions). The
proportion of unrepresentative outcomes is shown in color as
a function of pin and pout on stochastic block networks of
N = 100 nodes with minority blocks of sizes (a) N− = 20, (b)
30, and (c) 40 nodes, for 106 simulations.

While there are quantitative differences among the253

three networks, there are important qualitative similari-254

ties. In each of the three panels, most of the parameter255

space is colored dark blue, corresponding to the demo-256

cratic outcomes one would naturally expect. However,257

there are also yellow diagonal regions in which the mi-258

nority wins more than half of the time. The highest prob-259

ability of a minority victory occurs close to the midline of260

the yellow region, where pout/pin ≈ α. While not visible261

in the figure, the global maximum occurs on the right262

edge of each panel, at the point where when pin = 1 and263

pout = α. As we increase the size N− of the minority264

population, the location of the peak moves up the pout265

axis, resulting in an increased slope of the yellow region,266

while pin stays pinned at its maximum value, pin = 1.267

These results confirm our intuition from the Erdős–268

Rényi networks: Unrepresentative outcomes occur in the269

intermediate information regime. They do not thrive on270

complete networks, nor on fragmented ones with many271

components. Rather, they favor regimes where nodes272

have an intermediate level of knowledge about the state273

of the electorate as a whole.274

An intuitive way of understanding Figure 3 is to think275

about the effects of complacency and dejectedness. In276

order to avoid these effects, it is necessary to have both277

majority and minority opinion nearly equally represented278

in a node’s neighborhood. Because there are more ma-279

jority nodes in the network, at high pin and intermediate280

pout settings the minority nodes are most likely to know281

almost equal numbers of nodes who agree and disagree282

with them. However, in that same setting, the majority283

nodes are more likely to know more nodes who agree with284

them because of the high pin probability, and therefore285

are more likely to get complacent. This effect is what286

allows the minority to win.287
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2. Analytical results for stochastic block networks with288

pin = 1: Exact probability of a minority victory289

For the convenient special case where pin = 1, we can290

find the probability of a minority victory exactly. To do291

so, observe that if the number of majority nodes exceeds292

the number of minority nodes by at least two (N+ ≥293

N−+2), then none of the majority nodes will vote, due to294

the effects of complacency. Therefore, in this particular295

case, the minority will win as long as any minority node296

votes. We can compute the probability of that event in297

a few easy steps as follows.298

The first step is to consider the probability that any299

given minority node votes. Because pin = 1, the given300

minority node is certain to be linked to all the other301

minority nodes in the electorate and hence is sure to see302

exactly N− votes for the minority opinion in its local303

neighborhood (including its own vote). Now invoke the304

decision rule: the given minority node votes if and only305

if doing so would either cause a tie or a one-vote victory306

in its local neighborhood. For those events to happen,307

the minority node also needs to be connected to either308

the same number, N−, of majority nodes, or one less than309

that number. Those two events both happen according to310

binomial probability distributions, because they involve311

choosing either N− or N− − 1 majority nodes out of a312

total of N+ available. Therefore, the probability that the313

given minority node votes is a sum of two binomial terms:314

P (any given minority node votes)

=

(
N+

N−

)
p
N−
out (1− pout)N+−N−

+

(
N+

N− − 1

)
p
N−−1
out (1− pout)N+−(N−−1)

.

(2)

The first term expresses the probability that a minor-315

ity node sees an equal number of majority and minority316

nodes (and will vote because it can cause a local tie). The317

second term represents the probability that the minority318

node sees N−−1 majority nodes (and will vote because it319

can cause a local minority victory). All other possibilities320

are irrelevant: If the minority node sees more than N−321

majority nodes, it would become dejected, whereas if it322

sees fewer than N−− 1 majority nodes, it would become323

complacent.324

The next step is to subtract the right hand side of (2)325

from unity, to get the probability that a given minority326

node does not vote. Since there are N− such nodes, and327

their decisions to vote are all independent, the probability328

that all of them do not vote is:329

P (no minority nodes vote) =

[1− P (any given minority node votes)]
N− .

(3)

Then, by subtracting this quantity from 1, we obtain the330

probability that at least one minority node votes,331

P (at least one minority node votes) =

1− P (no minority nodes vote).
(4)

As stated above, this probability is also equal to the prob-332

ability that the minority wins. Combining the equations333

above and replacing N− with αN+ throughout, we finally334

arrive at our desired result:335

P (minority wins)

= 1−
[
1−

(
N+

αN+

)
p
αN+

out (1− pout)N+−αN+

−
(

N+

αN+ − 1

)
p
αN+−1
out (1− pout)N+−(αN+−1)

]αN+

.

(5)

Figure 4 shows an excellent match between this analytical336

prediction and simulations.337

FIG. 4. The proportion of unrepresentative outcomes on
stochastic block networks for the special case pin = 1. The
probability of a minority victory is plotted as a function of
pout, for networks of size N = 10. Results for three values
of N− are shown, corresponding to minority fractions of 20%
(red), 30% (orange), and 40% (yellow). The dotted black lines
show the analytical expression in Eq. (5), which agrees with
numerical results from 106 simulations (solid colored lines).

3. Peak location and probability of a minority victory338

In Figure 3 we saw that the probability of the minority
winning in our simulations on stochastic block networks
was reached at high pin and intermediate values of pout.
Continuing to assume fully connected blocks, pin = 1, we
can now calculate at the value of pout that maximizes the
probability of a minority victory. To do so, we differen-
tiate Eq. (5) with respect to pout and set the resulting
expression to zero. After straightforward but extensive
algebra, and with the help of Stirling’s formula, we find
that in the limit N+ →∞ with α held fixed,

pout = α

maximizes the probability of a minority victory.339

Figure 5 shows how the peak value of pout converges to340

α as N increases. In these plots, we fix α = N−/N+ =341

2/3 and vary the network size N . Notice that at the peak,342

the proportion of unrepresentative outcomes approaches343

1 as N goes to infinity. With further effort, one can show344
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FIG. 5. The solid curves show the proportion of unrepresen-
tative outcomes as described by Eq. (5) for constant α = 2/3
and N = 5, 10, 20, 100. The stars indicate the location of the
maximum on each curve. The probability pout that maximizes
the proportion of unrepresentative outcomes approaches α as
N increases. The limiting location of the peak, pout = α, is
marked by the gray vertical line.

that the peak value of a minority victory deviates from345

1 by an exponentially small term for N � 1:346

P (minority wins | pout = α) ∼1− exp

(
−

√
2αN

π(1− α2)

)

×
(

exp

[
− 1

(1− α)π

])
.

(6)
Furthermore, the curves in Fig. 5 become increasingly347

sharply peaked as N increases. To check this, we evaluate348

Eq. (5) in the same way at pout = α + ε for ε � 1 and349

find that P (minority wins | pout = α + ε) tends to 0 as350

N approaches infinity. Therefore in the large-N limit,351

P (minority wins) tends to a discontinuous function that352

equals 1 at pout = α and 0 everywhere else.353

C. Networks with a heavy-tailed degree354

distribution355

Erdős–Rényi networks and stochastic block networks356

are both widely studied. Their simplicity allowed us to357

derive analytical results and gain some intuition for when358

the minority could win the election in our model. In both359

models, however, nodes tend to have very similar num-360

bers of network neighbors. This homogeneity is different361

from many real-world networks in which node degrees362

can vary a lot [34–36].363

As an example of networks with broad degree distri-364

butions we now consider networks whose degree distri-365

butions follow a power law in the limit N → ∞. Such366

scale-free networks have been claimed to capture features367

of many real-world networks [35, 37]. Other scholars have368

moderated or even argued against this claim [36, 38].369

In our investigations of stochastic block networks, we370

found that the existence of community structure could in371

some cases increase the likelihood of a minority win un-372

der our model. To understand the effect of homophily in373

more detail, we also incorporate homophily in our simula-374

tions of our model in networks with a heavy-tailed degree375

distribution. In order to introduce homophily into the376

setting of networks with power-law degree distributions,377

we introduce a homophily parameter h (0 ≤ h ≤ 1).378

When h = 0, the node opinions are distributed randomly379

on the network, whereas when h = 1, the majority and380

minority nodes organize into disjoint blocks with no con-381

nection between nodes of different opinions. Our algo-382

rithm for generating homophily on networks with power-383

law degree distributions is described in Appendix A. The384

algorithm is heavily inspired by algorithms used to cre-385

ate configuration-model networks [34]. In that sense,386

our networks with power-law degree distributions can387

be thought of as a class of configuration-model networks388

with homophily.389

Figure 6 shows examples of the resulting networks. As390

h increases, the nodes get a higher preference for con-391

necting to nodes with the same opinion. When h = 0,392

the nodes’ local information is most likely to be repre-393

sentative of the true proportion of opinions across the394

electorate as a whole. When h = 1, the nodes’ local in-395

formation will only reflect the presence of nodes with the396

same opinion.397

FIG. 6. Examples of networks with heavy-tailed degree dis-
tributions with homophily factors (a) h = 0 , (b) h = 0.3,
(c) h = 0.8, and (d) h = 1. All networks are of size N = 15
with minority size N− = 5. We use the power law exponent
λ = 2.5 to generate the degree distribution.

Figure 7 shows the proportion of unrepresentative out-398

comes on a network with a heavy-tailed degree distribu-399

tion and size N = 104 with minority fractions 20%, 30%,400

and 40%. We have chosen a larger network size to avoid401

undesired topological correlations [39, 40]. The horizon-402

tal axis shows the homophily parameter h. We observe403

once again that unrepresentative outcomes occur most404
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FIG. 7. Proportion of minority winning on networks with
heavy-tailed degree distributions and size N = 104, for (a)
N− = 2000, (b) 3000, and (c) 4000 nodes as a function of the
homophily factor h, for 103 simulations.

FIG. 8. Example of majority (orange) and minority (purple)
node distributions for geometric random networks with radius
(a) r = 0.3, (b) r = 0.5, and (c) r = 0.8.

frequently when the homophily parameter is in the in-405

termediate range. In Figs. 7(a) and (b), for homophily406

parameter values in range 0.45 ≤ h ≤ 0.95 the minority407

faction wins more than half of the time. In Fig. 7 (c), the408

corresponding range is 0.55 ≤ h ≤ 0.9. Surprisingly, in-409

creasing the minority size N− does not yield a larger peak410

probability of minority wins for these configuration net-411

works, in contrast to the other network structures tested412

in this paper.413

D. Geometric Random Networks414

In Section III C, we considered networks with broad415

degree distributions, a trait shared by some social net-416

works. A qualitatively different class of networks are417

those in which the likelihood of a link between two nodes418

depends on their geographical separation. “Geometric419

random networks” provide some of the simplest exam-420

ples. To generate them, imagine throwing nodes uni-421

formly at random inside a unit square. We add an edge422

between any two nodes that lie within a distance r of each423

other. A larger value of r results in denser networks, as424

illustrated in Fig. 8.425

In order to incorporate homophily into these sorts of426

random networks, we assign minority and majority opin-427

ions preferentially to the left and right halves of the unit428

square, respectively. With probability equal to the ho-429

mophily parameter h, nodes lie within their preferred half430

of the square.431

We vary the radius of connection r and compute the432

proportion of unrepresentative outcomes. Figure 9 shows433

the results of the simulation. While the proportion of un-434

representative outcomes peaks in the intermediate radius435

range, the peak probability of minority victories moves436

to the right as homophily increases. In a low-homophily437

setting, minority nodes benefit from low radius to pre-438

vent dejectedness (they need to actively avoid knowing439

majority nodes). In a high-homophily setting, minor-440

ity nodes benefit from a higher radius to prevent com-441

placency (they need to ensure they know some majority442

nodes). The extreme peak in panel (c) is interesting. It443

is due to the fact that in extreme homophily settings, the444

majority half of the square domain is more densely pop-445

ulated. Therefore, at low non-zero values of r, majority446

nodes begin to see other majority nodes and become com-447

placent before minority nodes begin to see other nodes.448

This effect results in many disconnected minority nodes449

voting. The effect is diminished when the difference be-450

tween N+ and N− is lower. While not shown here, our451

numerical experiments show that the peak is higher for452

N− = 20% and lower for N− = 40%.453

FIG. 9. Proportion of minority victories on a geographic ran-
dom network as a function of the radius of connection r and
probability of nodes lying within their preferred half of the
square. (a) h = 0.5 (no homophily), (b) h = 0.75 (moderate
homophily), and (c) h = 1 (extreme homophily). The results
are for networks of size N = 100, with minority size N− = 30,
for 104 simulations.

IV. DISCUSSION454

In this paper, we have presented a simple agent-based455

model of voter turnout. By simulating the model on a456

variety of network structures, we found that it is often457

possible for a minority faction to win the model election458

under the effects of dejectedness and complacency. These459

unrepresentative outcomes occur most frequently in the460

parameter ranges that correspond to intermediate knowl-461
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edge of the global state of the electorate, as well as in net-462

works with some homophily or community structure. We463

have further shown that unrepresentative outcomes can464

become more likely in settings where the local distribu-465

tion of opinions is not representative of the average global466

distributions. Intermediate homophily settings often cre-467

ate regimes in which minority nodes are more likely to468

overestimate the closeness of an election based on their469

one-hop network neighborhood, while majority nodes are470

susceptible to complacency.471

In reality, it remains unknown how much complacency472

and dejectedness influence whether people cast their vote473

in elections. It is also unknown to what extent such com-474

placency and dejectedness would be caused by the imme-475

diate social-network neighborhood of the voter; it seems476

quite possible, for example, that media reports, fore-477

casting agencies, and other non-local effects could play478

even bigger roles in pushing voters to turn out or stay479

home. All that one can say with certainty is that voter480

decision-making is a complex phenomenon with many481

social, political, and structural factors influencing indi-482

vidual choices. Nonetheless, our work suggests that ho-483

mophily and network structure can greatly affect vote484

outcomes in settings where voters choose to abstain or485

cast their ballots based on the prevalence of opinions in486

their local social neighborhood.487

There are many extensions of this study that would be488

intriguing to try in future work. Some directions could489

focus on implementing the model in more general settings490

such as: Realizing the model on core/periphery networks,491

adding more than two opinion states, modifying the de-492

cision rule, and perhaps adding a tension between local493

and global information in the form of broadcasters or494

forecasters. Another possibility would be to make the495

model dynamic. What do nodes do after having lost an496

election that they thought was a safe win? Introducing497

such dynamics and looking for fixed points, cycles, and498

other time-varying states would be interesting.499
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Appendix A: Algorithm for generating scale-free581

networks with homophily582

We generate a scale-free network with homophily using583

the following algorithm:584

1. Fix n nodes.585

2. Draw degrees from a power law distribution.586

3. Generate a vector of length n assigning a binary587

opinion: 0 to majority nodes and 1 to minority588

nodes.589

4. Initialize two empty stacks: the majority stack and590

the minority stack.591

5. For each node:592

If a node is a minority node, add its index to the593

minority stack the number of times corresponding594

to its degree.595

If the node is a majority node, add its index to the596

majority stack the number of times corresponding597

to its degree.598

6. Shuffle the majority and minority stacks.599

7. While the minority stack is non-empty:600

pop node1 from the top of the minority stack. gen-601

erate a random number between 0 and 1. If the602

random number is less than the homophily factor603

h, draw an edge between node1 and the first node604

in the minority stack (node2). If the random num-605

ber is greater, draw an edge between node1 and the606

top node in the majority stack.607

8. If the majority stack is nonempty by the time the608

minority stack is empty, connect the remaining ma-609

jority nodes in pairs.610
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