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The buckling of thin elastic sheets is a classic mechanical instability that occurs over a wide range
of scales. In the extreme limit of atomically thin membranes like graphene, thermal fluctuations
can dramatically modify such mechanical instabilities. We investigate here the delicate interplay
of boundary conditions, nonlinear mechanics and thermal fluctuations in controlling buckling of
confined thin sheets under isotropic compression. We identify two inequivalent mechanical ensembles
based on the boundaries at constant strain (isometric) or at constant stress (isotensional) conditions.
Remarkably, in the isometric ensemble, boundary conditions induce a novel long-ranged nonlinear
interaction between the local tilt of the surface at distant points. This interaction combined with a
spontaneously generated thermal tension leads to a renormalization group description of two distinct
universality classes for thermalized buckling, realizing a mechanical variant of Fisher-renormalized
critical exponents. We formulate a complete scaling theory of buckling as an unusual phase transition
with a size dependent critical point, and discuss experimental ramifications for the mechanical

manipulation of ultrathin nanomaterials.

1. INTRODUCTION

Thin sheets with a resistance to shear can accommo-
date compressive stresses through an array of mechani-
cal instabilities, including buckling [1, 2], wrinkling [3-5],
folding [6, 7] and crumpling [8-10], all controlled essen-
tially by geometry. Although once disregarded as unde-
sirable modes of failure, instabilities now play a central
role in the design of mechanical metamaterials [11, 12]
as they combine complex morphologies with mechanical
functionality. In recent years, rapid miniaturization has
driven intense research efforts in developing similar meta-
materials on a much smaller scale [13-18]. In this regard,
atomically thin two dimensional (2D) materials such as
graphene, MoSy or BN [19, 20] are particularly promis-
ing and offer unprecedented opportunities to study clas-
sical elasticity and mechanics in the ultimate limit in thin
sheets, where thermal fluctuations can play a dominant
role [20, 21].

In such ultrathin flexible materials thermal fluctua-
tions can dramatically renormalize the mechanical prop-
erties in a scale-dependent fashion [22]. Out of plane
(flexural) deformations allow tensionless solid membranes
to exhibit a remarkable thermally wrinkled, yet flat phase
with a scale-dependent bending rigidity and strongly
softened elastic moduli [21, 23]. While thin sheets favour
bending over energetically expensive stretching, geome-
try links the two as any bending-induced Gaussian curva-
ture inevitably causes stretching as well. This basic fea-
ture underlies many of the impressive finite temperature
properties. Nanoindentation measurements in graphene
[24] and MoSs [25] monolayers yield exceptionally high
Young’s moduli on the nanoscale as expected from strong
covalent bonding. Yet on larger scales ~ 10 pm, recent
experiments with freely suspended graphene have demon-
strated a ~ 4000 fold enhancement of the bending rigid-
ity [13] and a factor ~ 20 reduction in the in-plane stiff-

ness [26], due to a combination of thermally generated
and static ripples [27-29], highlighting the importance of
flexural fluctuations.

While the anomalous mechanics of thermalized mem-
branes has been extensively explored, the role of con-
finement and boundaries is much less appreciated. Sup-
ported or clamped edges are one of the most com-
monly encountered boundary conditions, in electrome-
chanical resonators [30, 31], multistable switches [32] and
in nanomechanical devices [13, 26]. Geometric confine-
ment at the boundary can induce prestrains in the sam-
ple that can cause large scale instabilities such as wrin-
kling [33]. As a result, in recent years, exploring the
influence of external stresses on the mechanics of fluc-
tuating membranes has been a topic of prime interest
[34]. While there has been some theoretical work, both
old [35] and new [36-41], complemented by more recent
large scale numerical simulations [42-47], elucidating the
role of boundaries in controlling the nonlinear mechanics
and buckling of thermalized sheets, particularly for com-
pressions which attempt to impose a nonzero Gaussian
curvature, remains a challenging problem.

Motivated by the above, in this paper, we pose and an-
swer the following question - what is the finite tempera-
ture version of the buckling transition in an isotropically
compressed thin sheet? Euler buckling represents the
simplest mechanical instability a thin elastic body can
undergo and it provides an attractive setting to investi-
gate the interplay of thermal fluctuations and boundary
conditions along with the geometric nonlinearities inher-
ent to thin plate mechanics. In particular, we focus on
the universal aspects of the transition such as critical
scaling exponents that are independent of microscopic
details. By combining a full renormalization group anal-
ysis along with a general scaling theory, we provide a
complete description of thermalized buckling as a gen-
uine phase transition that exhibits critical scaling along



with more unusual features such as a sensitive depen-
dence on system size and the choice of boundary condi-
tions. Apart from new statistical mechanical results, the
scaling framework we propose also yields key predictions
that have important ramifications for experiments that
we highlight below.

In the rest of the introduction, we summarize our main
results and outline the structure of the paper.

Results and outline

A key outcome of our work is a renormalization group
analysis, augmented by a scaling description of buck-
ling in isotropically compressed thermalized thin sheets.
There are two main reasons why finite temperature buck-
ling, when viewed as a phase transition, is distinct from
conventional critical phenomena. The first is that buck-
ling is strongly size dependent, even at zero temperature
by virtue of it being a long-wavelength instability [1].
The second is the remarkable fact that freely fluctuating
elastic sheets exhibit a flat phase [22] with critical fluc-
tuations over an extended range of temperatures. Both
these features are characteristic of thin sheets, arising
from an interplay of geometry and mechanics, and form
the basis of our results below.

1. Ensemble inequivalence & Fisher renormalization

Thin sheets can be loaded in-plane either by prescrib-
ing the external strain (isometric) or the external stress
(isotensional) at the boundary (see Fig. 1 for an illus-
tration). These constitute dual mechanical ensembles,
in analogy with thermodynamic ensembles [49]. While
it is well known that boundary conditions can modify
nonuniversal quantities such as the buckling threshold
[1], we discover that universal scaling exponents (de-
fined in Sec. 4) can also exhibit a remarkable sensitiv-
ity to boundary conditions! We demonstrate this fact
explicitly within a systematic ¢ = 4 — D expansion for
a general D-dimensional solid embedded in d > D di-
mensional space (discussed in Secs. 7 and 8 with details
relegated to Appendix C) along with a simpler, but un-
controlled, one-loop calculation performed directly in the
physical dimensions of D =2 and d = 3 in Appendix D.
Our calculations show that buckling in the two mechan-
ical ensembles is in fact controlled by two distinct fixed
points, with different scaling exponents that are summa-
rized in Table I. This remarkable departure from conven-
tional wisdom demonstrates the nonequivalence of me-
chanical ensembles in thermally fluctuating thin sheets
and highlights the subtle nature of membrane statistical
mechanics. Thus, in the simplest setting of isotropic com-
pression, we find thermalized plate buckling is described
by two distinct critical points characterizing the isomet-
ric and isotensional universality classes that are distin-
guished simply by the boundary conditions imposed.

(a) Isotensional ensemble
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FIG. 1. A sketch showing a possible realization of the two me-
chanical ensembles, for example, in an atomically thin sheet
of graphene. (a) In the isotensional ensemble, a constant in-
ward external stress o¢ is applied to the membrane, while the
boundary displacement fluctuates. This set-up might be real-
ized in the same fashion as in single molecule experiments, by
using feedback-controlled multiplexed optical tweezers to ac-
tuate under constant force conditions, similar to experiments
recently used to probe the mechanical response of red blood
cells [48]. (b) The isometric ensemble instead corresponds
to a clamped boundary with the external load imposed via
a global strain e. While, current experiments with graphene
typically suspend monolayers across fixed size holes [26], a
variable aperture size tuned by a camera shutter mechanism
could be used to tune the strain isotropically. An external
symmetry breaking field £ perpendicular to average plane of
the sheet can also be applied in either ensemble to bias the
direction of buckling.

Although surprising, the inequivalence of ensembles
has precedence in critical phenomena. A critical point
engenders fluctuations on all scales which under appro-
priate conditions can result in scaling exponents that
change upon switching to a dual or constrained ensem-
ble. This is known as Fisher renormalization [50-52]. In
our case, however, by tuning to the buckling threshold,
we approach the flat phase of a free-standing membrane
which characterizes an entire low temperature critical
phase with scale invariant fluctuations! Furthermore, we



find that the imposition of a fixed strain (in contrast to
a fixed stress) boundary condition induces a novel long-
ranged nonlinearity that couples the local tilt of the sur-
face at far away points, which we derive in Sec. 3 and Ap-
pendix A through a careful consideration of zero modes
and boundary conditions. This nonlocal term, which can
also be important far from the buckling transition, softly
enforces the geometric constraint of global inextensibili-
tiy, which simultaneously shifts the buckling threshold by
a spontaneously generated thermal tension and modifies
the critical exponents via a mechanical variant of Fisher
renormalization.

Note that the two ensembles we consider differ only in
the boundary conditions for in-plane force balance, but
have identical boundary conditions with regard to out-
of-plane force balance. Variations in the latter are not
expected to qualitatively change the results here, but a
full exploration of the consequences of different boundary
conditions is left for future work.

2. Size-dependent scaling theory

The long-wavelength nature of the buckling instability
endows it with both a system size dependent threshold
and a macroscopic mechanical response [1], features that
are retained even at finite temperature. This size de-
pendence is unusual though, from the point of view of
critical phenomena, and behaves as a dangerously irrele-
vant variable [53-55] that modifies scaling exponents in
nontrivial ways. As a result, we derive new exponent
identites in Sec. 9 that relate different scaling exponents
in both ensembles, mirroring classic results from conven-
tional critical phenomena [56]. Many of these relations
are also summarized in Table I. By combining scaling
with general thermodynamic arguments, we also explic-
itly demonstrate how buckling physics in both ensembles
is a mechanical variant of Fisher renormalization. Note
that, the construction of a consistent scaling theory for
thermalized buckling is a significant achievement as it
not only clarifies previous confounding results [35, 37]
by correctly accounting for nontrivial system size depen-
dence and ensemble inequivalence, but it also yields a
unified framework that incorporates experimentally rele-
vant boundary conditions and symmetry breaking fields.

We emphasize that our results are consistent with
all previous calculations [35, 37, 57|, where they over-
lap. Previous investigations, some including constrained
boundaries akin to our isometric ensemble [35], did not
fully address critical behaviour near a thermalized buck-
ling transition [35, 37, 57]; indeed these works analyzed
a restricted set of exponents that happen to be numeri-
cally identical in the two ensembles. The comprehensive
analysis of all the relevant scaling exponents described
here demonstrates a much richer and subtler picture,
with other exponents, particularly those directly involv-
ing the buckling order parameter, i.e., the height, be-
ing different by virtue of ensemble inequivalence (see Ta-

ble I). Although we find two distinct fixed points for buck-
ling differentiated by in-plane boundary conditions, the
two universality classes are intimately related by Fisher
renormalization as discussed above. An important conse-
quence is that there is only one unique and independent
exponent controlling buckling (n, which controls the size
L dependent divergence of the bending rigidity x ~ L in
an unconstrained sheet), from which all other exponents
in both ensembles can be consequently derived. This
feature (first derived using field theoretic techniques in
Ref. [35]) is unlike conventional critical points that typi-
cally have two independent critical exponents. Our gen-
eral scaling framework offers a complementary approach
that naturally incorporates ensemble inequivalence, while
preserving these exponent relations in a consistent fash-
ion.

3. Experimental consequences

Our work illustrates the spectacular ways in which ge-
ometry, boundary effects and thermal fluctuations can
conspire to produce unexpected phenomena, and sug-
gests that extending thin body mechanics to finite tem-
perature is a rich and challenging enterprise, requiring
great care. Given the ubiquity and ease of manipulating
strain rather than stress in experiments, our results have
important implications for the rational design of strain
engineered nanodevices and interpretation of mechanical
measurements in ultrathin materials in the presence of
thermal fluctuations.

A common setup to probe the mechanical proper-
ties of graphene is a buckling assay where the force-
displacement curve is measured for a clamped mono-
layer deformed by the application of stresses or external
fields. As a simple example, we shall focus here on a
simple circular geometry with sheets draped across holes
and deflected by a normal electric field (£) as employed
in recent experiments [26, 58] (see inset in Fig. 2 for a
sketch). Other geometries including ribbons cantilevered
at an edge [13] or suspended across trenches [30, 31, 33]
are also possible, but we don’t address them here. A
crucial ingredient in the interpretation of force response
measurements in these devices is a mechanical “equation
of state” that relates the externally applied field £ and
the in-plane tension Ao to the magnitude of the average
deflection of the sheet (h). A zero-temperature mean-
field description following classical elasticity (detailed in
Sec. 5) gives

Ao Y
5201ﬁ<h>+02ﬁ<h>3 5 (11)
where ¢ o are calculable numerical constants, Y is the
sought after 2D Young’s modulus and R is the size of the
sheet. Importantly, when the sheet is constrained at fixed
stress Ao, i.e., the isotensional ensemble, Eq. 1.1 applies

exactly even at finite temperature upon simply replacing
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FIG. 2. Experimentally measured height response curve of
a clamped graphene sheet suspended over a circular hole of
radius 6.2 pum in a cryostat at two different temperatures,
T = 78 K (upper blue dots) and 7" = 297 K (lower red dots).
The data is reproduced from Ref. [58]. The electrically inte-
grated graphene devices are capacitively actuated out of the
plane using an electrostatic force £ o Vg2 (Vg is the gate volt-
age) and the average deflection (h) of the sheet is measured
using laser interferometry, see inset for a sketch of the setup
and Ref. [58] for further details. The red (lower) and blue (up-
per) lines are guides to the eye showing the exponent of the
nonlinear force response. While the 7" = 297 K data (lower
red dots) shows a strong cubic dependence on the height, the
T = 78 K data (upper blue dots) shows a smaller slope that
matches well with our theoretical prediction using the isomet-
ric ensemble exponent 3—1/8" &~ 1.607. Note that, this slope
is significantly different from a slope of unity (middle black
line), as would be predicted in both the isotensional ensemble
and within mean field theory.

Y by its scale dependent renormalized value (see Sec. 9
for details).

However, nearly all the force measurement experiments
are instead conducted with fixed strain and clamped
boundary conditions, i.e., in the isometric ensemble. Our
general scaling theory and renormalization group analy-
sis provides a different equation

£ Ao ( Y
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where the tension Ao = BAe is now given by the 2D bulk
modulus B and the imposed in-plane strain Ae. Strik-
ingly, Eq. 1.2 involves a new order parameter exponent
B = 0.718 that controls the asymptotic nonlinear force
response. The difference between Eq. 1.1 and Eq. 1.2
makes it clear that using Eq. 1.1 for clamped sheets, as
is conventionally done, can lead to significantly wrong
results. In fact, recent experimental measurements [58]
on graphene drumheads match well with our theoretical
predictions, see Fig. 2. The strain in the sample increases

upon lowering temperature [31, 58], notwithstanding the
theoretically expected negative thermal expansion coeffi-
cient of graphene [33, 37|, presumably due to surface con-
taminants. As a result, while the classical cubic response
dominates at higher temperature with weak tension (red
dots in Fig. 2), the anomalous nonlinear response with
E o (h)997 (blue dots in Fig. 2) emerges for higher
strains at lower temperature. A systematic analysis ex-
ploring how this nonlinear response affects the extraction
of the Young’s modulus is left for future work.

This result highlights the direct relevance of our work
to the correct interpretation of mechanical measurements
in graphene devices, not only for the circular geometries
studied here, but also cantilevers and doubly clamped
ribbons. We believe that recognizing the fundamen-
tal distinction between the isotensional and the isomet-
ric ensembles is essential to such endeavours. While
Fig. 2 depicts a static example, a dynamical extension
of Eq. 1.2 including dissipation and inertia along with a
time-varying field £(t) provides a simple description of
periodicaly driven electromechanical oscillators [59]. Al-
though a full dynamical analysis is beyond the scope of
this current work, we can already appreciate the pres-
ence of a strong nonlinear response (Eq. 1.2) in the small
deflection limit, which allows for higher quality factors
and bistability [59] even for a weak drive. Note that,
such an anomalous response is only elicited in the iso-
metric ensemble, emphasizing once again the importance
of boundary conditions.

Although we focus on isotropic compression, we expect
suitable extensions of this framework to be applicable
to recent numerical simulations [46, 47] and experiments
[13, 29, 33] on compressed ribbons that have begun ad-
dressing the anomalous mechanics of anisotropic buck-
ling in constrained sheets. While much of our discussion
has been based on atomic crystals, we emphasize our re-
sults are generic and also apply to organic 2D polymers,
such as naturally occuring DNA kinetoplasts [60], the
spectrin cytoskeleton [61] and reconstituted spider silk
[62], or synthetic molecular crystals [63, 64] and possi-
bly polymerosomes [65] with very large radii. In Sec. 10,
we conclude with a brief discussion of the broader signif-
icance of our results to experiments on atomically thin
crystalline membranes and possible future directions.

2. THIN PLATE ELASTICITY

Here, we focus on the physically relevant continuum
elastic description of a thin 2D sheet fluctuating in 3D
space (a generalization for a D-dimensional solid embed-
ded in d-dimensional (d > D) Euclidean space, useful
for certain calculations, is provided in Appendix C). The
deformation of a thin flat sheet is parametrized in the
Monge gauge using a 2D in-plane displacement vector u
and a height field h. The total elastic energy of the sheet
involves both stretching and bending contributions and



is given by [1]
A
H = /d2r {g(v%)? + ,uu?j +Zui, — Eh

2
— % d/ ﬁiO'?;-(tUj .
C

The Lamé parameters are y and A, and « is the bending
rigidity. The final boundary integral is the work done by
an external stress o®' with & being the outward normal
(within the plane) to the boundary curve C. The penul-
timate term corresponds to the potential energy due to
an external out of plane field £ which couples directly to
the height of the membrane. Such a perturbation can be
realized by an electric field E, with & = p,E, where p,
is the electric charge density on the surface, while in the
presence of gravity, we have £ = p,,g, where p,, is the
mass density and g is the gravitational acceleration. The
strain tensor

(2.1)

Ujj = % ((%Uj + 0ju; + 6z-ha,-h) , (2.2)
encodes the geometric nonlinearity inherent to thin
sheets. We neglect higher order terms in the in-plane
displacements which are small and irrelevant on large
scales for a thin sheet [1]. As an aside, note that, for
a D-dimensional manifold embedded in d-dimensional
space, the displacement field u has D components and
the height field is no longer a scalar, but instead a
vector h with codimension d. = d — D > 0 compo-
nents. The nonlinear strain tensor in this case is then
uij = (Oyu; + 0ju; + 0;h - 9;h) /2. The relative impor-
tance of stretching versus bending energies is captured
by a dimensionless Foppl-von Kdrman number, which in
2D is given by
2
VK — YR 7
K

where Y = 4p(p+X)/(2u+A) is the 2D Young’s modulus
and R is a characteristic linear dimension of the sheet.
When viewing the sheet as thin slice of a bulk elastic
material, its bending modulus and stiffness are related
as k = Yspt3/[12(1 — v3p)] and Y = Yspt, where Ysp
is the 3D Young’s modulus, v3p the 3D Poisson’s ratio
and ¢ is the thickness of the sheet [66]. As a result, vK ~
(R/t)? is essentially controlled by geometry with vK > 1
for a thin sheet (t/R < 1), reflecting the dominance
of geometrically nonlinear isometric deformations, i.e.,
bending without stretching. An ordinary sheet of paper
has a vK ~ 10° while a 1 um size graphene monolayer has

a microscopic vK = 10° (using the atomic scale values for
k= 1.1eV [20] and Y =~ 340 N/m [24]).

(2.3)

3. MECHANICAL ENSEMBLES

The properties of a thermalized elatic membrane at
temperature T are computed through the equilibrium

partition function,

Z = /DhDu e H/ksT (3.1)

where kp is the Boltzmann constant. As the in-plane
phonons (u) only appear quadratically in A they can
be integrated out exactly to give an effective free energy
F = —kgTln [ Du e M/ksT Ty do this, we separate
out the average strain and Fourier transform the nonzero
wavelength deformations. While the calculation for the
wavevector q # 0 modes is standard [21], the homoge-
neous q = 0 strain mode needs to be handled with care
in the presence of various boundary conditions. We shall
focus on isotropic loading at the boundary and neglect
external shear or compressional loading of ribbons for
simplicity. This leaves us with two possibilities, which
are the

(i) Fixed stress or isotensional ensemble, and the
(i) Fixed strain or isometric ensemble.

Note the latter could be realized with clamped circu-
lar boundary conditions. Stress and strain (equivalently,
force and displacement) are thermodynamically conju-
gate variables and the elliptic nature of elasticity pro-
hibits specifying both at a boundary simultaneously.
Hence, we have two natural mechanical ensembles akin
to the isobaric (N, P,T) and isochoric (N,V,T) ensem-
bles of statistical mechanics respectively, that are dual
to each other. In Fig. 1, we sketch a possible realiza-
tion of the two mechanical ensembles in an atomically or
molecularly thin suspended sheet.

In the isotensional ensemble, the sheet is driven by an
external isotropic stress

O'Z-c;-(t = UO5ij 5 (32)
with no further constraints on the zero modes of the dis-
placement or strain. As a result, the boundary can freely
displace in the plane under the action of oy # 0. Note
that o9 > 0 corresponds to a tensile stress while oo < 0
is compressive stress, a situation studied in Ref. [37]. In
the isometric ensemble, on the other hand, we clamp the
boundary with a fixed displacement and allow the stress
to fluctuate freely instead. If the constant displacement

on the boundary is u¢c = Acv, we have

ygdéﬁ~u:LcAC y (33)
C

where L¢ is the length of the boundary. By using Stokes’
theorem, we can rewrite this as a bulk integral,

%/d%v-u:e.

Here we have defined the average strain induced by the
boundary as € = L¢Ac¢/A, where A = [dr is the area
of the sheet. To leading order this strain results in an

(3.4)



isotropic change in the projected area as dA/A = €/2.
As before, € > 0 (A¢ > 0) corresponds to a uniform di-
lational strain, while € < 0 (A¢ < 0) is an isotropic com-
pressive strain. We can now integrate out the phonons
in either ensemble to get the free energy solely in terms
of the flexural modes. In the isotensional ensemble, we

obtain
Fo = /dzr

24+ VA -

2
+% (%Pfgaihajh> 1 : (3.5)
The subscript o denotes the fixed stress boundary con-
dition imposed and F, is the analogous to the Gibbs
free energy. The externally applied stress oy enters
in a quadratic term that has been identified previously
[35, 37]. A tensile stress (op > 0) suppresses height fluc-
tuations [36], while a compressive stress (oo < 0) sig-
nals the onset of the buckling instability. The Young’s
modulus controls the now well known nonlinear stretch-
ing term [21-23] via the transverse projection operator
(Pl = 6ij — 9;0;/V?). In the nonlinear stretching term
(in Eq. 3.5 and below in Eq. 3.7), it is understood that
the g = 0 Fourier mode has been projected out [21-23],
which ensures that PE;» is well-defined. This fact also
means that the free energy is rotationally invariant when
oo = 0, ie., h(r) — h(r) + a - r where «; are rotation
angles, is a symmetry of the system. The average areal
strain (e = 2§A/A) conjugate to the imposed stress in
this ensemble can be computed from the partition func-
tion Z, = [ Dh e T/*sT o give

_ksTOWZ, o0 1 [, )
(clon)) = 5252 = S o [ @) L (30)

The thermal average is computed using F, and B = p+\
is the bulk modulus.

In the isometric ensemble, we obtain (see Appendix A)
a different result,

2
2 K o212 ¥ Lo
Fe = /d T{—(V h) —Eh+ — (—Pijaihajh)

B 1 [, ,1°

where the e subscript now refers to the fixed strain con-
ditions and now F. is analogous to the Helmholtz free
energy. As before we include contributions from bend-
ing, the external field and the nonlinear stretching terms.
While the Young’s modulus penalizes bending induced
shear, in the presence of clamped boundaries, dilational
stretching induced by flexural deflections can no longer
be accommodated by displacing the boundary. Hence,
global homogeneous dilations are a zero mode in the
isotensional ensemble, but not in the isometric ensem-
ble, and are penalized by the bulk modulus in the latter.

(3.7)

Upon expanding the final bracket and neglecting an irrel-
evant constant, we obtain a quadratic term ~ Be|Vh|?
that has been obtained previously [36] which mirrors the
external tension term in Eq. 3.5. Importantly, we also
have an additional nonlinear term of the form

B 2 2,/ /7,12
SA der /d |Vh|?|V'R|?, (3.8)
that is independent of the strain imposed, but nonethe-
less arises only in isometric ensemble. This highly nonlo-
cal term couples the local tilts ~ Vh of the membrane at
arbitrarily distant points and has been missed in previ-
ous studies [35-37]. Anisotropic versions of this term do
appear in the description of micromechanical resonators
as nonlinear beams [59] and have been included in a re-
cent mean field analysis of a uniaxially compressed rib-
bon [47]. The consequences of this term in the presence
of thermal fluctuations are a major focus of this paper.

We note some further unusual features of the new non-
local term in Eq. 3.8. Although it involves a double spa-
tial integral, the whole term is extensive (due to the fac-
tor of 1/A), but it is importantly not additive. As a re-
sult, the membrane cannot be divided into a cumulative
sum of macroscopic parts which are roughly independent
of each other in the thermodynamic limit. Similar long-
ranged interactions appear in models of compressible [67—
69] or constrained [70] ferromagnets and can affect crit-
ical behaviour in some cases, though without reference
to ensemble inequivalence. In self-gravitating systems
[71] and mean-field models of magnets [72], long-ranged
interactions are known to spoil the equivalence of canon-
ical and microcanonical ensembles, though typically in
the context of first-order phase transitions. Although
the buckling instability under compression can proceed
as a continuous bifurcation, the highly nonlocal inter-
action in Eq. 3.8 strongly suggests that the isotensional
and isometric ensembles may not be equivalent even in
the thermodynamic limit (A — o0).

Before we proceed, we note the isometric ensemble
variant of Eq. 3.6. The average stress generated in the
sheet due to the imposed strain is simply given by

(e+—/d2 (|Vh|? ) )

with the partition function 2. = [ Dh e="</ksT and the
thermal average now performed using F.. Note that the
partition functions in the two ensembles are related,

_ kgTOmZ, _
@) =="1 "

Z, = const. / de 2, eAooc/keT (3.10)
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In order to incorporate both ensembles within the same
calulation, we now work with the following free energy

:/dQT
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Upto unimportant additive constants, F = F. (Eq. 3.7)
upon identifying v = B and 0 = Be, where B = i+ A is
the bulk modulus. Alternately, if we set v = 0 to switch
off the nonlocal nonlinear term and set 0 = g, then we
find F = F, (Eq. 3.5). It is important to note that set-
ting v = 0 is only a mathematical trick to obtain F, from
Eq. 3.11. It does not imply that the actual bulk modu-
lus vanishes. As we shall see later, the nonlocal nature
of this new term guarantees that it cannot be generated
if initially absent, i.e., if we set v = 0 in Eq. 3.11, then
it remains zero under the coarse-graining embodied in a
renormalization group transformation. Note the “mass”
term o that tunes the proximity to the buckling transi-
tion is common to both ensembles (albeit with differing
interpretations), and controls all the scaling behaviour
discussed below. Additionally we will see that the actual
physical elastic moduli (i, A) renormalize identically in
both ensembles, but the buckling transition is described
by two distinct fixed points (with distinct critical expo-
nents for some quantities!) depending on the ensemble.
So, in all that follows, we will use v as a coupling constant
that distinguishes the two ensembles with v = 0 being al-
lowed in the isotensional ensemble and v > 0 only being
allowed in the isometric ensemble. Only in the latter case
will v be identical to the actual bulk modulus (B) of the
sheet.

4. DEFINITION OF SCALING EXPONENTS
NEAR BUCKLING

Before we analyze buckling criticality, we define our no-
tation. Close to the buckling transition, we expect power
law scaling in a number of quantities, the exponents for
which we define below. The unprimed exponents be-
low will refer to the isotensional (constant stress) ensem-
ble and the primed exponents to the isometric (constant
strain) ensemble, while the buckling threshold is denoted
by 0. and ¢, in the isotensional and isometric ensembles
respectively. We follow standard conventions to define
critical exponents via the singular scaling properties of
measured observables in the vicinity of the transition, as
a function of control parameters or tuning variables. As
expected, the latter necessarily depend on the choice of
the ensemble.

A. Mechanical response

Upon approaching the buckling transition, the sheet
develops a variety of anomalous mechanical responses.
In the absence of an external field (£ = 0), up/down
symmetry is spontaneously broken and the sheet devel-
ops a finite (h) # 0 when buckled. The average height

rises continuously at the transition, acting as an order
parameter,

|‘70 - UC|ﬁ
(h) o

e —ec|'8/

(isotensional) , (41)
(isometric) . '

The zero field susceptibility exhibits divergent scaling
near buckling,

9(h)

- 0€

log — 0c|™7  (isotensional) ,
£=0 le —e.|™"  (isometric) .

(4.2)
We expect the exponents v,7’ to be the same on either
side of the transition [56], though the amplitudes of the
scaling function can and will be different. The divergence
of the susceptibility signals the breakdown of linear re-
sponse, which is also seen in the nonlinear field depen-
dence right at the buckling transition

81/5
<h> 0.6 {81/5/

Finally, in conjunction with these out-of-plane responses,
we also have a concomitant nonlinear scaling in the in-
plane mechanics, quantified by anomalous stress-strain
curves,

(o9 = ¢, isotensional) , (4.3)

(e = €. , isometric) .

1/6 (4.4a)

(4.4b)

(€) o const. + (o¢ — 0¢) (isotensional) ,

(o) o const. + (e — e)?  (isometric)

at zero external field (€ = 0). Note that the above only

includes the dominant singularity and neglects other con-
tributions. The new exponents 6,0’ # 1 signal a violation
of Hooke’s law.

B. Fluctuations and spatial scales

Apart from global quantites discussed above, local
variables also develop extended correlations when near
the buckling transition. In the absence of an external
field (£ = 0), the fluctuating height of the sheet has
spatial correlations with nontrival scaling properties. A
nonzero external stress or strain generically causes the
height fluctuations to decay exponentially over a finite
correlation length &, albeit with different large distance
asymptotes depending on whether the sheet is buckled
or flat. This behaviour is also reflected in the normal-
normal correlation function. The unit normal to a surface
specified by X(r) = (z,y, h(r)) in the Monge representa-
tion, is i = (—dzh, —dyh,1)/+/1 + |Vh|?, which allows
us to simply relate the normal-normal and height-height
correlation functions as

(h(r) -4(0)) ~ 1~ 2 (|Vhr) - VAO)F) ,  (45)



at lowest order in the height gradients. On either side of
the buckling transition, we have (fi(r)-fa(0)) ~ e~"/¢, ne-
glecting asymptotic constants and nonexponential pref-
actors. The correlation length diverges at buckling as

|00 - 00|_U
£ {|6 — ec|_”/

Right at the buckling transition, the normal correlations
decay as a power law and the sheet has critical fluctu-
ations on all scales that cause the correlation functions
to behave anomalously. We define the translationally in-
variant height and phonon correlators well away from the
boundaries as

(isotensional) , (4.6)
(isometric) . '

Gn(r) = (h(r)h(0)),
[Gu(r)l;; = (ui(r)u;(0)) -

Upon tuning to the transition, the Fourier transformed
correlators [G(q) = [dr e "4 G(r)] exhibit a power law
scaling as ¢ = |q| — 0. These averages define the well
known anomalous exponents n and n, [22, 57, 73-75]
through

q_ (4_77)
Gnla) o | -

(o9 = 0. , isotensional) , (4.9)

(e = €. , isometric) ,

and for the in-plane phonons (irrespective of the tensor
indices),

q_(2+77u)

(o9 = o , isotensional) ,
Gula) o {q—<2+n;>

(e = €. , isometric) .

(4.10)
These results describe a divergent renormalization of the
wave-vector dependent bending rigidity x(q) ~ ¢~ and
softening of the elastic moduli p(q), A(q) ~ ¢"™ (with
analogous expressions with exponents 1’ and 7, in the
isometric ensemble).

5. MEAN FIELD THEORY

Here we neglect thermal fluctuations and analyze the
buckling transition in the mean-field limit, as appro-
priate at T = 0. By minimizing the free energy F
(Eq. 3.11) over the surface profile h(r), we obtain the
Euler-Lagrange equation,

KVIh —oVPh =Y [Pg; (%Pfg@ihﬁjhﬂ OOeh

U o2 2 11712
——V*h [ d h|* = 1
v [ e =g (5.1)
where v = 0 and v = B > 0 again allows us to dis-
tinguish ensembles. As both the elastic sheet and the

external load are isotropic, axisymmetry is assumed in

the following. We choose the eigenfunction of the lin-
earized operator in Eq. 5.1 as an ansatz for the buckled
height profile in a circular geometry,

ho(r) = Hojo(an) .

Here, r = |r| is the distance from the center of the disc
and Jy(x) is the Bessel function of the first kind. The
mode of buckling is controlled by ¢, which is fixed by
boundary conditions on the height. For simplicity, we
shall assume

ho(R) =0 = Jo(an) =0 ,

(5.2)

(5.3)

where R is the radius of the sheet. Other boundary condi-
tions can also be easily used with only minor quantitative
changes in the results. A simple Galerkin approxima-
tion [76] involves projecting Eq. 5.1 onto the single mode
ansatz, which then gives (the details of the calculation
are provided in Appendix B)

v
(kg +0)Ho+q,, [gf(an) + oY | Hy =EqnR , (5.4)

where ¢g &~ 0.10567 is a constant and f(z) is a dimension-
less function given in Appendix B, with the asymptotics
f(z) ~2/(wx) for x — oo. Similar to the simpler prob-
lem of the buckling of a ribbon at T = 0 [47], Eq. 5.4 re-
sembles a Landau theory with Hy as the order parameter.
It is the mechanical equivalent of a mean field “equation
of state”. Note, however, that the underlying Landau
theory has coefficients that depend on system size. In
the absence of an external field (£ = 0), buckling occurs
for a sufficiently negative o and spontaneously breaks up-
down inversion symmetry. At the buckling threshold, the
lowest (n = 0) mode (shown in Fig. 3) goes unstable first.
The buckling amplitude in either ensemble is given by

1/2
Oc — 0o . .
o9 < 0. , isotensional
( C()qu ) ( 0 () ) )

o — e\ /2
( €045 )

(5.5)
where ¢ = f(mo) + 2¢o(Y/B) is weakly dependent on
the Poisson’s ratio through Y/B. As expected, we ob-
tain a standard square root scaling typical of pitchfork
bifurcations (f = g = 1/2). For both o9 > 0. or
€ > €., we have a stable flat state with Hy = 0. The
critical stress for buckling is 0. = —kg3 and the criti-
cal strain is e, = —kg2/B in the respective ensembles.
The wavevector that first goes unstable with decreasing
oo < 0Oore < 0is g = mg/R, where mg ~ 2.405
is the smallest positive root of Jy(mg) = 0 as required
by the boundary condition (Eq. 5.3). At threshold,
f(mg) = J1(mo)? =~ 0.27, is finite.

A couple of points are worth remarking on here. The
buckling thresholds in both ensembles involve compres-
sion (0., €. < 0) and are oc 1/R?, vanishing as the area
of the sheet becomes larger. Thus, in the thermody-

namic limit (R — o0), classical buckling is a threshold-
less long-wavelength (g9 ~ 1/R — 0) instability. At the

|Ho| =

(e < e , isometric) ,



FIG. 3. Sketch of the first buckling mode with boundary
conditions such that ho(r = R) = 0, for a circular plate of
radius R. The amplitude of the mode at the center of the
circular frame is Ho and its wavevector is qo ~ 1/R. We
assume hinged boundary conditions at » = R for simplicity.
Qualitatively similar buckling modes appear for alternative
boundary conditions, such as for membranes that approach
r = R tangentially.

same time, the buckling amplitude remains macroscopic
(|Ho| < R). Note also that, for a circular geometry, the
buckled state acquires nonzero Gaussian curvature due
to the isotropic nature of the loading. This is the ener-
getically preferred state: a uniaxially buckled sheet that
remains developable has a higher energy for these circu-
lar loading conditions. As a result, even in the isoten-
sional ensemble, we pay stretching energy ~ Y upon
buckling (the penalty associated with Gaussian curva-
ture in Eq. 3.11), while in the isometric ensemble, both
the bulk (B) and Young’s (Y) moduli contribute.

Right at the transition, in the presence of an external
field (£ # 0), we have an nonlinear response of height
given by

Mol \ /3
= isotensional
<00Yq§) (o0 = 0. , isotensional) ,

(2m05
coBay

Hy =

1/
) (e = €. , isometric) .

(5.6)

As is typical of mean field models, we obtain § = §’ = 3.

Note that, because gy ~ 1/R, this response is strongly

size dependent, diverging as R*3 in a large sheet. Fi-
nally, we also have the zero field susceptibility

mo . .

c+———— (isotensional) ,

~ 0Hy _ q(2)|079n— ocl ( )

- OE ey (isometric) |

- q; Ble — €|

(5.7)
which diverges right at the transition with v = " = 1.
The magnitude of this divergence is different on either
side of the transition, with ¢y = 1 above the transition
and c_ = 1/2 below the transition, irrespective of the
ensemble. Once again we find a strong size dependence,
with x¥ o« R? diverging as the area. Finally, a simple

calculation using Eqs. 3.6 and 3.9 also determines the
stress-strain relation to be og o €, which sets the expo-
nents defined by Eq. 4.4 to be § =6’ =1 in both ensem-
bles. Unlike the previous expressions, the stress-strain
relation is system size independent. Although the above
analysis was restricted to 2D membranes deforming in
3D space, all of the mean-field results are qualitatively
similar in arbitrary dimensions.

It is evident that the two ensembles have equivalent
scaling behaviour in the mean-field limit. In addition,
some of the scaling functions have a nontrivial size de-
pendence, a feature peculiar to the buckling transition.
This size dependence is unusual from the point of view
of conventional critical phenomena [56], and as we shall
see in Sec. 9, it has important consequences for the crit-
ical exponents and their scaling relations. Below we go
beyond the mean field limit by including thermal fluctu-
ations and show that there are important changes.

6. GAUSSIAN ANALYSIS

Here we shall primarily consider the simpler case of a
flat unbuckled membrane with Hy = 0 with a vanish-
ing symmetry-breaking external field (£ = 0). We can
rewrite Eq. 3.11 as F = Fo + Fing where

1
Fo= 5/d% [(V2h)? + a| VR[], (6.1)
Y 1 2
Fine = 5 /d% <§P;§aihajh)
v 2 2/ 217/ |2
+8A/dr/dr|Vh||Vh|. (6.2)

For small fluctuations, one might hope to neglect the
nonlinear terms in Fiy. Upon Fourier transforming
(hq = [ dr e *@Th(r)), we obtain the bare height-height
correlation function

kT

1
G?z(‘l) = Z<|hq|2>0 = W ) (6.3)

where ¢ = |q| and the zero subscript denotes that the
average is performed in the noninteracting limit. We
can similarly neglect all the nonlinear interactions in H
(Eq. 2.1) to find the bare in-plane phonon correlation
function,

(GO, = o (uslas (-

_kBT T

kT
g2 Pij (a) +

2p+ Mg

Pi@), (6.4)

involving the longitudinal (Pﬁ(q) = ¢;q;/¢?) and the
transverse (Pg(q) = 6;; — ¢iq;/q*) projection operators.

As is evident, at the Gaussian level, we have n =7 =0
and 7, = 1], = 0 in both ensembles. From Eq. 6.3, we



can easily show that the correlation length in Gaussian

limit is
= [E o1/,
o]

which corresponds to v = v/ = 1/2 in both ensembles.
Note that, here we work in the large sheet limit, which
allows us to freely Fourier transform and set o, €. ~ 0.

We can now determine the importance of the nonlinear
terms in Eq. 6.2 by making a scale transformation. To
do this, we rescale r — br, h — bSh to get the following
scaling dimensions for the bending rigidity, tension and
nonlinear couplings,

Yo =20 =2, yo=2C,

where we have used the fact that the area A — b?A un-
der scaling. Here, D = 2 and d = 3, but these scalings
depend more generally on dimensionality;their general-
ization for general D-dimensional manifolds embedded
in d-dimensions is given in Appendix C. In the Gaussian
limit, we have ( = 1, as h is simply the height with naive
dimensions of length. This leaves the bending term scale-
invariant (y, = 0), but the external load (o), Young’s
modulus (V) and nonlocal coupling (v) are all equally
relevant perturbations for 2D membranes embedded in
3Dy =yy =y, =2>0.

Hence, even at low temperatures when fluctuations
may be small, we expect that the nonlinear interactions
eventually dominate in a large enough sheet. As usual,
a Ginzgburg-like criterion determines the thermal length
scale beyond which such nonlinear fluctuations dominate

(6.5)

gy =yo =4C—2. (6.6)

[22, 37, 43, 77]
1673 K2
by =4/ SEpTY (6.7)
Remarkably, at room temeprature, a monolayer of

graphene or MoS; has £y, ~ 1 — 10 A, and thermal fluc-
tuations matter already on the atomic scale. Softer ma-
terials, such as naturally occuring 2D organic polymers
[60-62] have a typical £y, ~ 0.1 — 1 pm range which is
much larger due to their smaller Young’s moduli. As a
result, the consequences of thermal fluctuations are most
dramatic in atomic crystals in contrast to the other soft
membranes. We can perturbatively account for such fluc-
tuation effects within a renormalization group framework
that we implement below.

7. PERTURBATIVE RENORMALIZATION
GROUP

We now implement a conventional Wilsonian renormal-
ization group [56] by iteratively integrating out a thin
shell in momentum space of short wavelength fluctua-
tions. The cutoff in Fourier space is A ~ 1/a, where a
is the microscopic lattice spacing. As an aside, we note
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that, although the nonlocal term involving v in Eq. 3.11 is
quite unusual, it can be treated straightforwardly within
a standard Wilsonian treatment, as has been done for
related problems in, for example, compressible magnets
[67-69]. We perform a systematic e = 4 — D expan-
sion about the upper critical dimension following previ-
ous works [35, 57]. Although the full diagrammatic calcu-
lation is presented in Appendix C, we describe the main
results below. In Appendix D, we separately provide a
simple, but uncontrolled, one-loop calculation with fixed
internal (D = 2) and external (d = 3) dimensions that is
qualitatively correct, but numerically inaccurate.

A. Recursion relations

We carry out a perturbative low temperature expan-
sion evaluation of thermal fluctuations to one loop or-
der. By integrating out fluctuations within a shell of
wavevectors A/b < ¢ < A, where b = e° is a scale fac-
tor, and A~! a short distance cut-off of order the lat-
tice spacing or membrane thickness, we compute correc-
tions to the various parameters in the model. As ex-
plained in Appendix C, even with the addition of the
new nonlinear term, the form of our elastic description
in F (Eq. 3.11) remains unchanged at long-wavelengths
under coarse-graining; only coupling constants such as
Kk,0,Y,v and £ get renormalized. The fluctuation correc-
tions can be cast as differential recursion relations given
below

j—zzn(2<—s)+%(l’+4u)a (7.1)
%_a(2<+2—a)+%, (7.2)
fi_i =Yc—e) - 3845:2]3(:/}&;2—t40)2 : (7.3)
Y —e) - % , (7.4)
P a-e) - % , (7.5)
%:5(4—54—(). (7.6)

The fluctuation corrections are evaluated here to leading
order in ¢ = 4 — D and the codimension of the manifold
is set to its physically relevant value of d, =d — D = 1.
Furthermore, as these equations are derived in general
dimension, we use the D-dimensional generalization of
the Young’s modulus (Y = 2u(2u + DX)/(2u + X)) and
the bulk modulus (B = (2u/D)+ \), which reduce to the
standard 2D expressions for D = 2, as expected.

The renormalization equations for x, g and Y in
Eqgs. 7.1, 7.4 and 7.3 are identical to those obtained pre-
viously [35, 57], while the important coupled equations
for ¢ and v are new results. The difference between
the isometric and isotensional ensembles captured by the



presence of the nonlinear coupling v is already reflected
in the modified renormalization group flows. We have
also retained the external field € here [78]; this quantity
renormalizes trivially without any graphical corrections
as it couples only to the average height ([ dr h = hq=o),
which is left untouched by the elastic and geometric non-
linearities.

The shear and Young’s moduli renormalize indepen-
dently, as expected, but they both contribute to the
renormalization of the bending rigidity near D = 4. One
can easily use the recursion relations for p and Y to ob-
tain equivalent ones for the D-dimensional versions of the
bulk modulus (B = (2u/D) + A) and the Poisson’s ratio
(vp = N [2p+ (D — 1)A]), namely

dB kBTB2A4
d—S—B(4<—€)_m , (7'7)
de kBT,[LA4

_r _ _ 1 1 ' '
ds 19272 (kA2 + )2 (14 vp)(1 + 3vp) (7.8)

A couple of points are worth noting here. First, as ex-
pected, the bulk and shear moduli also renormalize inde-
pendently. Second, upon comparing Eq. 7.7 and Eq. 7.5,
we immediately see that both v and B renormalize in
identical ways, guaranteeing that in the isometric ensem-
ble, since v = B at the microscopic scale, they remain
equal on larger scales as well. In contrast, the isoten-
sional ensemble is characterized by v = 0 (which remains
invariant under renormalization), even though B > 0.

The third important point concerns the Poisson’s ratio
vp [79]. As is easily seen from Eq. 7.8, we have a stable
fixed point where dv,/ds =0 at v, = —1/3 (v, = —1 is
unphysical as it corresponds to A = —2u/D leading to a
marginally stable solid with vanishing bulk and Young’s
moduli), which is exactly the one-loop estimate for the
universal Poisson’s ratio of a free standing elastic mem-
brane, in accord with previous self consistent calcula-
tions [73] and Monte-Carlo simulations [75, 80-82]. This
universal auxetic response is a characteristic property of
the flat phase of unconstrained thermalized membranes
[23, 81]. The reason we obtain this result from a sim-
ple one-loop calculation near D = 4 is that the struc-
ture of the one-loop calculation is the same as that of
the self-consistent calculation done by Le Doussal and
Radzihovsky [73], and the higher order box diagrams are
convergent in that case. Furthermore, the universal Pois-
son’s ratio obtained is independent of both internal and
embedding dimensions of the membrane [73], hence we
recover the same value even in an € = 4 — D expansion.

To analyze these recursion relations, we introduce the
following dimensionless variables (the Poisson’s ratio is
of course already dimensionless),

2 4
K — _ kA" R g _ksTA™ :
kA2 + o (kA2 + 0)?
 kpTA o _keTAT 79)
r= (kA% + 0’)2M ’ (kA2 +0)2 '
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which are appropriate near D = 4 dimensions. For gen-
eral D, we must replace the factor of A* by AP to keep
Y, ji and v dimensionless. As the external field £ does
not influence the fixed points, we will set £ = 0 for now.
The effects of £ # 0 will be addressed within a general
scaling theory we develop in Sec. 9.

The physical interpretation of K is that it measures
the relative importance of bending to the external load.
We note that 0 < K < oo and then demarcate three
distinct regimes based on the value for K as follows:

e 0 < K < 1: Tension dominated (o > 0),
e K ~ 1 : Bending dominated (o ~ 0),
e K >1: Compression dominated (o < 0).

The buckled state we found using mean-field theory thus
occurs for K > 1 in the presence of compression. The
recursion relations for these dimensionless coupling con-
stants then read

dK 5 o ] @K

T T AE-D K- 384772(Y+4M)} T 1672
(7.10)

ay T v 25Y 50 | -

P e -l vy 2474 Y,
(7.11)

dap [ v 5Y T

3 PR - - 55 e 3271'2] a
(7.12)

do T 30 5Y 50 1

il e A v B T 2474 v
(7.13)

dv, kT uA*

d_; =— 0272 (A2 T 0 (1+v,)(1+3y) . (7.14)

As expected, the scale factor ¢ for the flexural phonon
field drops out of the equations when cast in terms of
dimensionless variables. Note that, while we quote the
renormalization group flow equations for Y, i and Vp
(Egs. 7.11, 7.12 and 7.14), only two of the three are in-
dependent, as v, = (Y — 2u)/[2u + (D — 2)Y]. For an
unconstrained membrane, K remains fixed at unity, as
o = v = 0. While in the isotensional ensemble, we can
have any o # 0 (K # 1) with o = 0, in the isomet-
ric ensemble, we generally have both ¢ # 0 and v # 0.
In the latter case, the system spontaneously develops a
thermally generated tension due to the geometric con-
finement enforced by the clamped boundary conditions,
as discussed below. But first, we analyze the fixed points
of the recursion relations.

B. Fixed points

We now enumerate the four physically relevant fixed
points [83] permitted in both ensembles, to O(e):
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FIG. 4. A schematic of the full renormalization group flow diagram in the three-dimensional parameter space of {K,Y,7}. We
fix the Poisson’s ratio to its universal value v, = —1/3 here, so that both the shear and bulk moduli are determined by the
Young’s modulus through ji = (D +1)Y /4 and B = (D + 1)Y /D(D + 2). The three isotensional fixed points (G,, G, and
vKip) are shown as red points with 0 < K < 1 and ¥ = 0, while the new constrained fixed point CvKy, with K > 1 and v # 0 is
shown in blue. An unphysical fixed point with o # 0 and Y = B = ji = 0 is also present as a green dot at the bottom, but this
is irrelevant for our purposes. The red plane at v = 0 on the left shows the accessible space of coupling parameters within the
often used isotensional ensemble. Under fixed stress (isotensional) conditions, the thermal buckling transition occurs at o = 0
(i.e., K = 1) and is controlled by the conventional vKin fixed point. However, for fixed strain (isometric) conditions, when
o # 0, we flow instead to a new codimension-1 fixed point (CvKyy,) that now controls the thermal buckling transition. The
unstable renormalization group flow going towards large K > 1 corresponds to strong compression and postbuckling behaviour.
At low temperature, G, is a globally attracting and stable fixed point which controls the properties of a tense flat membrane
for both ensembles.

(i) Go: K. =0,Y, =0, fi. =0, 0, = 0.
(i) Gp: K =1,Y, =0, fi. =0, 0, = 0.

(iii) vKin: K, = 1, Y, = 384n22/125, [i, = 9672 /25,
5=0 (v, = —1/3).

(iv) CvKin: K. = 1 +¢/50, Y, = 38472%¢/125, fi. =
96722 /25, v, = 16m%¢/25 (v, = —1/3).

We have set d. = 1 here as is physically relevant; the
expressions for the fixed points with arbitrary d,. are pre-
sented in Appendix C. Of these fixed points, only G,
G, and vK;y, are admissable in the isotensional ensem-
ble. The thermal Foppl-von Karman fixed point vKyy,
has been the focus of virtually all studies to date. The
constrained thermal fixed point CvKyy, is new and unique

to the isometric ensemble. Both G, and G, are Gaussian
(noninteracting) fixed points that are bending and ten-
sion dominated respectively. The conventional flat phase
is described by vKyp, and occurs for a vanishing renor-
malized tension (hence K, = 1) that is appropriate for
an unconstrained fluctuating membrane. This fixed point
has been extensively studied previously [22, 35-37, 57, 73]
and it controls the buckling transition in the absence of
boundary constraints, i.e., the isotensional ensemble as
evidenced by v = 0 at the fixed point.

In contrast, a new constrained fixed point CvKiy
emerges in the isometric ensemble with v # 0, reflecting
the geometric constraint imposed by the clamped bound-
aries in the isometric ensemble. The new interacting fixed
point involves bare compression (as K, > 1), unlike the



others, reflecting the presence of a fluctuation induced
spontaneous tension that appears only when the bound-
ary is constrained. We will discuss this feature in more
detail in Sec. 8. As we will show below, CvKy, controls
the buckling transition in the isometric ensemble.

We note that both vK;, and CvKy, are characterized
by the universal Poisson’s ratio v, = —1/3. A schematic
of the full renormalization group flow diagram with the
above fixed points is sketched in Fig. 4. The stability of
each fixed point can be analyzed by linearizing about it.
The two Gaussian fixed points, G, and G, differ sim-
ply by the presence or absence of o and play a role in
both ensembles. The tension-dominated fixed point G,
is a globally stable attractor that controls the low tem-
perature phase of a tense flat membrane. On the other
hand, the bending dominated Gaussian fixed point G is
unstable in all directions, as found previously for tense
membranes [35-37]. Both these fixed points along with
their flow directions in different invariant planar sections
of the full parameter space, are shown in Fig. 5.

Within the invariant subspace of o = 0, associated with
the isotensional ensemble (see Fig. 4), the conventional
flat phase fixed point vKy, has only one relevant direc-
tion corresponding to the external stress. As a result, it
controls the finite temperature buckling transition in the
isotensional ensemble, where the stress is tuned to zero
at threshold. But once we allow for a v # 0, i.e., work in
the isometric ensemble instead, we find that vK;y is now
a codimension two fixed point, being unstable to this new
nonlinear coupling. As sketched in Fig. 4, the system can
now flow to the new constrained fixed point CvKjyy, in-
stead, which has codimension one. Perturbationsin Y, B
and v are all irrelevant at CvKyy, and the only unstable or
relevant direction is primarily along K. In other words,
within the isometric ensemble, the strain tuned buckling
transition is controlled by CvKyy, and not vKgy.

The identification of two distinct ensemble-dependent
fixed points controlling buckling is a significant achieve-
ment. The fact that the choice of fixed point is picked by
the mechanical ensemble, here decided by fixed strain or
stress boundary conditions, is quite intriguing. Although
the isotensional and isometric ensembles are dual to each
other, they remain inequivalent even in the thermody-
namic limit, due to flexural phonons on all length scales
at the critical point. As mentioned in the introduction,
this remarkable feature is akin to Fisher renormalization
of conventional critical exponents, which we demonstrate
explicitly in Sec. 9. Below we compute the flat to buck-
led phase boundary and analyze the linearized flow in
the vicinity of the two interacting fixed points to extract
critical exponents for the buckling transition.

8. BUCKLING TRANSITION IN 4 —¢
DIMENSIONS

Let us now analyze the recursion relations given in
Eqgs. 7.10-7.14 in more detail. For a given Y, as i and v,
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are related, we only have to consider one of them. From
Eq. 7.14, we easily see that the fixed point at v, = —1/3
is stable and exponentially attracting for any finite Y.
So we shall neglect perturbations in the Poisson’s ratio
and fix v, = —1/3. This condition in turn fixes the shear
modulus to be ji = (D + 1)Y /4 and the bulk modulus
tobe B = (D +1)Y/D(D +2), allowing us to then con-
centrate on the flow in the three-dimensional subspace of
just {K,Y, v} parametrizing the stable attractor.

As an aside, note that v, rapidly approaches its fixed
point value of —1/3 only when Y > 0, which is true in
the vicinity of both the vK;, and CvKjyy, fixed points.
In contrast, for a tense membrane governed by G,
Y (s) o< e *(*=¢) — 0 approaches zero exponentially fast
on large scales. In this case, v, does not reach its uni-
versal fixed point value and instead, the rapidly vanish-
ing Y essentially freezes v, at a value that depends on
microscopic properties of the material. Thus, while the
large-distance Poisson’s ratio is universal at the buckling
transition, away from it, in a tense mebrane, it becomes
nonuniversal and depends on microscopic details, consis-
tent with results for fluctuating membranes under strong
tension [36, 37, 39, 84].

We shall now address buckling criticality in the two
ensembles separately below.

A. Isotensional ensemble

In the isotensional ensemble, we set both 0 = ¢ and
v = 0. The latter picks out a renormalization group in-
variant plane (see Figs. 4 and 5a) specific to this ensem-
ble. The buckling transition then occurs at o9 = 0. =0
(in the thermodynamic limit of infinite system size),
though o, is nonzero for a finite sheet (see Sec. 5). Note
that, right at the unconstrained fixed point vKiy, we do
have o9 = 0 (i.e., K = 1) even at finite temperature,
a result that holds to all orders in perturbation theory.
Hence the critical stress at the buckling transition is still
given by its T" = 0 value,

o.(T) = —/qu , (8.1)

and it does not receive corrections from thermal fluctu-
ations in the isotensional ensemble. As before gy ~ 1/R
is the smallest wavevector determined by the boundary
conditions and the size of the sheet (Sec. 5).

To compute anomalous scaling exponents at the transi-
tion, we use a standard renormalization group matching
procedure [85] to relate correlation functions evaluated
near the transition to those further away from the critical
point. Under scaling, r = br’ and h(r) = bSh(r’), con-
versely, g = ¢'/b and hq = hil,bD*‘C (in D-dimensions).
Upon setting b = e®, we have the following scaling rela-
tion for the height-height correlation function (G (q) =
(|hg|*)/VD, where Vp is the D-dimensional volume of the
manifold)

Gta) = o { [ asID 26} Gulaetio) . (52)
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(a) Isotensional ensemble (b) Isometric ensemble
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FIG. 5. A schematic of the renormalization group flows projected onto the invariant attracting planes appropriate to the two
ensembles. The Poisson’s ratio is fixed to its universal value v, = —1/3 in both cases. (a) In the isotensional ensemble, o = 0
identically, and we have three fixed points, Go, G, and vKyy, (filled circles). The lines connecting the various fixed points
are separatrices (red) that demarcate the basins of attraction. The vertical separatrix flowing into vK¢n at K = 1 decribes
the buckling transition in this ensemble. The streamlines (black) correspond to integral curves of the flow, and representative
trajectories closely bracketing the buckling transition are highlighted in blue. (b) In the isometric ensemble, the relevant
attractor is now a plane characterized by Y = 2.9 with 2. = 24/5 + O(g). Once again, we have three important fixed points,
Go, G, and CvKyy, (filled circles). The separatrices (red) delimit stability basins for each fixed point and the separatrix flowing
into CvKyy, controls the buckling threshold in this ensemble. Unlike in the isotensional case, this line is curved and bends
towards K > 1, signalling the generation of spontaneous tension (Fig. 6). In both ensembles, G, is globally stable for flat and
tense mebranes (K < 1), while flows towards larger values of K (> 1) lead to strong compression and buckling.

where G}, (k; s) is computed using all the parameters eval-  to keep (s) fixed, which leads to
uated at scale s. We now choose s = s* such that
lale®” = ¢!, set by the thermal length (Eq. 6.7). This C(s) = £ o [V (s) + 47i(s)] - (8.5)

2 384m2K(s)

condition allows us to write,

5

Ds*—l—?/S ds ((s)
0

. Right at the buckling transition, the coupling con-
Gh(ly, :s7) stants flow to the fixed point vK¢y. The height correlator
defines a renormalized bending rigidity via

-1 _ q4Gh(Q)
kgT

Gh(q) = exp

= kBTffh—K(s ) exp

K(s*)

Ds* —1—2/0S ds Q(s)] .
(8.3)

kr(qQ) (8.6)

Upon using Eq. 8.4 and Eq. 8.3 right at buckling, this

Here we have used the fact that on small scales (¢ < y), then gives the well-known diverging bending rigidity,

fluctuation corrections are negligible and a Gaussian or

mean field treatment is valid. To evaluate the renormal- - 12 9
ized bending rigidity at scale s*, we need the following k(@) = rlgle) ™, 1= 255 T O -
flow equation as well

(8.7)

The anomalous exponent 7 that we obtain matches ear-
lier calculations [35, 57]. While we don’t expect the one-
loop approximation of 7 to be numerically accurate in the
physically relevant case of D = 2 dimensions, we nonethe-
It is convenient to chose the height rescaling factor ((s) less obtain a reasonable value of n = 24/25 ~ 0.96 upon

dk 5(Y + 4p)

=k loc—
Rt Ty

- (8.4)



setting ¢ = 2 in Eq. 8.7. More sophisticated calcula-
tions involving self consistent [73] and nonperturbative
techniques [86] give n ~ 0.82 — 0.85 which compares well
with the exponent value measured in numerical simula-
tions [36, 43, 75, 84] and recent experiments [13].

The elastic moduli also experience a scale dependent
renormalization, though they now get softer on larger
scales. The renormalized Young’s modulus scales as

Yi(@) = Y(gta)™ . 7= 5= + O,
The other elastic moduli (u, A and B) all scale in the
same way, with the same 7, exponent. Both n and 7,
are related via a Ward identity 7, + 2n = €, which is a
consequence of rotational invariance [35, 57, 73, 74].
If the external tension is small but nonzero, then we
perturb slightly away from vKy,. We write K =1+ 0K
and linearize in d K to get

dSK _( 12

2— 2—55) 0K =(2—n)0K , (8.9)

(8.8)

ds

which is exactly true by virtue of the definition of . For a
small external stress (|og] < kA?), K ~ 1, with 6K (s) =
SK(0)e®>~"s growing with s, as expected of a relevant
perturbation. Eventually, we reach a scale s* at which
the external stress has grown large and is now comparable
to the bending rigidity, i.e., |o(s*)| ~ x(s*)A?), which
defines the correlation length £ via s* = In(§/a) (a ~ 1/A
is a lattice cutoff) beyond which the stress dominates
bending. After incorporating a nonzero o. appropriate
to a finite system, we have 0K (0) « |o0¢ — 0| which gives

_y 1 1 3¢ 9

§x |og—0c|™", V—2_n—2+25+0(8),(8.10)
for the isotensional ensemble. On short length scales
(¢ < &), the system is controlled by the bending-
dominated vicinty of the vKyy, fixed point, while on larger
scales (£ > &) when o9 > 0, the system is dominated
by external tension and the G, fixed point. Hence, for
oo > 0, we have the following length scale dependence
(for D = 2)

p (é) 1 , (é < gth)
Rﬁ < (0fl)", (b < <& ,  (811)
(&/tw)"In(/€) ,  (£>§)

with similar expressions for the elastic moduli [37]. A
similar dependence without the In(£/£) term also exists
for 2 < D < 4 dimensions.

B. Isometric ensemble

Now that we have recapitulated the isotensional re-
sults, let us move onto the more interesting isometric en-
semble. We now set 0 = Be and identify v = B. As men-
tioned earlier, the v = 0 plane defining the isotensional
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ensemble is unstable to finite ¥ perturbations, leading us
to consider the full 3D space of parameters {K,Y,v}.
For v > 0, i.e., in the isometric ensemble now, we can
further reduce dimensionality by writing Y = 2o, which

gives
dz - Y 1 5z
ds 1672 24 )’

to leading order in O(g). With Y > 0 as before, this
equation has an exponentially stable fixed point given
by z = 24/5 + O(e) that attracts all the renormaliza-
tion group flows for & > 0. This stable fixed point
in z hence defines an attracting invariant plane in the
{K,Y,v} space (see Fig. 5b), only accessible within the
isometric ensemble. Note that the new constrained fixed
point CvKyy, lies on this plane as well, a welcome feature
that guarantees that when © # 0 microscopically and
equal to B on short scales (as it should be in the isomet-
ric ensemble), their equality is retained on larger scales.
More importantly, the relation o = B > 0 serves as an
invariant attractor under coarse-graining in the isometric
ensemble. Within this plane, we have two coupled flow
equations, namely

dK

(8.12)

v
2K(K -1 —— (12 - 13K 1
— S2K(K - 1)+ 5 (12-13K), (8.13)
dv 27v
— =0 4K-1)— ——= 14
e K - 1) - (5.14)

as shown in Fig. 5b.

Upon dividing the above two equations, we obtain
dK/dv which we numerically integrate to obtain the
basin of attraction of G, and CvKy,. The stable and
unstable manifolds are obtained as integral curves of the
stable and unstable eigendirections at CvK¢y, which cor-
respond to separatrices shown in red in Fig. 5b. The sep-
aratrix connects the unstable fixed point G, at K =1 to
the constrained thermal buckling transition fixed point
at CvKin, and it delineates the stability region for a
clamped membrane. All parameter values that fall to
the left of this separatrix flow into the stable G, fixed
point, leading to a sheet that is flat and tense on large
scales. In the opposite case, parameter values starting to
the right of the red separatrix flow away to larger values
of K, signalling strong compression (o = Be < 0) and
buckling of the membrane. Representative flow trajecto-
ries illustrating this are shown in blue in Fig. 5b. The
separatrices are computed as the solution of a boundary
value problem and hence don’t admit a simple analytical
solution. Nonetheless, we can obtain some asymptotic re-
sults informed by the algebraic structure of the recursion
relations, in conjunction with the numerical solution.

Upon using the definitions of K and B and the rela-
tion 0 = Be, we obtain the critical curve for the buckling
transition strain (e.(7")) in terms of the elastic constants
and temperature, as plotted in Fig. 6 for D =2 (¢ = 2).
For low and high temperatures, we find simple asymp-
totic expansions for the buckling threshold e.(7') < 0 (in
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FIG. 6. The numerically computed buckling threshold |e.(7")]
extrapolated to € = 2 (D = 2). The critical buckling strain
gets shifted to more negative (compressive) values at finite
temperature due to the generation of a thermally induced
spontaneous tension. We have subtracted out the zero tem-
perature buckling threshold e.(0) = —kq3/B. Near the buck-
ling transition, we have used the universal Poisson’s ratio
(vp = —1/3) to relate the bulk and Young’s modulus in
D = 2. At low temperature (large ltn), €c(T) ~ T'InT', while
at higher temperature (smaller (1), we have e.(T") ~ /T
(Eq. 8.15). While this plot is obtained by setting ¢ = 2 in the
resursion relations obtained by expanding around D = 4 di-
mensions, a qualitatively similar curve is obtained from a fixed
dimension calculation with D = 2 and d = 3 (Appendix D).

D=2
2
kg kT a
(M)~ ——+4+—[2In| — , ,
)= S04 L o () k] L (> a)
(8.15a)
kg: kT (¢ Y4
leo(T)| =~ %Jrgi—ﬁ (%) {CQ—%%] L (b < a),
(8.15b)

where a ~ A~! is the lattice cutoff and C1,2,3 are nu-
merical constants that must be computed by numerical
integration of the recursion relations. While here, we ex-
trapolated our perturbative solution to € = 2, we have
confirmed that the same asymptotic expressions for the
buckling strain, with only ¢ 23 modified, are also ob-
tained within a fixed dimension calculation with D = 2
and d = 3 (Appendix D). As T — 0, €.(T) — —rq3/B,
which is the zero temperature buckling instability thresh-
old with gy ~ 1/R being the smallest available mode in
a system of size R (Sec. 5). We have utilized the fact
that, near the transition v, = —1/3, which relates Y and
B via B = 3Y/8 (in D = 2), allowing us to write the
above in terms of the thermal length ¢1,. As £y, ~ T~1/2
(Eq. 6.7), for D = 2 we have |e.(T)| ~ TIn(1/T) at
low temperature and |e.(T)| ~ /T at high tempera-
ture, as shown in Fig. 6. For general D, as T — 0,
we find that |e.(T)| ~ T[1 4 const. (T?/71 —1)/(2 —¢)]
and the linear T' dependence dominates at small T for
0 <e<2(2<D<4), while an additional logarithmic
term ~ T'In(T) appears when ¢ = 2 (D = 2). Note that

16

the high temperature asymptotics depends only weakly
on dimension.

We pause here to comment on the above results. Unlike
in the isotensional ensemble, where the buckling thresh-
old did not receive any correction from thermal fluctua-
tions (Eq. 8.1), in the isometric ensemble, the buckling
threshold gets pushed to higher values of compression (as
e(T) < 0and |e.(T)] increases with T') at higher temper-
ature. In other words, the sheet spontaneously develops
a tension due to thermal fluctuations in the isometric
ensemble. A freely fluctuating sheet wants to shrink in-
plane for entropic reasons, but the clamped boundaries
resist this shrinkage, thereby putting the sheet under ten-
sion. As a result, the externally imposed strain now has
to compensate and overcome this thermally induced ten-
sion in order to cause buckling. This effect is absent in
the isotensional ensemble because the boundaries are free
to fluctuate, allowing the sheet to freely shrink with in-
creasing temperature, albeit against a constant external
stress.

We now compute critical scaling exponents at the
buckling transition. Here, by tuning right to the buck-
ling threshold, we approach the constrained fixed point
CvKyn. Upon evaluating the height-height correlator, we
obtain the renormalized bending rigidity to be

—n' / 12 2

rr(Q) = K(gbm)™" . 0 = gpe+ O
Remarkably, we obtain the same anomalous scaling ex-
ponent here as in the isotensional ensemble (Eq. 8.7). As
we will show later in Sec. 4, we expect ) = 7 from general
scaling arguments, which we also confirm for arbitrary d.
within a lowest order systematic € = 4 — D expansion in
Appendix C and Table 1.

A similar analysis of the phonon correlator or equiv-
alently the nonlinear stretching term also provides the
renormalized Young’s modulus,

(8.16)

€
My = o5 O(e?) .
As before, 7, satisfies the Ward identity n), + 21’ =¢. A
consequence of the equality n = 7' is that n,, = 1/, as well,
which is verified here to leading order in an expansion in
e=4-D.

Distinct critical exponents appear, however, when we
perturb away from the buckling threshold, with one rel-
evant direction that flows away from the fixed point
CvK¢p. Upon linearizing about this fixed point, we ob-
tain and diagonalize the resulting Jacobian matrix to pro-
duce the following eigenvalues valid to O(e),

Yr(a) =Y (qlw)™ (8.17)

13¢ _ €
25 y Y1 = Y2 = 25

We have three irrelevant directions with negative eigen-
values (y1,2,3 < 0) and one relevant direction with a posi-
tive eigenvalue (yo > 0). If we write K(s) = K.+ 0K (s),
where K, = 14+¢/50 is the fixed point value and 6K (s) is
a small deviation, then we find that 0K (s) ~ K (0)e¥0®

Yo =2 — , Y3 = —¢ . (8.18)



grows with scale as the renormalization group flow pro-
ceeds away from CvKjy, along the outgoing separatrix.
Note that K (0) o< (e.(T) — €) is controlled by the dis-
tance to the buckling transition. This relation can be
easily obtained by expanding o/(kA?) = K~! — 1 to lin-
ear order in 6K and setting o = Be as appropriate in
the isometric ensemble. Upon using standard renormal-
ization group arguments, we obtain the divergent corre-
lation length to be
/ 1 1 13
focle—e(D)™, V= " §+1_()OE+O(E2)'
(8.19)

Strikingly, we obtain a distinct value of v/ here as com-
pared to the value of v obtained in the isotensional en-
semble. In Sec. 9, we in fact demonstrate through general
scaling arguments that v < 2/D < v/, which is satisfied
to leading order in € in our systematic expansion (see
also Table I). While, we don’t expect this leading order
perturbative calculation to remain numerically accurate
for e = 2, the exponent inequality continues to hold in
D = 2, where it reduces to v < 1 < v/. Note that, the
requirement v/ > 1 for D = 2 in the isometric ensemble
implies an exceptionally strong divergence for a correla-
tion length in critical phenomena.

The difference in exponents (v # ') directly demon-
strates that the universality class for buckling within the
isometric ensemble is distinct from that in the isoten-
sional ensemble, as advertised in the introduction.

Our analysis of the renormalization group flow at the
two fixed points associated with buckling in the two dual
ensembles is now complete. While the calculation pre-
sented here was performed within a systematic e = 4— D
expansion at fixed manifold codimension d., we provide
the general results for arbitrary d. in Appendix C. We
also present a simpler, yet uncontrolled, and hence inac-
curate one-loop approximation for the fixed points and
exponents directly in fixed internal and embedding di-
mension (D = 2,d = 3) in Appendix D. Although, we
directly compute only the scaling exponents associated
with the fluctuation spectra (n,n" or equivalently 7, 7.,)
and the correlation length (v,v'), the other exponents
defined in Sec. 4 can be obtained through various expo-
nent identities derived below. All the exponents for both
ensembles are listed to leading order in an € =4 — D ex-
pansion for arbitrary codimension d. = d — D in Table I.
We also use the most accurate estimates for the n expo-
nent in the physically relevant dimensions of D = 2 and
d = 3, obtained through the self-consistent screening ap-
proximation [73] along with the scaling relations derived
in Sec. 9 to directly quote our best estimates for the var-
ious buckling exponents in both ensembles, in Table I.

Below, we present a general scaling theory valid near
the buckling transition and derive relations between var-
ious exponents, which acquire nonstandard forms due to
the unusual size dependence exhibited by the buckling
transition. This framework will also allow us to explicitly
demonstrate that the distinction between the isotensional
and isometric buckling universality classes constitutes a
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mechanical variant of Fisher renormalization [50].

9. SCALING RELATIONS & FISHER
RENORMALIZATION

In this section, we continue to work in the general set-
ting of a D-dimensional elastic manifold embedded in
d-dimensional Euclidean space. As before, the codimen-
sion d. = d — D > 0 counts the number of directions in
which the elastic material can deform extrinsically, i.e.,
the flexural modes. Close to the thermalized buckling
transition, we have universal scaling laws, just as in con-
ventional critical phenomena, compactly captured by the
scaling form of the free energy itself. Standard renormal-
ization group arguments show that the free energy den-
sity defined by F = —(kpT/Vp)In[[ Dh e=7/*s1] (Vp
is the D-dimensional volume, which is just V5 = A the
area for D = 2) has a singular part Fs which obeys the
following scaling relation close to the transition [56]

F,=bPip (Aabl/",gbys) , (9.1)
where b is a scale factor and Uy is a scaling function
that implicitly depends on the system size via R/b, the
bending rigidity via kb~ and the elastic moduli via
{Y, B}b™. We suppress this dependence to ease nota-
tion, but these quantities are important as they give rise
to nonstandard scaling relations later. Eq. 9.1 allows
us to map the physics near the buckling transition onto
the mean field theory derived in Sec. 5. A finite exter-
nal field £ is a strongly relevant perturbation, and has
been retained with its scaling exponent y¢ > 0. For con-
venience, we will work within the isotensional ensemble
where the distance from the buckling threshold is given
by Ao = o9 — 0.(T) [87]. Equivalent results for the iso-
metric ensemble will be quoted directly as they follow
immediately by replacing Ao with BAe = B(e — ¢.(T))
and exchanging the unprimed exponents for the primed
ones. This connection holds for all the exponent iden-
tities, except for the stress-strain exponents € and €',
which require a minor modification due to their defini-
tion (Eq. 4.4), as will be clear later on.

By choosing b = |Ao|™" « &, we scale out the Ao
dependence to obtain

y &
r =8 (577)

where Wr () = (1, x). The crossover or gap exponent
is given by ¢ = vyg (correspondingly ¢’ = v'y; in the
isometric ensemble). The full scaling form,

(9.2)

£ (v, B}

_ vD &« vn
Fs =|Ac|""Up <|AU|¢,R|A0| Ao

,R|A0|V> ,

(9.3)
is a function of five distinct variables, four of which we
have suppressed in Eq. 9.2.



The height field has a scaling dimension (. Right at
buckling, we expect (h(r)?) ~ fl/RdDQ/(“R(Q)q4) ~
R?*¢ which gives [35, 57, 73, 74]

4—-D—n _4-D-1n
2 ’ B 2 '

Similarly, the requirement that the rotationally invariant

nonlinear strain tensor u;; renormalize correctly leads to

a Ward identity exponent relation [35, 57, 73, 74], now
stated in general D

(= ¢ (9-4)

2n+n.=4—-D, 20 +n,=4-D. (9.5)

These are well known identities, which we will use below
in deriving additional exponent relations.

Similar to the mean field treatment of buckled ribbons
in Ref. [47], the average height (h) serves as an order
parameter for the buckling transition here. By definition,
we obtain (for general &)

£
= [Ac|"P700, [
o h(mow)

where W,(z) = Wh(z). Now, we identify (h) ~ bS o
|Ac|~¥¢, which gives the exponent relations

OF
h=—"%¢

(9.6)

o=S@+D-n), ¢=Z@+D—1f). (97

As a consistency check, one can easily confirm that this
relation for the gap exponents is equivalent to demand-
ing a trivial renormalization of the external field £ (see
Eq. 7.6 in Sec. 7 for the D = 2 version).

In the zero field limit (£ = 0), for strong compres-
sion, we spontaneously break symmetry by buckling,
which leads to a finite (h). As Ao — 0 in a finite
system, the rescaled bulk and Young’s moduli (B and
Y) diverge as |Ac| ™", while the rescaled system size
(R|Ac|”) and bending rigidity (k|Ac|”") become vanish-
ingly small. But the latter can’t be set to zero quite
yet. We know from our mean field analysis that upon
buckling, (h) o« R/Y1/? (Eq. A.4 in Sec. 5). As a result,
the elastic moduli act as relevant scaling variables at the
transition while the system size behaves as a dangerously
irrelevant variable [53] whose scaling nontrivially affects
the critical exponents. For £ = 0, this observation leads
to

R
Xy

lim \I/h (0)

|Aa|”(1+’7"/2) )
Aoc—0

(9.8)
Note that this interesting size dependence for the scal-
ing function is not a statement of conventional finite-size
scaling [88]; it is instead a unique feature arising from the
long wavelength nature of the buckling transition. By
combining Eqgs. 9.4, 9.5 with this asymptotic behaviour,
we can compute the order parameter exponents 3, 3’ for
the buckled height (Eq. 4.1) in our two ensembles to be

B:V(l—g), ﬁ’zu’(l—%) )

(9.9)
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This exponent identity is new and distinct from the usual
hyperscaling relation that relates 8 and 7 in conventional
critical phenomena (the latter in our current notation
would read as f = —v( < 0, which is obviously wrong).

We can similarly compute the susceptibility exponents
~,7" defined in Sec. 4. From our mean field analysis, we
know that x o< R? (Eq. 5.7). Upon taking a derivative of
Eq. 9.6 and evaluating it at £ = 0, we obtain

lim ¥} (0) x R%Ac|? . (9.10)
Aoc—0
The susceptibility scaling exponents then satisfy
y=v2-n), ¥ =V(2-7). (9.11)

Although we recover the standard Fisher’s identity, its
appearance is in fact nontrivial, as is easily seen by noting
that Fisher’s identity reflects the equilibrium fluctuation-
response relation [89],

kpTx = /dDr<h(r)h(O)> : (9.12)

which by a naive application of scaling would give y ~
€477 resulting in v = v(4 — n) instead of Eq. 9.11.
The resolution, as before, lies in the nontrivial size de-
pendence of the correlation function integral (because
h(r) ~ R), which leads to kgTx ~ & 1(R/&)? oc €277
and then correctly producing Eq. 9.11. In addition, com-
bining Egs. 9.9 and 9.11 results in another unusual ex-
ponent identity

,71 — 2ﬁ/ .

v=28, (9.13)

Note that the inequality v # v/ (discussed below) will
necessarily imply additional exponent differences be-
tween the two ensembles, such as ¢ # ¢', 8 # ' and
v # ' (see Table I for a summary).

Next we move on to the nonlinear response in the pres-
ence of an external field. For finite £ we now take the
limit Ao — 0, which requires that we focus on the x — oo
asymptotics of ¥y, (z) ~ z'/%. Once again, we must be
careful with regard to scaling with the elastic moduli and
the system size. The mean field analysis (Eq. 5.6) dic-
tates that the prefactor to the nonlinear response itself
scales as (R*/Y)'/3. Upon taking this dependence into
account, we have

g & 1/6 R4|A0|4V 1/3
ey (maw) x (maw) (maw) ’

(9.14)

By demanding that the Ao dependence cancel as Ac —
0, we determine § and §’. Remarkably, upon using the
other identites from Egs. 9.4, 9.5 and 9.7, we obtain

§=0 =3, (9.15)

which is an exact result, independent of dimension! In
Appendix E, we show how the above results can all be
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Isotensional ensemble

Isometric ensemble

Exponent Relation
D=2d=3" D=4—-¢d=D+d. D=2d=3" D=4—¢,d=D+d.
12¢ 12
/ -~ 0.821 R 0.821 A+ d
e = 24 + d. 24+ d,
, 277+77u:4_D dee dce
s T . 0.358 0.358
e o 41, =4-D 24+ d. 24+ do
, v=1/(2-n) 1 3e 1 (124do)e
0.848 = 1.218 Syt em
nr V' = v/(Dv 1) PRy 2 T (96 + 4d,)
=v(l—n/2
5.5 f=vl=n/2) 1 1 0.718 1y der
B =v1-1n)2) 2 2 2 ' 96 + 4d.
, y=v(2-n) =28 dee
: 1 1 1.436 1T+ ——
I N =2 =n) =28 18 1 2d.
68=~+
5,8 oB=a+b 3 3 3 3
¥ =9 +p
6=1/(vD-1) dee dee
0,6’ 1.4 14— 1.4 14—
’ O =vD-1,0 =90 50 +48+2dc 36 +48+2dc
) ¢=v(d+D—-mn)/2 (12 — de)e 3(4+d.)e
7 . ; 2.196 24 < 3.155 24 T
¢ ¢ =V (4+D—-n)/2 96 + 4d. 4(24 + d.)

T Exponents computed using n = 4/(1 + v/15) obtained from the self-consistent screening approximation [73].

TABLE I. The two buckling universality classes. We list all the scaling exponents along with the relevant scaling identites
for the isotensional (unprimed exponents) and isometric (primed exponents) ensembles. The exponents are obtained within
an e-expansion (D = 4 —¢e,d = D + d.), accurate to O(e) and also in physical dimensions (D = 2,d = 3) using the best
self-consistent estimates for n [73]. Only 8 = 1/2, v =1 (isotensional) and 6 = §' = 3 (both ensembles) are exact to all orders

and independent of dimensionality.

combined into a simpler scaling form for (h) with a sin-
gle size dependent scaling variable and a modified gap
exponent.

Finally, we study the anomalous stress-strain curve ex-
ponents 0,0 defined by Egs. 4.4. These quantities are
simpler as they approach finite limits when the system
size R — oo. Here we distinguish the isotensional and the
isometric ensemble as 6 and 6 are defined differently in
the two. We now note that the scaling variable is BAe in
the isometric ensemble, set £ = 0 in Eq. 9.2 and employ
the definitions in Egs. 3.6, 3.9 to get

OF »
<€> - 80'0

x |Ac|"P~t ~ |Ac|'/?  (isotensional)

(9.16a)

(o) _ OF. VD1 .o .
B 0(Be) oc | BAe] |Ae| (isometric) .
(9.16b)

In this mechanical context #,6" take on the role usually
played by energy scaling in conventional critical phenom-
ena. We now obtain exponent relations analogous to
Josephson’s hyperscaling relation [56]

1

- 9 =UD-1.
vD—1" v

(9.17)

We shall see later that 6,60" > 1 (see Table I), which leads
to a crucial distinction between the two ensembles. In the
isotensional ensemble, for 1/6 < 1, the anomalous sublin-
ear response dominates any linear Hookean response as
Ao — 0 [37]. In contrast, in the isometric ensemble, for
0" > 1, the dominant strain response is in fact the non-
singular linear term as Ae — 0. This dichotomy reflects
a crucial physical consequence of the different boundary
conditions: in the isotensional ensemble, the sheet is in-
finitely compliant to homogeneous dilations or contrac-
tions in the plane, which is a zero mode of the system, but
in the isometric ensemble, the clamped boundary condi-
tions prohibit this zero mode and the sheet has a finite
compliance to homogeneous isotropic distortions.

We now discuss one more scaling relation that is only
true in the isotensional ensemble and not in the isometric
ensemble. In the isotensional case, as we saw before in
Sec. 7, the in-plane tension o = gy does not receive any
graphical corrections as v = 0 identically. This is true in
any dimension and to all orders in perturbation theory,
as a consequence of the fact that oy is the sole term
that breaks rotational invariance, while the bending and
nonlinear stretching terms preserve rotational symmetry.



This nonrenormalization condition then implies
, (9.18)

as we already saw by explicit calculation in Eq. 8.10.
Because we must have 1,7, > 0, Eq. 9.5 implies that n <
(4= D)/2 (for D < 4). This inequality then shows that
v < 2/D always. An additional important consequence
of Eq. 9.18 is that both g and  take on their mean-field
values,

1

B:_u 7:17

5 (9.19)

in any dimension. Note that such relations do not hold in
the isometric ensemble as can be seen in an e-expansion
as displayed in Table I. Eq. 9.18 determining v when
plugged into the hyperscaling relation (Eq. 9.17) also
gives § = (2—n)/(D—2+mn), which is consistent with the
scaling expected from (e) ~ [(dPr/Vp)(|Vh|?) ~ £2¢72.
This result agrees with previously derived scaling re-
lations in arbitrary dimensions [35, 57] and leads to
0 =(2—n)/n when D = 2 [37].

This completes the derivation of the various scaling
exponents in the two ensembles. The values of the expo-
nents computed within an e-expansion (D =4 —¢,d =
D +d.)and by using estimates from a self-consistent cal-
culation [73] in D = 2 and d = 3 dimensions are displayed
in Table I. With these scaling identites in hand, we can
finally address the last key result of the paper, which is to
show that the two ensembles are related to each other via
a mechanical analog of Fisher renormalization [50]. As
the isotensional and isometric ensembles are thermody-
namic duals of each other, the corresponding free energy
densities are related to each other via a Legendre trans-
formation (in the thermodynamic limit Vp — o0)

F, = min (F, + oge) = F,(04) + 0.€, (9.20)
o0

where o, solves € = —0F,/00¢| sy, , and the free energy
densities are given by F, . = —(kgT/Vp)In Z, .. Now,
near the buckling transition (at zero symmetry-breaking
field £ = 0), we can use the scaling theory developed
above to obtain

IV — o, — 0.~ |A€?

Ae ~ |0y — 0 (9.21)
where we have assumed # > 1 and retained only the
leading order term as Ae — 0. Upon combining Eq. 9.21
with the scaling of the /singular part of the free energy
densities F. ~ |Ael't?" and F, ~ |Ac['*FY/? [90], we
require that both sides of Eq. 9.20 scale in the same way
as Ao — 0. This constraint gives the equality

0=0". (9.22)
Although 0 = ¢, from Eq. 9.17 we immediately see that
the correlation length exponents must differ in the two

20

ensembles, v # v/. The simple form of the nontrivial re-
lation in Eq. 9.22 reflects the definition of 8,6’ in Eq. 4.4.
Egs. 9.20, 9.21 now lead to

(9.23a)
(9.23b)

v =10,
vV =10

B =50,
¢ =90,

The last of these relations can be solved using Eq. 9.17 to
explicitly give the important connection v/ = v/(vD —1).
With the help of Eq. 9.18, this relation simplifies to

1
S 9.24
YT D 2wy (9:24)

which was obtained previously [35], without however rec-
ognizing a possible inequivalence in ensembles. In D = 2,
we get v/ = 1/n, which upon noting that < 1 leads to
v/ > 1, which has been observed in old Monte-Carlo simu-
lations of thermalized buckling in clamped sheets [91]. In
general D, we can show that the isotensional and isomet-
ric ensembles have differing correlation length exponents
such that

v < % <. (9.25)
which is consistent with our renormalization group re-
sults in D = 4 — ¢ dimensions. Finally, demanding that
Eq. 9.23 be consistent with Eqgs. 9.9, 9.11 leads to equal-
ity of the eta exponents in the two ensembles

=0, 0= N (9.26)
the latter being a consequence of the Ward identity
(Eq. 9.5).

We note that the difference in some of the exponents
between the ensembles is not simply because the con-
trol variables (Ae and Ac) have different dimensions. In
fact, both the scaling variables we use have dimensions of
stress and are equivalent to each other: we use Ao in the
isotensional ensemble and BAe (not Ae) in the isometric
ensemble. Hence the difference in exponents between the
ensembles is due to a genuine change in the fixed point
and its associated universality class, as confirmed by our
renormalization group calculations.

These results are reminiscent of the Fisher renormal-
ization of critical exponents due to hidden variables [50],
and are also related to the problems of a constrained
[70] or a compressible magnets [67], where the presence
of a constraint (much like Eq. 9.20) leads to modified
exponents. In conventional critical phenomena, such as
in 3D magnets or superfluid He, Fisher renormalization
doesn’t affect the numerical values of exponents by much
as it usually involves dividing the conventional exponents
by 1 — «, where « is the specific heat exponent, which
is often a rather small correction [50]. Here, however,
the exponent 6 replaces 1 — « in the mechanical con-
text, allowing for a much stronger distinction in critical
behaviour between the two ensembles.



In Table I, we see that to leading order in an e-
expansion, all the equalities in Eqgs. 9.22 and 9.23 are sat-
isfied. Within the e-expansion, we find that the anoma-
lous exponents are equal to leading order in the two en-
sembles, i.e., n = 0’ and n, = 7], as expected from our
scaling considerations (Eq. 9.26). All the exponents in
both ensembles are recapitulated in Table I along with
their exponent identities.

10. DISCUSSION

Although the study of thermalized membranes is more
than three decades old [21], it has been revitalized in re-
cent years by enhanced interest in 2D materials such as
graphene and MoSs. Motivated by the ability to study
extreme mechanics in such ultrathin materials [13], we
have investigated the impact of thermal fluctuations on
a classic (circa 1757!) Euler buckling instability of thin
plates. By viewing the finite temperature buckling tran-
sition through the lens of critical phenomena, we have
uncovered new exponent relations and remarkable phe-
nomena that tie together geometry, mechanics and fluc-
tuations in a thin elastic sheet.

Near a thermodynamic continuous phase transition,
fluctuations emerge on all scales and physics becomes
universal. As we have shown, a similar situation arises
on the verge of a mechanical instability, such as buck-
ling, though with some surprises. The long-wavelength
nature of the buckling transition leads to unusual criti-
cal scaling behaviour reflected in the system size depen-
dence of the mechanical response. Additionally, buck-
ling can be actuated under either isotensional (constant
stress) or isometric (constant strain) loading, which as
we have found, actually constitute separate universal-
ity classes. This remarkable feature highlights the im-
portance of oft-neglected boundary conditions that when
clamped can induce a novel thermally generated sponta-
neous tension and modify important scaling exponents.
Our work demonstrates that the inequivalence of me-
chanical ensembles distinguished by their boundary con-
ditions exemplifies the phenomenon of Fisher renormal-
ization [50] in a mechanical context.

We emphasize the salient role of geometry in isotropic
thermalized buckling. Much of the phenomena discussed
here arise due to the inevitable geometric coupling be-
tween in-plane stretching and out of plane bending, ubig-
uitous in thin plates but absent in lower dimensional
counterparts, such as slender filaments. As a conse-
quence, there is no analogue of our results in the fi-
nite temperature buckling of beams and polymers [92—
96]. Single-molecule measurements with polymers have
noted an inequivalence of similar mechanical ensembles
[97-99], though in this case due to finite size effects. In
contrast for thin sheets, the ensemble inequivalence at
buckling survives the thermodynamic limit, as it instead
originates from the tensionless flat phase being a critical
phase, with fluctuations on all scales.
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Our work is directly relevant to the interpretation
of mechanical metrology experiments in 2D materials
[13, 24, 26, 58], that have been the focus of intense re-
search efforts in recent years. A common platform is
a static buckling assay that employs a sheet suspended
over a trench or cavity of a fixed geometry, and buckled
into a blister by the application of pressure or an electric
field (see inset in Fig. 2 and Refs. [26, 58]). As discussed
in the introduction, routinely measured force-response
curves (Fig. 2) are qualitatively sensitive to the boundary
conditions imposed (which are typically clamped, i.e., in
the isometric ensemble) and exhibit characteristic scal-
ing behaviour that reflects this sensitivity, fully consis-
tent with our predictions. This observation highlights the
importance of correctly handling experimentally ubiqui-
tous boundaries, in the interpretation of such mechan-
ical metrology experiments. Our work suggests similar
boundary sensitive phenomena may occur in other device
geometries as well, and perhaps also in dynamic vibra-
tional assays. For instance, anisotropic buckling is par-
ticularly relevant in solid-state devices, either in terms of
uniaxially compressed ribbons [37] or sheets crushed in
the presence of a background aligning field [100], both of
which pose intriguing directions for future research.

More generally, boundary manipulation offers an easy
route to induce strong deformations and morphologies in
thin materials. Although we focused our analysis primar-
ily on stress (or strain) controlled buckling, one can also
traverse the buckling transition by applying an external
field or changing the temperature. Additional effects,
such as thermoelasticity, are also often present and, in
conjunction with boundary confinement, can provide a
way to tune the prestress in the sample by simply vary-
ing temperature [5, 33]. Such thermally actuated devices
could also provide a platform to test some of our predic-
tions. We hope our results spur more experiments and
detailed comparisons with theory in this regard.

The large body of knowledge on the nonlinear mechan-
ics of athermal sheets is a useful guide for future direc-
tions. It is known that the influence of boundaries can
often persist in macroscopically large diffuse regions in
slender elastic bodies [101], an effect that is amplified by
the geometry of plates [102-104] and shells [105, 106]. Tt
would be interesting to explore the consequence of ther-
mal fluctuations in these cases, where boundary effects
are again particularly important. Far beyond the vicinity
of the buckling transition, yet more complexity arises, as
when the sheet adopts a curved profile whose mechanical
description is akin to that of thin shells. The ensuing cur-
vature can be manipulated to control localized deforma-
tions [107, 108] and fluctuation driven nonlinear response
[109, 110]. Such curved geometries offer tunable mecha-
nisms to modulate the mechanical and vibrational prop-
erties of electromechanical resonators [59], another at-
tractive direction for future research. Postbuckled states
also often exhibit bistability and sudden snap-through
transitions that exhibit critical slowing down even in the
absence of fluctuations [111]. Tt would be of interest to



extend our analysis to incorporate such hysteritic and
dynamic effects at finite temperature, but this remains
a formidable challenge. We hope that this work will en-
courage future explorations at the rich intersection of ge-
ometry, statistical mechanics and elastic instabilities.
Note added: We recently became aware of related
work by Leo Radzihovsky and Pierre Le Doussal [100]
on the buckling transition in a thermalized membrane
subjected to an external aligning field, which unlike our
work, breaks rotational symmetry explicitly in the bulk.
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Appendix A: Integrating out the in-plane phonons

As u appears quadratically in the Hamiltonian
(Eq. 2.1), we can exactly integrate it out. To do this, we

d?q
(2m)?
/ qu
(2m)?

[2u(u%)2 + /\(ugk)Q] — Aot (u?j — A?j) ,

)

K

H =

H =

_|_
ol T S~

where H' includes all contributions from the q # 0 in-
plane phonon modes and H° includes all the terms cor-
responding to the g = 0 phonon modes. Here we have
used the transverse (P};(q) = 6;; — ¢iq;/¢°) and longitu-
dinal (P*(q) = ¢iq;/q?) projection operators and written
A = (1/A) [dr Aj;(r). The g = 0 and q # 0 in-plane
phonon modes clearly decouple from each other, so when
we integrate them out, the total free energy is simply
F = F 4+ FY where F' arises from integrating out the
q # 0 phonons and F° arises from the q = 0 phonon
modes. The former is a standard calculation [21], which
gives

2
F = /d%{g(v%)Q +§ (%Pﬂ@m@-h) —8h} :

(A.5)

[iu (g () + qjui(q)) Aij(—a) + iAgiui(Q) Ak (—a) + 5 (20 Aij (@) + MAre (@) |
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separate the average strain (u?j) from the nonzero wave-
length deformations (i.e., g # 0, denoted by the prime
on the q integral), to write

where [ = [d?q/(2m)?. Note that, while there are
only two independent in-plane phonon degrees of freedom
(u;(q)) for nonzero wavevector, the homogeneous part of
the strain tensor (u?j) has three independent components,
corresponding to the three distinct modes of macroscopi-
cally deforming a 2D solid. It is well known that only the
transverse component of 4;; is important, as the rest can
be absorbed into a global translation zero mode (constant
displacement) [21]. The total Hamiltonian now takes the
form H = H' + H°

1
{2(14 lhal® + Sui() (LPL + 2p+ NG P)) ug-(—q)} — Ehg—o

L (A.3)

[N)

(A.4)

Note that this part of the calculation is common to both
ensembles. For the zero mode calculation, we consider
the two ensembles separately. In the isotensional ensem-
ble, o§¥* = 00d;;, which gives

A .
HY = Bl [2M(“?j)2 + (14 M) (upy)?] — Aoo (upy, — ARi)
(A.6)
where we have decomposed u?j into its deviatoric part

(af; = ud; — dijuf,,/2) and its trace uf), . Both the shear
(a9;) and the dilation (ug,) components of the homoge-
neous strain can be integrated over freely now to obtain
the zero mode contribution to the free energy,

FO = Aoy Ay = 2 / 2 |[VA2, (A7)



in the isotensional ensemble [37]. In the isometric ensem-
ble, we set 0" = 0 and instead have (1/A4) [drV-u=e.
T he homogeneous part of the strain tensor is then given

by

ujy = gy + % (e+A%%)
where we have once again separated out the devaitoric
shear component (@ ). We immediately see that, while
in the isotensional ensemble all three components of uy;
were freely integrated over, in the isometric ensemble,
only two out of the three degrees of freedom can be freely
integrated over. The clamped boundary conditions pre-
vent homogeneous dilations or contractions, but the two
homogeneous shear deformations in ﬁQ» continue to be

zero modes. Upon integrating out !

(A.8)

#j» we obtain

A 2
]:g = 5(#4’)\) (€+-A2k)
B 1 ?
=52 d?r [e—i— ﬂ/dzr’|v/h|2} , (A.9)

with the bulk modulus B = p + A, in the isometric en-
semble. By adding together 7' from Eq. A.5 with -7:3,5
(Egs. A.7 and A.9), we get the total free energy in the
two ensembles (Egs. 3.5 and 3.7 in the main text).

Appendix B: Mean field equation of state

For the mean field calculation we use a single mode
Galerkin approximation using ho(r) = HoJo(gnr) for a
general wavevector ¢,. The linear terms are easily diag-
onalized by ho(r) which is an eigenfunction of the Lapla-
cian,

V2ho(r) = —2ho(x) (B.1)
The nonlinear terms are computed as follows. We first
have the integral
d*r 2 2 2
7|Vh0| = Hyqy f(aoR) , (B.2)
where the dimensionless function is given by
f@) =2 [ ar oy
T) =3 ; rrJy(r
2
= Jo(z)?* + Ji(x)? — EJo(x)Jl (x) . (B.3)

This is a rapidly oscillating function which vanishes at
zero as f(z) ~ 2?/8 (z — 0) and has an envelope that
asymptoticaly decays as f(x) ~ 2/(mx) for x — oo. The
second nonlinear term comes from nonlinear stretching
and involves the projection operator which is easiest eval-
uated in Fourier space. Upon Fourier transforming, we
have

ho(q) = / dr e ho(r) = 20 206(g — q,) |

. (B.4)
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where g = |q|. We shall denote

1
S(r) = 5P;(9ihodiho) (B.5)

and similarly define Sy as its Fourier transform. This
gives

Sq:/(ko 1,PT( Vkikiho(K)ho(q — k) (B.6)

2m)? 2
2w H A%k k2 .

where cosp = q - k. As the delta functions enforce
k = g, and ¢ = +py = *cos 1 (q/2k) (|singo| =
1 — (¢/2k)?), we can use the identity

n [0(p + +38(p —
g~k —q,) = I Qe+ 0~ o)),
qk | sin ¢p|

(B.7)

(B.8)

After some simplifications, this then gives (with the re-
striction ¢ < 2¢y,)
H2
S(q) = =% /4g2 — ¢2
() 5g V200~ 4
In order to project Eq. 5.1 onto hg(r), we use the identity
Jo~ da Jo(z) = 1. This allows us to write

(B.9)

qa(kqp + o)Ho + AanO/d27°|Vh0(r)|2

@Y [ o 1 g qnf/ 2 1
= d?r PS( )0;05ho(r) = o= d2r .
(B.lO)

The divergent integral contribution from the external
field is cutoff by the system size R at large distances.
The nonlinear stretching term can be equivalently com-
puted in Fourier space by noting that

F d?q 2
/d% (x) :/ TR, (B.11)
r (2m)? ¢
where Fy is the Fourier transform of F(r). Hence we

compute this term in Fourier space as follows,

/ / d*r e 4T PLS(r)9;0;h0(r)

Qn)6(|q - k| - Qn) )

dg [ dk q q + k2 q2)
_ 3 [ 4 [3Z — k2|1 - n
anHy / o / o7 k \/1 42K2

i [ £

= —Coano .

— (22 +y%2 1)
(B.12)

The integration domain for z = ¢/q, and y = k/q, is
determined by the square root being real. This domain
is a trapezoidal region in the first quadrant (xz,y > 0)
bounded by the linesz+y=1,y=x+1,y=2and y =
x — 1. The integral evaluates to a constant ¢y ~ 0.10567.
By combining the linear and nonlinear terms we then get
the quoted Eq. 5.4.
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FIG. 7. The bare propagator and four-point vertex for
the height field, with the notation for labelling wave-vectors
shown.

Appendix C: Renormalization group calculation:
e-expansion

Here we provide details of our renormalizaton group
calculation in arbitrary dimensions. We consider a D-
dimensional solid fluctuating in d-dimensional space,
where d. = d — D > 0 is the codimension. Now, the
in-plane displacement u is a D-dimensional vector and
the height field h is a d.-dimensional vector. The total
elastic energy is once again of the form as in Eq. 2.1,
though with the nonlinear strain tensor

1
We follow the standard calculation of integrating out the
phonons to now obtain an effective free energy solely as
a function of the height h [35, 57, 73]. We handle the
boundary conditions in the two ensembles as detailed in
Appendix A to obtain

1
F=5 /dDr [£|V?h]? + 0| Vh[?]

1
—l—Z/dDT(aih~8jh)Rijkg(8kh'agh)
v D D 21112

+—8VD/d r/d ¥ |Vh2|V'h[? |

where v, as before, distinguishes the two ensembles and
Vp is the volume of the D-dimensional solid. This free en-
ergy extends Eq. 3.11 to general dimensions. We have set
the external field to zero (€ = 0, which now has d. com-
ponents) as it won’t be important for the diagrammatic
calculation. The isotensional ensemble corresponds to
o = oy (the external isotropic stress) and v = 0. The
isometric ensemble corresponds to setting o = Be and
v = B, where B = (2u/D) + X is the D-dimensional
generalization of the bulk modulus and € is the external
isotropic strain imposed. The nonlinear stretching term
is given by Rijre(q) = pMijre(q) + (Y/2)Nijee(q) [73],
where Y = 2u(2u + DA) /(2 + A) is the D-dimensional
version of the Young’s modulus and

(C.2)

1

Nijee(@) = 55—

Pr(Q)P(q) (C.3)
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[Pl Pl(a) + Pl ()Pl (a)] — Nijke(a) -

(C.4)

DN =

Mijre(q) =

In D = 2, M vanishes identically. This decomposition
is useful as M and N are mutually orthogonal tensors.
We can compute the one-loop correction to the bend-
ing rigidity and the elastic moduli using this free energy.
Note that, unlike in the D = 2 case, both x4 and Y ap-
pear separately in the reduced free energy for D > 2.
The bare propagator (correlator) for the height field
is defined via (h,(q)h,(—a))o/Vp = 6,,G%(a), where
w,v =1,---,d., and its renormalized version is G(q).
As both the nonlinearities arising from R and v are quar-
tic in nature, we combine the two into a single interaction
vertex for simplicity,

Fint = // %(q1,Q2, q)(hcn 'hq—m)(hlh 'h—q—Q2) )
qJq1 Y qz2

(C.5)
1
Vo(qi, qz,q) = ZRijM(q)QIiQIjQ%(]%
v
+%Q%qg (27)D5(Q) ) (C.6)

where = [dPq/(27)P. Note that the usual nonlin-
q

ear stretching term excludes the zero mode [21, 22, 73].
In other words, we always work in the convention that
Pli(q = 0) = 0, hence Rijr(q = 0) = 0. Both GY(q)
and Vo(q1,q2,q) are graphically represented in Fig. 7.
The new nonlocal nonlinear term o v/8Vp is unusual as
it is ultra-local in Fourier space, with a delta function in
q. After all, the new nonlinear term arose from integrat-
ing out the strain zero mode in the isometric ensemble,
hence it makes sense that the associated nonlinearity has
strict support on q = 0. In conjunction with the fact
that 735 (0) = 0, the nonlinear couplings are orthogonal
to each other and their associated operators don’t mix.

We perform standard Wilsonian renormalization [56]
by integrating out a shell of wavevectors A/b < g < A,
where A is the UV cutoff. The renormalized propagator
is given by Dyson’s equation,

GpH (@) =Gh(a)™" = Za(a) (C.7)

where X1, (q) is the “self-energy” and the vertex correc-
tions are encapsulated in I'(qy, q2,q) with 8V = gV —T
(8 =1/kpT, not to be confused with the order parame-
ter exponent). Upon including the relevant combinatorial
factors, we obtain at one-loop order



Propagator renormalization
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Vertex renormalization

a4 q,tq
q:k Q-4 k qs; +q
qa
Sh(a) = P(ay,a2a) = a —k @k + e U -
k a1 a2
Tt —q
qa; d2
11T I\%
FIG. 8. One-loop contribution to both the self-energy ¥5(q) and the vertex correction I'(q1, gz, q).
dPk 0 dPk 0
Eh(q) = 8(_6) X WVO((L_(L k)Gh(q_k) +4dc(_6) X (27T)D VO(qvkuo)Gh(k) ) (08)
_ 5B dPk 0 0
F(qlquaq) =32 921 X (27T)D VO(qlquaq)Gh(ql _k)Gh(qQ +k)V0(q1 _k7 q2 +k7q_k)
(=8)° d”k 0 (110
+8dc 91 X (27T)D Vo(qlak_q7 q)Gh(k)Gh(k_q)Vo(q_k7 qQ’q) . (Cg)
[
We can expand these out for small wavevectors (¢ — 0) as,
and perform the k integrals over a thin slice A/b < k < A
by leverage standard results [73] for the loop integrals. To (27)P5(0) = /dDr =Vp . (C.10a)
handle the new nonlinear coupling v, we use the fact that

PL(0) = 0 to set 6(q)Pj(q) = 0. As a result diagram
IIT in Fig. 8 does not contribute to the vertex correction
at long wavelengths. Both ¥; and I' then have singular
terms involving the delta function, which we regularize

[(2m)P3(a)]” = (2m)P5(0)(27)P3(a) = Vp(27)P5(q) -
(C.10Db)

This cancels the extra factors of Vp leaving all the cou-
pling constants as intensive parameters, as expected. We
cast the perturbative correction for the various coupling
constants into differential recursion relations by writing
Inb = s < 1 and implementing the scaling transforma-
tion to restore the UV cutoff, which gives

j—z = (2¢-2+ D)o+ kBQTdC (2;;/;1(),3)21 ) (C.LIb)
% = (4¢ — 4+ Dy — kB2Td° ( 2;;?(:/‘35:0)2 : (C.11c)
(cll_g = (@~ 4+ Djp - ;fgidg) (2WF)LZA(ZEZD 7 (C11d)
ey T
% =- D]E%Tf;) (2W§L$(Zi§;la)2 (1+1p)(1+3u) , (C.11g)



where Sp_; = 27P/2/T(D/2) is the volume of a unit
sphere in D-dimensions. These generalize the recursion
relations in the main text (Egs. 7.1-7.8) to arbitrary D
and d., which are recovered by simply setting d. = land
D =4 — ¢, and retaining terms only to O(e). Note that
both Y and pu enter separately to renormalize x when
D > 2. As expected, the shear modulus p, Young’s
modulus Y and bulk modulus B, all renormalize inde-
pendently. Of course, while we provide the recursion re-
lations for p,Y, B and v, they are all related, and only
two are independent. Furthermore, B and v renormalize
in identical ways as is required to be consistent with the
isometric ensemble.

In order to analyze these equations, we once again
switch to dimensionless variables just as before (now in
D-dimensions)

kA2 - kpTY AP
K=—7— Y=—"7T"+—— A2
kA2 +0 (kA2 +0)2 7 (C.122)
D D
b — kBTvA kBT,uA (ClQb)
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The recursion relations for these dimensionless variables

can be obtained after a fair bit of tedious algebra but we
do not quote them here as the equations are cumbersome
and not very illuminating. Instead we directly proceed
to the fixed points. As D = 4 is the upper critical di-
mension [35, 57], we set D = 4 — ¢ and work within an
e-expansion. We have two interacting fixed points, one
with o = 0 (vKyy, ) appropriate for the isotensional ensem-
ble and another with v # 0 (CvKyy,) associated with the
isometric ensemble. To leading order in € and arbitrary
d., the fixed points are given by

vKiy
— 384n2¢ 96m2e
Ko=1,YV,=_>ome o OTe 5.
54+dy) T 2atad) "
(C.13)
CvKip :
d.e _ 38473¢
Ki=1+ 7~ ,Yi= 77—,
T8t 2d) 5(24 1 do)
96m2e 1672¢
fly = ————— , Uy — ———— . C.14
= ara) ™~ @4+d) (C.14)

As before, the constrained fixed point CvKyy, involves
bare compression (as K, > 1) signalling the presence of
a spontaneous thermal tension that is absent in the un-
constrained fixed point vKy,. One can also check that, in
both ensembles, the D-dimensional version of the Pois-

son’s ratio flows to its stable attracting fixed point given
by

(C.15)
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independent of both D (conversely €) and d.. This con-
firms the universal Poisson’s ratio obtained through more
sophisticated self-consistent calculations as well [73].
Now, we can linearize about these fixed points to ob-
tain the relevant anomalous scaling dimensions. For the
isotensional ensemble, we fix ¥ = 0 and diagonalize the
Jacobian matrix about vK;}, to obtain the eigenvalues

12¢ d.e

_9_ G
s 24+d) T T @t d)

y Y2 = —€.

(C.16)
As expected, we have two irrelevant directions (y; 2) cor-
responding to Y and /i and one unstable or relevant di-
rection (o) corresponding to K. This provides the cor-
relation length exponent as v = 1/yg, which is quoted in
Table I. The anomalous exponent 7 is obtained by tuning
right to the fixed point and evaluating

~ (D+1)Sp[Ys +2(D — 2)[1] 12
@mPDE+ D)K. |, (24+do)’
(C.17)

to first order in . As can be checked, this also satisfies
the relation v=! = 2 — 5 (Eq. 9.18). The rest of the
exponents quoted in Table I are obtained by using the
various exponent relations derived in the main text.

Similarly, now allowing for ¥ # 0 in the isometric en-
semble, we can diagonalize the Jacobian matrix about
CvKyp to obtain the eigenvalues

(12 +d.)e o dee B
@d+d)  NTRT T @ard) BT

(C.18)
We have three irrelevant directions (y; 2,3) corresponding
to Y, ji and o, and one relevant direction along K. The
correlation length exponent is obtained via v/ = 1/yo,
which is given in Table I. The anomalous dimension 7’ is
computed just as in the isotensional case

Yo =2—

, D+ 1)Spa[Ya+2(D - 2)ja] 12
TT T e0PDRT DK, ok,  (@4+dd)
(C.19)

To leading order in ¢, we find n = 1’ consistent with
the scaling identity in Eq. 9.26. The other exponents in
the isometric ensemble are computed through the various
exponent identites and are reported in Table I.

Appendix D: Renormalization group calculation:
fixed dimension

Here we provide the details for deriving the recursion
relations by using an uncontrolled one-loop approxima-
tion at fixed dimension (D = 2,d = 3). As d. = 1
here, the height field is a simple scalar, while the in-plane
phonons are 2D vectors. The bare propagators (correla-
tors) for the height and phonon fields are respectively



GY(q) and G2, while their renormalized versions are de-
noted by Gr(q) and G, (q). The bare quartic interaction
vertex is now written as

mt // / VO d1,92,9 h h hq q1h’*CI*CI27
q1 v q2

(D.1)
Y T T
Volar, az.q) = Flai- P (q) - aiflaz - P (q) - q]
v
+570% (2m)%0(a) (D.2)
where [ = [d?q/(2m)?. As expected, in 2D, only

the Young’s modulus Y enters the nonlinear stretching
term, which, once again, excludes the zero mode [21, 22]
(PT(q 0) = 0).

We once again perform standard Wilsonian renormal-
ization [56] by integrating out a shell of wavevectors
A/b < g <A, where A is the UV cutoff. The self energy
and vertex corrections are defined as before and com-
puted to one-loop order. Upon expanding them for small
wavevectors (¢ — 0) we obtain,

B Uq A?Inb 3Y ¢*lnbd
Enla) = T (kA2 +0) 167 (kA2 +0) (D-3)
Y2 3A%2Inb

T(a1,q2,9) = P(Q)Pl(Q)q1iq1;qordar—
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where UP(q,a1) = (—i/2){Agi[a1-(a—a1)]+p[(a-a1) (g~
q1i) + (a- (q@ —q1))q1:]} is the bare phonon-height cubic
interaction vertex. Upon expanding this self energy for
small ¢ gives the following corrections to the Lamé coef-
ficients,

P kpTup?A?Inb
p=n 8m(kA2 + )2’
kgTA%Inb 5 2
An(kA? + 0)? {(LH—)\) T
(D.9)

@u +XN)=(2p+N) -

This too can be cast into differential recursion relations
for the shear modulus (p), the bulk modulus (B = g+ \)
as well as the Poisson’s ratio (1, = A\/(2u + A)), which
gives

du 12A?

— =u4(-2)—kgT————— D.1
e R R LAY
dB B2ZA\?

8 32m(kA%2 4 0)?
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We have once again used the fact that P};(0) = 0 to set
5(q)P};(q) = 0 along with the regularization scheme in
Eq. C.10 to eliminate factors of A. By writing Inb =
s < 1 and implementing the scaling transformation to
restore the UV cutoff, we obtain the following differential
recursion relations

dk 3Y

a0 = -2 kT (D.5a)
‘jl—z =020 + kBTM:T% : (D.5b)
=Y~ 2) - @T% . (D)
Y = v(ag—2) - kBT% . (D5d)

which match Eqgs. C.11 upon setting D = 2 and d. = 1.
In the v = 0 limit, we also recover the fixed dimension
recursion relations derived previously in Ref. [37].

We can also independently compute the renormaliza-
tion of the elastic moduli from the fluctuation correc-
tion to the phonon propagator. Looking back at the full
Hamiltonian in Eq. 2.1, we can similarly define the renor-
malized phonon propogator and associated self-energy
via

[Gu(@] ' =[Go(q)] ' — = .

At one-loop order, the phonon self energy is given by

(D.6)

0(_q -9 _ 0 (4 0o(4q_
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[

dv A2

once again consistent with Eq. C.11 upon setting D = 2
and d. = 1.

While the one-loop approximation is uncontrolled, we
can nonetheless obtain the fixed points and scaling expo-
nents within this approximation. To do so we now use
the 2D versions of the dimensionless variables (set D = 2
in Eq. C.12) to get the following recursion relations

i—fg:z(K 1) [K—%}—%, (D.11a)
%: 4K—2—%—1357ﬂy (D.11b)
%: 4K—2—%—£—2—ﬂ3. (D.11c)
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These can be solved to obtain two physically relevant
interacting fixed points given by

o vKin: K. =1, Y, = 647/15, B, = 87/5, v, = 0
(vp = —1/3).

e CvKip: K. = V2, Y, = 64n(2v2 — 1)/21, B, =
8m(2v/2 —1)/7, v, = 87(2v/2 — 1)/7 (v, = —1/3).

As before, the vKy, fixed point controls buckling in
the isotensional ensemble and it matches previous fixed
dimension calculations [37], while CvKy, is new and
controls buckling in the isometric ensemble. The uni-
versal Poisson’s ratio in both ensembles is once again
v, =—1/3.

In the isotensional ensemble, we set v = 0 and linearize
about vK;}, to obtain the Jacobian eigenvalues

6 2
y0:_7y12_27y3:__ (D12)

5 5’
with two irrelevant directions along Y and B and one rel-
evant direction along K. This directly gives the correla-
tion length exponent as v = 1/yo = 5/6. The anomalous
dimension is given by

3y
167K,

4
- D.13
n 5 (D.13)

matching the value obtained in Ref. [37]. Both the ex-
ponents (v and 7)), computed within this uncontrolled
approximation are fortuitously close in numerical value
to more accurate estimates of the exponents produced
via self-consistent calculations [73] (see also Table I).

In the isometric ensemble, we now allow v > 0 and lin-
earize about the new fixed point CvKyy. The eigenvalues
of the corresponding Jacobian matrix are irrational and
given by

yo = 1.1056 , y; = —2.6729, yo = y3 = —0.5224 |

(D.14)
with three irrelevant directions (Y, B and v) and one rele-
vant direction (K). We once again obtain the correlation
length exponent simply via v/ = 1/yy & 0.9045. This
doesn’t satisfy the inequality v/ > 1, nor does it sat-
isfy v/ = 1/n (with n = 4/5 from above), both of which
are expected in D = 2 from general scaling arguments
(Sec. 9). The discrepancy is attributed to the uncon-
trolled nature of the one-loop approximation here. We
can similarly compute the anomalous scaling dimension
at this fixed point, to get

, 3V 2

= 4-/2) ~ 0.7388
167K, | ook, 1-v2) ’

n (D.15)
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which evidently does not satisfy the identity n = »’/
(Eq. 9.26). Once again, we attribute this discrepancy
to the uncontrolled one-loop approximation.
Appendix E: Simplified scaling form & Widom’s
identity

Here we formulate a scaling form for the order pa-
rameter (h) that is a function of a single (albeit size
dependent) scaling variable. A comparison of the size-
dependent asymptotics in Egs. 9.8, 9.10 and 9.14 suggests
such a simpler scaling solution is possible. This allows us
to write

& R ERYY/?
_C ) A (e /2) chlr 7=
‘I’h(maw) yiz A7 @h( [Aol? ) |

(E.1)
that is now solely a function of one scaled variable with no
additional dependence on system size or elastic moduli.
This form behaves correctly near zero, provided ®(0)
and @}, (0) both approach finite constants. We can now
ensure the correct asymptotics (and now R,Y indepen-
dent) by demanding that ®(z) ~ 2'/% for z — co. The
modified gap exponent f = ¢—v(1—n,/2) = 3v(2—n)/2.
This observation leads to an alternate scaling form for
(h), namely

R ERY1/?
_ B
(h) = |Ac| Yl/zqm( Aol ) , (E.2)

from which we can easily derive the exponent relations,

f=B8+7,
B=7+58,

=8+, (E.3)
5/5/:7/+ﬂ/ .

Eq. E.4 is Widom’s identity [56]. Both these equa-
tions are consistent with our previous results given in
Egs. 9.9, 9.11, 9.13 and 9.15. The modified gap exponent
f = 3/2, in the isotensional ensemble, which is exact and
independent of dimension. The modified gap exponent
in the isometric ensemble takes on the following value
within an e-expansion

= 3 3d.e

d s 2
_2+96+4dc+0(€ )

(E.5)

If we use an estimate for n for D = 2,d. = 1 from self-
consistent calculations [73], we obtain f’ & 2.154.
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