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We compare quantum Otto engines based on two different cycle models: a two-bath model, with
a standard heat source and sink, and a measurement-based protocol, where the role of heat source is
played by a quantum measurement. We furthermore study these cycles using two different ‘working
substances’: a single qutrit (spin-1 particle) or a pair of qubits (spin-1/2 particles) interacting via
the XXZ Heisenberg interaction. Although both cycle models have the same efficiency when applied
on a single-qubit working substance, we find that both can reach higher efficiencies using these more
complex working substances, by exploiting the existence of ‘idle’ levels, i.e., levels that do not shift
while the spins are subjected to a variable magnetic field. Furthermore, with an appropriate choice
of measurement, the measurement-based protocol becomes more efficient than the two-bath model.

I. INTRODUCTION

The fast development of new technologies into the nano
scale makes quantum effects no longer negligible. Thus
there is a natural need to understand which, if any, quan-
tum effects may enhance thermodynamic processes. This
emerging subject, known as quantum thermodynamics
[1], has received attention from different fields, such as
quantum information [2–7], quantum optics [8–12] and
resource theory [13, 14].

A main focus of this field has been the study of quan-
tum heat engines (QHEs), i.e, heat engines that work
with a small quantum system as the working substance.
Recently, several such models have been analyzed, such
as those based on spin systems [15–26], harmonic oscilla-
tors [27–31], trapped ions [32, 33], and others [34–38]. We
should mention that already in 1959 a three-level maser
was analyzed as a thermal engine [39].

One of the main issues when treating small quantum
systems thermodynamically is deciding how to classify
energy transfer processes as heat or work. In the clas-
sical macroscopic scenario it is clear that heat is a pro-
cess where energy is transferred by microscopic degrees of
freedom in uncontrollable, random ways and associated
with entropy production. Work, on the other hand, is
the energy transfer through a macroscopic and control-
lable degree of freedom. Such a difference is fundamental,
since thermodynamics’ main practical concern is how to
convert heat which is ”freely” available in nature into
work, and that is the purpose of a heat engine.

There are already some definitions that are used in
most analyses of QHE, but with no clear picture of the
role of entanglement or other quantum correlations in the
operation of the engine [10, 15, 20, 34, 35, 37, 40–45].

Recently it has been proposed that, since a quantum
measurement is a random and irreversible process, any
energy it transfers to or from the measured system may
be considered as a form of heat (quantum heat) Thus
one can have a new kind of engine with one of the ther-
mal baths replaced by a quantum measurement [46–50].
In this scenario one can furthermore consider using ei-

ther selective measurements and feedback (a Maxwell de-
mon [46, 51–55]) or non-selective measurements and no
feedback [26, 56, 57], [58]. In the latter case, the post-
measurement state is taken as the appropriate average
over all possible measurement results. In other words,
the measurement is treated as a quantum channel. In
this article we will only consider this scenario, and will
use the expressions ‘quantum measurement’ and ‘quan-
tum channel’ interchangeably. We should mention that
there are also proposals where the measurement acts as
an external source of work [59]

Yi et al. [56] studied the use of such a non-selective
measurement in an Otto-type cycle. This cycle is com-
posed of two quantum adiabatic strokes, where no heat
transfer occurs, one conventional isochoric stroke, where
the system equilibrates with an external cold reservoir
without realizing work, and one measurement stroke,
which plays the role of the hot thermal reservoir. They
pointed out that measurements whose Kraus operators
are all Hermitian (in particular, projective measure-
ments) always increase the energy of the system in this
cycle, and can thus play the role of the engine’s heat
source. They then showed that, for working substances
whose energy gaps all vary by the same ratio in the
adiabatic strokes, such as a harmonic oscillator or non-
interacting qubits, the cycle’s efficiency is independent of
the specific measurement made, and has in fact the same
value as when these systems interact with a conventional
hot thermal bath. Thus at least in these simple exam-
ples, a measurement-based engine has no advantage over
a conventional two-bath one.

Das and Ghosh [57] later investigated whether this con-
clusion still holds in more complex scenarios. They stud-
ied the same measurement-based protocol in the cases
of two coupled qubits, and of one qubit coupled with a
general spin S, interacting via an isotropic Heisenberg
Hamiltonian. They found that the efficiency can indeed
be greater in these cases, but it was not clear if this was
an effect of the coupling, of the measurement, or both.
They also did not compare their results with the cor-
responding efficiency values of an engine with the same
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coupled qubits but using two thermal baths.

Recently, some of us have shown [60] that efficiency
gains in this corresponding two-qubit, two-bath model
come not from entanglement or any quantum correlation,
but just from the way the various system levels channel
heat during the cycle. More specifically, an efficiency in-
crease is possible when some levels are ‘idle’, in the sense
that they do not couple to the external work sink, i.e, do
not shift during the adiabatic strokes. Any heat absorbed
from one bath by these levels cannot be converted into
work, and must be deposited in the other bath. Chan-
neling this heat flow from the cold to the hot bath allows
more heat to flow in the opposite sense through the cou-
pled levels, thus increasing efficiency.

Here we seek to better understand if and how
a measurement-based engine without feedback can
have greater performance than the corresponding two-
thermal-bath model. With this aim we first study and
compare both kinds of Otto cycle in the case of a toy
model with just three energy levels. Since this qutrit
system is not divisible into subsystems, there is no ques-
tion of any efficiency gains being due to entanglement or
other quantum correlations.

As in Ref. [60], we find that efficiency gains (relative to
the uncoupled-qubits case) occur when one of the qutrit
levels is ‘idle’. Moreover, we find that the measurement-
based protocol allows a fine-tuning of the reversed heat-
flow mechanism, which can result in even larger efficien-
cies than in the corresponding two-bath model. Finally
we explore the same possibility in the case of two qubits
interacting via an anisotropic Heisenberg Hamiltonian.

The structure of the paper is as follows: in section II
we briefly review quantum Otto engines composed of two
quantum adiabatic strokes and two isochoric interactions
with thermal reservoirs. In section III we review how the
hot reservoir may be replaced by a non-selective quantum
measurement, and show that in fact any unital measure-
ment can be used in this way. In section IV we apply
both protocols to a qutrit system and find the conditions
for achieving an efficiency higher than the qubit limit
η0 = 1 − 1/r, where r = λmax/λmin is the ratio between
the higher and lower values of the adiabatic parameter λ.
Next, in section V, we use two interacting qubits as our
working substance and study the role of the interaction
in the efficiency. Finally, we conclude by explaining the
mechanisms behind the increase in efficiency.

II. QUANTUM OTTO ENGINE

In this section we review the Otto heat engine model
in the quantum regime. Let us first briefly introduce the
concepts of work and heat in the quantum setting. We
first define the internal energy of the system as the energy
expectation value

U = 〈H〉 = Tr[ρH]. (1)

Then, in any infinitesimal process we can state the first
law of thermodynamics for quantum systems as [61–65]:

dU = Tr[dρH] + Tr[ρdH]

= δQ+ δW,
(2)

where dU is the change in the system’s average energy,
and we have defined work, W , as the change in the aver-
age energy due to a change in external and controllable
parameters of H. Heat, Q, on the other hand, is defined
as the change in the average energy when all controllable
parameters are fixed; these changes usually come from in-
teractions with the environment. It is worth mentioning
that these interpretations are valid only for weak system-
bath coupling [63–65].

A standard thermal engine consists of a ‘working sub-
stance’ (WS), a system that undergoes a cycle during
which it interacts with two thermal baths at different
temperatures. Through this cyclic process some of the
heat flowing between the baths is converted into work.
Let us consider that our WS is a generic quantum sys-
tem governed by the Hamiltonian

H(λ) =
∑
n

En(λ)|En(λ)〉〈En(λ)| (3)

with λ some tunable external parameter. We will also
assume that after sufficient time in contact with a ther-
mal bath at inverse temperature β = 1/(kBT ), the sys-
tem reaches the corresponding Gibbs thermal equilibrium
state, ρ(λ) = e−βH(λ)/Z(λ), with Z(λ) = Tr[e−βH(λ)]
the partition function.

The Otto cycle consists of four processes (strokes): two
adiabatic ones, where there is no heat exchange and two
“isochoric” [66] ones, where there is no work exchange.

First stroke: The first stroke is an isochoric process in
which the working substance thermalizes with a cold heat
bath at inverse temperature βc = 1/(kBTc). No work is
done in this step, since λ is fixed at λi, and only heat
is released by the system into the bath. Following the
definition given above, this heat exchange is

Qc =
∑
n

En(λi)(p
c
n − phn). (4)

where p
c(h)
n = exp

[
−βc(h)En(λi(f))

]
/Z(λi(f)) are occupa-

tion probabilities of the nth energy level of the system in
thermal equilibrium with the cold (hot) bath, described
by the density matrix ρ(λi(f)).

Second stroke: In this step, we detach the working
substance from the cold heat bath and let the external
parameter adiabatically change from its initial value to
a final one, λi → λf . Thus, the only contribution to
energy change is in the form of work, there is no heat.
In this paper we assume for simplicity that this is a true
quantum adiabatic evolution, where there is no change
in the energy occupation probabilities, whereas the en-
ergy eigenvalues and eigenstates evolve smoothly from
those of H(λi) to those of H(λf ) [67]. This requires the
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timescale for the change in λ to be at least as large as
the inverse of the smallest relevant energy gap. In par-
ticular, no level crossings can occur. It is important to
note that, although the probabilities pcn at the end of this
step are therefore those of the thermal state ρ(λi), the
corresponding state will generally not be thermal with
respect to the final Hamiltonian H(λf ). It is still how-
ever a ‘passive’ state, i.e., an energy-diagonal state where
the probabilities pn are monotonically nonincreasing with
energy En, and thus contains no ergotropy [68].

Third stroke: This is another isochoric process in
which the working substance is put in thermal con-
tact with a hot heat bath at inverse temperature
βh = 1/(kBTh) < βc. After the system thermalizes
with the bath, it absorbs the energy

Qh =
∑
n

En(λf )(phn − pcn). (5)

Again, no work is done during this process.
Fourth stroke: This process is similar to the second

stroke. Here, the external parameter in changed back to
the initial value, λf → λi, and the occupation probabili-
ties remain fixed at phn. Only work is performed and no
heat is exchanged.

Due to energy conservation in a cyclic process, the total
work done by the system is equal to the negative sum of
the total heat transferred during steps 1 and 3:

W = −(Qh +Qc)

= −
∑
n

∆En∆pn
(6)

where ∆En = Ehn − Ecn, ∆pn = phn − pcn and W < 0
indicates work performed by the system. The efficiency
of the cycle is

η = −W
Qh

. (7)

III. ENGINES BASED ON UNITAL
MEASUREMENTS

Let us now consider a measurement-based Otto en-
gine, as proposed by Yi et al. [56], where the inter-
action with the hot bath in the third stroke above is
replaced by a general trace-preserving measurement pro-
cess E, characterized by Kraus operators {Mα} satisfying∑
αM

†
αMα = 1. The density operator after the measure-

ment is

ρM = E(ρ(λf )) =
∑
α

Mαρ(λf )M†α. (8)

As mentioned before, the quantum-mechanical nature of
the measurement will generally disturb the system, and

in particular its energy, in random and irreversible ways.
Therefore various authors have argued that any energy
transferred in this process should also be interpreted as
a form of heat [46, 69].

Since we want the measurement to play the role of the
hot bath, we must ensure that, on average, it will increase
the system’s energy, i.e., that

〈∆E〉 = Tr [(ρM − ρ(λf ))H(λf )] ≥ 0. (9)

In Ref. [56], it was shown that when ρ(λf ) is a passive
state (as is the case here), Eq. (9) is indeed always sat-
isfied for ‘minimally disturbing measurements’ (MDM’s)
namely those where Mα = M†α are all Hermitian [70].
This choice seems however to have been motivated more
by mathematical convenience than by physical consider-
ations. From a physical standpoint, it is more natural to
consider the full set of unital channels, those that map
the Identity operator to itself, i.e, satisfy

∑
αMαM

†
α = 1,

since these channels increase the von Neumann entropy
S = −Trρ ln ρ for all input states, S(E(ρ)) ≥ S(ρ) [71].
Note the MDM’s considered in Ref. [56] are a special
case within this class.

In fact, we can show that Eq. (9) remains true for ar-
bitrary unital channels:

Theorem 1: If E is a unital, completely positive quan-
tum channel and ρ is a passive quantum state with re-
spect to Hamiltonian H, then Tr [(E(ρ)− ρ)H] ≥ 0.

Since this statement is possibly of more general in-
terest, and requires a somewhat more general argument
than the one presented in Ref. [56], we give a full proof
in Appendix A.

Let us now consider the heat and work exchanges for
this measurement-based engine. The only difference from
the conventional one is that after the third stroke the
state of the system is ρM instead of the thermal state
ρ(λf ) at inverse temperature βh. Thus Eqs. (4) and (5)
can be rewritten as

QMc =
∑
n

En(λi)[p
c
n − pMn ] ≤ 0 (10)

QMh =
∑
n

En(λf )[pMn − pcn] ≥ 0 (11)

where

pMn ≡ 〈En(λf )|ρM |En(λf )〉 (12)

are the populations of the energy basis states after the
measurement [72]. Similarly the work is given by

W = −
∑
n

[En(λf )− En(λi)][p
M
n − pcn]. (13)

The engine efficiency is therefore

η =

∑
n[En(λf )− En(λi)][p

M
n − pcn].∑

nEn(λf )[pMn − pcn]
(14)
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All these expressions are identical to those for a two-
bath engine, apart from the correspondence between pMn
and phn. In particular, consider a scenario where all the
energy gaps change by the same ratio r when λ is adia-
batically increased, i.e,

En(λf )− Em(λf ) = r[En(λi)− Em(λi)], ∀n,m. (15)

In this case, as has already been shown both for the two-
bath case [34] and for the measurement-based one [56],
η does not depend on the probability changes ∆pn, but
only on r:

η =
r − 1

r
= 1− 1

r
≡ η0. (16)

In these cases it does not matter if it the heat comes
from a thermal interaction or a measurement process,
since the efficiency does not depend on the temperatures
of the reservoirs, nor on the choice of measurement. One
way to understand this correspondence is to note that,
when Eq.(15) holds, the system’s state does retain a ther-
mal form during the adiabatic strokes, with an effective
temperature that depends on λ. Thus, here the thermo-
dynamic and quantum notions of an adiabatic process do
coincide [34].

This, however, raises the question: are there circum-
stances where we can improve the efficiency of a quantum
Otto engine beyond η0? The previous discussion shows
this requires at least one level gap that does not adiabat-
ically shift with the same ratio as the others. One way
to realize this possibility is by using a working substance
composed of interacting spin-1/2 particles, as studied for
the two-bath model in Ref. [16] and for the measurement-
based model in Ref. [57]. Improvements in efficiency were
found in both works. However no clear physical explana-
tion for this effect was given.

More recently, after analyzing this same system for the
two-bath case, some of us have found that it does pos-
sess a simple mechanism for efficiency increase [60]. This
mechanism does not depend on any correlations, but on
the exploitation of reversed heat fluxes (from the cold
bath to the hot) via uncoupled levels. In the next section
we show that the same mechanism can also be present in
a measurement-based engine, and can in fact deliver an
even greater improvement in efficiency.

IV. QUTRIT AS A WORKING SUBSTANCE

A two-level system (qubit) only has a single energy
gap, so Eq.(15) is trivially satisfied. In other words, the
simplest possible Otto engine where we can hope to see
an increase in η beyond η0 has a three-level (or qutrit)
working substance. In the following we consider a qutrit
governed by the Hamiltonian:

H =

 0 B 0
B 0 0
0 0 −J

 , (17)

where B > 0 plays the role of the adiabatic parameter
λ, shifting between values Bi and Bf , while J > 0 is
kept fixed. This toy model can be considered as a simpli-
fication of the coupled-qubit system studied in [16, 60].
Physically, it could for instance be realised in a three-level
atom with a V -type level structure, with two initially de-
generate upper levels Raman-coupled via the lower one.
The eigenvalues and eigenstates are

Eigenvalues Eigenstates

+B |+〉 = (|0〉+ |1〉)/
√

2

−B |−〉 = (|1〉 − |0〉)/
√

2
−J |2〉

(18)

The resulting heat exchanges are given by

Qh = −J(∆p−J) +Bf (∆pB)−Bf (∆p−B), (19)

Qc = +J(∆p−J)−Bi(∆pB) +Bi(∆p−B), (20)

and the work by

W = (Bf −Bi)(∆pB −∆p−B), (21)

where ∆pn = phn−pcn for the the two-bath model, ∆pn =
pMn −pcn for the measurement model, and we have labeled
each probability by their corresponding energy.

Using terminology introduced in Ref. [60], the energy
levels ±B are ‘working’ levels, since they shift with the
adiabatic parameter. Level −J , which does not shift, is
‘idle’. As shown more generally in Ref. [60], the presence
of idle levels allows one to either increase or decrease the
efficiency of an Otto cycle away from η0. Indeed, in the
current example, the efficiency is

η

η0
= 1 + J

∆p−J
Qh

. (22)

We should mention that, while normally the time scale
for an adiabatic process increases with the inverse of the
smallest energy gap, here this is not necessary, since a
time-dependent change B(t) introduces no crosstalk be-
tween levels. Thus, in fact the ‘adiabatic’ strokes can
here be executed at finite speed [60].

To understand Eq. (22), it is convenient to interpret
each term in Eqs. (19, 20) as a separate energy flux,
e.g. to view −J∆p−J ≡ qh−J as the heat absorbed by
the engine from the hot bath via the −J energy level. In
terms of this quantity, we can write

η

η0
= 1−

qh−J
Qh

. (23)

Considering that an engine requires Qh > 0, we can
now see that an increase in efficiency is only possible
if qh−J < 0 (or, equivalently, if ∆p−J > 0). Note also
that, since level −J is idle, any heat it absorbs from
one bath cannot be converted into work, but must be
deposited in the other, hence qc−J = −qh−J . In other
words, although the overall heat flow in an engine cycle is
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from the hot bath to the cold, attaining efficiency greater
than η0 requires part of the heat to flow in the opposite
direction, via the idle level −J . It turns out that such a
reversed heat flow is indeed possible in many situations
[60].

Note that the above conclusion holds both for the
measurement-based engine and in the two-bath scenario.
As already stressed, the only difference between the two
situations is the origin of the populations after the third
stroke. In the two-bath model, for a given pair of field
values Bi, Bf , these populations depend only on the hot
bath temperature. In the measurement-based model,
however, they depend on the choice of measurement,

which has many more free parameters. One then ex-
pects that an appropriate choice may lead to an increase
in ∆p−J beyond what is possible with a thermal bath -
and thus to a higher efficiency. In the following, we show
that this is indeed the case.

A. Two-bath Model

We begin by writing explicit expressions for the heat
and work exchanges in the case of the two-bath model:

Qh =
(2e−βhBf + eβhJ)Bf − JeβhJ

2 cosh (βhBf ) + eβhJ
− (2e−βcBi + eβcJ)Bf − JeβcJ

2 cosh (βcBi) + eβcJ
, (24)

Qc = − (2e−βhBf + eβhJ)Bi − JeβhJ

2 cosh (βhBf ) + eβhJ
+

(2e−βcBi + eβcJ)Bi − JeβcJ

2 cosh (βcBi) + eβcJ
, (25)

W = (Bf −Bi)
( 2e−βhBf + eβhJ

2 cosh (βhBf ) + eβhJ
− 2e−βcBi + eβcJ

2 cosh (βcBi) + eβcJ

)
. (26)

The resulting efficiency can be written as

η =
(Bf −Bi)
Bf + ΩJ

=
η0

1 + (Ω/Bf )J
, (27)

with

Ω =
eβc(Bi+J) + eβc(Bi+J)+2βhBf − eβh(Bf+J)+2βcBi − eβh(Bf+J)

2(e2βcBi − e2βhBf ) + eβc(Bi+J) − eβh(Bf+J) − eβc(Bi+J)+2βhBf + eβh(Bf+J)+2βcBi
. (28)

As expected, when J = 0, we recover η = η0 =
1 − Bi/Bf , the same result valid for a two-level system.
Note that while η0 does not depend explicitly on the bath
temperatures, in order to operate as an engine, W < 0
we need Th ≥ (Bf/Bi)Tc.

Our main interest is to compare the effects of having
J 6= 0 on the efficiency of the two-bath and measurement
engines. Unfortunately, for the qutrit there is no simple
general expression for the condition where the cycle op-
erates as an engine; only in the limit of high and low tem-
peratures, as shown in [60] for the analogous two-qubit
system. Thus, in order to keep the problem tractable,
in the remainder of this article we set the parameters
Bi = 3, Bf = 4, βh = 0.5 and βc = 1, and focus on
analysing the effects of changes in J and in the measure-
ment protocol.

For these parameters we first plot in Fig.1 the efficiency
as a function of J for the qutrit ‘two-bath’ model. We can
see that η at first increases with J , reaches a maximum
and then decreases, becoming smaller than η0 and finally
negative; the system stops to operate as an engine since

W > 0. In the inset of Fig.1 we plot both heats and work.
Note that while η increases with J , the amount of work
delivered per cycle decreases, since more energy is flowing
through the −J level and cannot be converted into work.
This behavior is similar to the one obtained when using
two spins coupled via the Heisenberg interaction [16, 60],
since the effect of the coupling is to introduce an idle
level.

B. Measurement-based model

Let us now consider a measurement-based version of
the Otto engine for the qutrit. We restrict ourselves to
projective (von Neumann) measurements and choose one
possible set of projection operators given by:

M1 = |ψ1〉 〈ψ1| ,M2 = |ψ2〉 〈ψ2| ,M3 = |ψ3〉 〈ψ3| , (29)



6

η0

ηT

0.0 0.5 1.0 1.5 2.0 2.5
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

J

E
ne
rg
y

Qh

Qc

W

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

0.3

0.4

J

E
ff
ic
ie
nc
y

Figure 1. Efficiency of a two-bath quantum heat engine with
a qutrit ‘working substance’. η0 is the efficiency for a two-
level case (J = 0; dashed black). ηT is the efficiency for the
qutrit (solid black). (Inset) Heat absorbed by the system (top
dashed red), heat released into the bath (bottom dotted blue)
and total work done on the system (middle solid green). Note
that, in our sign convention, negative W means work is being
extracted, i.e, the system is functioning as a heat engine.

where

|ψ1〉 = cos θ sinφeiχ |0〉+ sin θ sinφeiψ |1〉+ cosφ |2〉
|ψ2〉 = cos θ cosφeiχ |0〉+ sin θ cosφeiψ |1〉 − sinφ |2〉
|ψ3〉 = sin θeiχ |0〉 − cos θeiψ |1〉

This set of projectors belongs to the SU(3) group and
can be used to make a generic von Neumann measure-
ment in any direction. In this case we do not have only
one parameter, βh, but instead four: θ, φ, χ and ψ. The
expressions for the heat, work and efficiency can be calcu-
lated but become very cumbersome, so we do not present
them here.

The analytical expressions for the efficiency are also
very cumbersome and do not give much insight. Thus
we have numerically analyzed the efficiency for many dif-
ferent values of θ, φ, χ, ψ and will now show the more
interesting and representative results. In Fig. 2 we show
the efficiency for three different measurements, for the
two-baths model and for the qubit (which is the same
for the measurement or two-bath model). It can be seen
that measurement-based model can have higher or lower
efficiency than the two-bath model and even lower than
the qubit system.

It is important to emphasize that in both engine mod-
els, two-baths and measurement-based, the increase in
the efficiency in relation to the qubit is due to the flow
of energy in −J idle level being from the cold to the hot
bath. This can bee seen in the inset of Fig.2 for one the
measurement protocols. The fact that the efficiency of
the measurement model can be larger than that of the
two-bath model is due to the measurement being able
to give more energy to the −J level than the thermal
hot bath. We also checked that for the same set of pa-

rameters from Fig.2 the efficiency of the two-bath engine
always decreases for negative values of J , while it can
increase for the measurement based engine. Note also
that in both models the increase in the efficiency is not
related to entanglement or any other subsystem correla-
tions, which are not present in a single system with three
levels.
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Figure 2. Efficiency of the measurement-based quantum heat
engine for a qutrit. η1 (first curve, dotted blue): θ = φ = 0.7π
and ψ = χ = 0.5π; η2 (third curve, dashed black): θ =
φ = χ = 0.7π and ψ = 0.5π; η3 (fifth curve, dashed green):
θ = φ = χ = ψ = 0.3π. We also show the efficiency for the
two-bath model with the qutrit ηT (second curve, dotdashed
purple) and with the qubit η0 (fourth curve, solid red). (Inset)
Energy exchanged through each energy level for η2: qB (top
dashed red), q−B (middle dotdashed blue), q−J (bottom solid
green).

We also numerically found that the efficiency of the
measurement-based engine can approach one. This can
be seen in Fig. 3(a) where we have a contour plot of the
efficiency as a function of θ = φ and J for ψ = χ = π/2
and βc = 1. One can see that for some fixed value of
θ = φ around 2.4 the efficiency increase with J and seems
to approach one as J → 3. In figs. 3(b) and (c) we ana-
lyze the effects of changing the cold bath temperature. It
can be seen that lower (higher) βc decreases (increases)
the size of the region of higher efficiency around the max-
imum that can reach one. Finally we show in Fig. 3(d)
the case where θ = φ = χ and ψ = π/2 and βc = 1. It can
be seen that the efficiency does not reach one anymore
and the maximum values occur around J = 2.

We now analyze more carefully the extreme scenario
where the efficiency can approach one in Fig. 3 (a). We
fixed θ = φ = 0.75π and looked at the behavior of the
efficiency, populations and exchanged heat via the idle
level J . In Fig. 4(a) we show the populations of the sys-
tem state in the energy basis before the measurement.
First note that the population of the highest level, +B,
is negligible. We also see that as we increase J the pop-
ulation of the two lowest levels approach each other, as
expected since the gap between the two levels is decreas-
ing. In Fig. 4(b) we show the populations after the
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Figure 3. Contour plot of the efficiency of the measurement-
based quantum heat engine for a qutrit. In figs (a), (b) and
(c) θ = φ and ψ = χ = π/2 and β = 1, 0.25, 4 for (a), (b) and
(c). In fig. (d) θ = φ = χ, ψ = π/2 and βc = 1.

measurement. One can see that for all values of J , the
measurement does not change the population of the high-
est level,+B, and projects the state in a equal mixture
of the two lowest energy levels. Comparing the the pop-
ulation before and after the measurement, we see that as
J increases the change in the population of the two low-
est level decreases and goes to zero when the efficiency
approaches one; so less energy is transferred to the sys-
tem by the measurement. This can be seen in Fig. 4(c)
where we plot the energy exchanged by each level during
the measurement; they all go to zero in the limit where
the efficiency approaches one. Finally in Fig. 4(d) we
show the heats and the total work: they all go to zero
in the limit of efficiency one. Thus while we have found
measurement protocols that can reach high values of effi-
ciency and even approach one, the work produced by the
engine decreases and ultimately reaches zero: we have a
very efficient engine but which produces negligible work.
As mentioned, in this limit the effects of the measurement
also become negligible.

It is worth noting that the Carnot limit does not apply
to our engine, since one of the baths is not a thermal
bath. There are also other examples of engines with non-
thermal baths, for example one consisting of squeezed
light instead of thermal one, that may surpass the Carnot
limit; there are other upper bounds for such engines, but
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Figure 4. Energy and population structure for the qutrit sys-
tem: (a) Initial (cold) thermal population for β = 1. (b)
Population after the measurement process, third stroke of the
cycle. (c) Energy flowing through each energy level during
the third stroke. (d) Efficiency (solid black), total work (dot-
dashed purple), absorbed heat (dashed red) and released heat
(dashed blue) during the cycle. All this graphics were done
for the angles θ = φ = 0.75π and χ = ψ = 0.5π

it is not clear if they apply here [73].
In summary, we have shown that the mechanism for

an increase in the efficiency when we add an energy level
that does not change during the adiabatic process (an
“idle” level) is the same for the two-bath and the mea-
surement model. The increase is due to a flux of energy
from the cold to the hot bath through the “idle” level. We
have also shown that for a qutrit the measurement-based
engine can have higher efficiency than the analogous two-
bath model, due to the greater range of possible changes
in the populations that may be induced through a mea-
surement. Finally it is even possible to reach efficiencies
close to one, but the output work becomes negligible.

V. REVISITING THE HEISENBERG MODEL
AS A QHE

Another possibility to study quantum engines beyond
the qubit case is to couple two qubits. In fact, coupled
spin-1/2 models have been extensively studied as ther-
mal engines. In these models one may expect that the
quantum correlation between the spins may enhance en-
gine efficiency. However there is no clear connection be-
tween any measure of quantum correlation and efficiency
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increase. Here we will show that the same mechanism
of efficiency increase for a qutrit can explain the results
obtained for two spins coupled via a Heisenberg Hamilto-
nian (XXZ model), which were already analyzed for the
two bath model [16] and measurement model [57]. Thus
in this model correlations are not needed to explain the
efficiency increase.

The anisotropic Heisenberg Hamiltonian for two spins
1/2 (XXZ model) is given by

H = Jxy(σ1
xσ

2
x + σ1

yσ
2
y) + Jzσ

1
zσ

2
z +B(σ1

z + σ2
z), (30)

with Jxy the interaction constant of the spins in the xy-
plane, Jz the interaction constant in the z-direction, B

the external magnetic field in the z direction and σ
1(2)
i

the Pauli matrices associated with the particle 1(2). The
eigenvalues and eigenvectors are given in Table I.

Eigenvalues Eigenstates
2B |00〉

2(Jxy − Jz) (|01〉+ |10〉)/
√

2

−2(Jxy + Jz) −(|01〉 − |01〉)/
√

2
−2B |11〉

Table I. The four eigenvalues of the Hamiltonian H with their
associated eigenvectors.

As in the qutrit case, there are “idle” energy levels
that do not depend on the external parameter, B, and
therefore do not contribute to the total work. In this case
there are two “idle” levels, but the same manipulations
that lead to Eq. (23) can be made and the efficiency can
be written as

η

η0
= 1− q1 + q2

Qh
, (31)

where η0 = 1− Bi/Bf is the efficiency for Jxy = Jz = 0
and q1 and q2 are the energy exchanged through the two
“idle” energy levels: 2(Jxy − Jz) and −2(Jxy + Jz). So
the condition for the coupling to increase efficiency is
q1 + q2 < 0. As before, this means that, the total energy
flowing through the two “idle” has to be from the cold
to the hot bath. As shown in [60] this mechanism is
trivially extended to any system with a group of “idle”
energy levels [74].

Thus, contrary to what has been suggested for the
XXX model [57], the efficiency increase is not related
to any quantum correlation between the spins, but only
to the particular structure of the energy levels; which
of course depends on the coupling. Note that is valid
for the two-bath and the measurement engine with the
XXZ model as the working substance.

We will now illustrate this for some particular cases of
the XXZ model.

A. Two-bath engine

For the two-bath engine the general expression for ef-
ficiency is already too cumbersome to give any intuition

and it is not shown.

We first consider the isotropic case with Jz = 0, the XX
model. In Fig.5 (a) we plot the efficiency for the coupled
and uncoupled cases, and the heat flowing though the
“idle” levels. It can be seen that the increase in the
efficiency is due to q1 + q2 < 0. This is also illustrated
for the case Jxy = 0, the transverse Ising model, in Fig.5
(b). We see the same mechanism for efficiency increase;
which is not related to any quantum correlations.
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Figure 5. Efficiency of two-bath quantum heat engine for un-
coupled spins (η0, dashed black) and two interacting spins
(ηT , solid black). (Inset) We also plot the heat flowing
through the levels that do not depend on B, q1 + q2 (dashed
red). In (a) we have Jz = 0 (XX model) and in (b) Jxy = 0
(transverse field Ising model). In both cases we see that the
increase in the efficiency is due to q1 + q2 < 0.

B. Measurement-based engine

Now we will consider the measurement engine in the
same particular cases of the two bath engine with two
interacting 1/2 spins.

We use local spin projective measurements on each par-
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ticle. In this case, the projectors are given by

M1 = |+n〉 〈+n| ⊗ |+m〉 〈+m| ,
M2 = |+n〉 〈+n| ⊗ |−m〉 〈−m| ,
M3 = |−n〉 〈−n| ⊗ |+m〉 〈+m| ,
M4 = |−n〉 〈−n| ⊗ |−m〉 〈−m| ,

(32)

where |±n〉 〈±n| are the projectors for the observable ~σ.n̂
for one spin and |±m〉 〈±m| are the projectors for the
observable ~σ.m̂ for the other one. With these operators,
we can measure each qubit in any direction.

As mentioned, the XXX model was already studied for
the measurement engine [57] with precisely these spins
measurements. It was suggested that the quantum cor-
relation between the spins might be responsible for the
increase in the efficiency in relation to engine with a un-
coupled spin. We now illustrate, with the same particular
examples used in the two-bath models, our results that
correlations are not the origin of the increase in the effi-
ciency.

As there are many possible measurement directions, no
simple general expression for the efficiency is available.
We will consider two possible choices: {~n = ~x,~m = ~z}
and {~n = ~x,~m = ~x}. In Fig. 6 we show the data for the
XX model and in Fig. 7 the data for the Transverse field
Ising Model. We can see for the XX model the efficiency
always decreases for the two chosen measurements; while
in the XXX model it does increase [57]. We can also
see, in the insets, how the increase in the efficiency only
occurs when heat flows from the cold to the hot bath
through the “idle” levels; q1 + q2 < 0.
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Figure 6. Efficiency of measurement engine for two spins 1/2
in the XX model (Jz = 0). The measures are spin measure-
ment in the directions {~n = ~x,~m = ~z} (second dashed red)
and {~n = ~x,~m = ~x} (first dotted blue). We also show as a
horizontal line the efficiency for a single spin. In the inset we
show q1+q2 for the xz-direction (dashed red) and xx-direction
(dotted blue).

In sum, we were able to explain the efficiency gain
in both the two-bath and the measurement-based mod-
els, without invoking entanglement or any other quantum
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Figure 7. Efficiency of measurement engine for two spins 1/2
in the Ising model (Jxy = 0). The measures are spin measure-
ment in the directions {~n = ~x,~m = ~z} (first curve, dashed red)
and {~n = ~x,~m = ~x} (second curve, dotted blue). Again the
horizontal line is the efficiency for uncoupled spins. In the
inset we show q1 + q2 for measurements in the xz-direction
(dashed red) and the xx-direction (dotted blue) (the value is
equal in both cases)

correlation. The efficiency gain only depends on the en-
ergy structure of the system; the presence of “idle” levels.

VI. CONCLUSION

In this work we aimed to analyze the mechanism for
performance increase in measurement-based engines with
coupled qubits, in relation to uncoupled qubits and also
to two-bath engines with coupled qubits. To this end we
studied the Otto cycle with a three-level system. We
showed that in both models, measurement-based and
two-baths, the change in the efficiency is due to the struc-
ture of the energy levels, more precisely due to one of the
levels, −J , not changing in the adiabatic process (being
an “idle” level). If one considers the contribution of each
energy level to the heats, the increase in the efficiency
occurs only when the flow of energy though the −J level
is from the cold to the hot bath; something proposed by
some of us in [60]. We also showed that this mechanism is
the one responsible for the increase in the efficiency when
the engine system is two spins 1/2 coupled by a Heinsen-
berg interaction. Thus for the two types of engines, the
efficiency gain is not due to any quantum correlation, as
has been suggested [57].

For the measurement engine we saw that there is no
simple expression for the efficiency. We thus numerically
studied the efficiency for a general SU(3) projective mea-
surement and found protocols where it can be higher than
for the two-bath models. We showed that the efficiency
can even approach one, but with the work output going
to zero. The second law is not violated, since the Carnot
bound does not apply to engines using a non-thermal
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energy source, as is the case here.
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Appendix A: Proof of Theorem 1

Theorem 1: If E is a unital trace-preserving quantum
channel and ρ is a passive quantum state with respect to
Hamiltonian H, then

〈∆E〉 ≡ Tr [(E(ρ)− ρ)H] ≥ 0. (A1)

Proof: Let {|n〉} be the eigenvectors of H, with corre-
sponding energies En, numbered in nondecreasing order.
Also, let {Mα}, satisfying

∑
αMαM

†
α =

∑
αM

†
αMα = 1

be a set of Kraus operators for E.
Define a square matrix T with elements

Tmn =
∑
α

|〈m|Mα |n〉|2 (A2)

Note that, for any trace-preserving quantum channel,∑
m

Tmn =
∑
α

〈n|M†α
∑
m

|m〉〈m|Mα |n〉 = 1 (A3)

so T is a stochastic (or ‘Markov’) matrix. T can be inter-
preted as the transfer matrix mapping the original prob-
ability distribution for energy, pn = 〈n| ρ |n〉 to the new
one after the measurement:

p′m ≡ 〈m|E(ρ) |m〉 =
∑
α

〈m|Mα

∑
n

pn |n〉〈n|nM†α |m〉

=
∑
n

Tmnpn. (A4)

In other words, Tmn is the conditional probability p(m|n)
of having energy Em after the measurement is performed,
given that we had energy En before.

It is convenient at this point to define probability and

energy vectors ~p = (p1, p2, . . . , ) and ~E = (E1, E2, . . . , ),

where ~E is in ascending order. The change in average
energy, 〈∆E〉, can then be written

〈∆E〉 = ~E · (T − 1)~p (A5)

In Ref. [56], E was restricted to the class of measure-
ments where Mα can all be chosen to be Hermitian. It

was shown that in that case T is a symmetric matrix,
a fact that was then exploited to prove Eq. (A1). Here
we have imposed the weaker condition that E is unital.
Nevertheless, Eq. (A1) still holds. To see this, note that∑

n

Tmn =
∑
α

〈m|Mα

∑
n

|n〉〈n|M†α |m〉

= 〈m|

(∑
α

MαM
†
α

)
|m〉 = 1. (A6)

In other words, for unital E, T is in fact a bistochas-
tic matrix. These matrices have many special properties
linked to the concept of majorization [75, 76]. In partic-
ular: Birkhoff’s Theorem states that a square matrix T
is bistochastic if and only if it can be written as a con-
vex combination of permutation matrices: T =

∑
j qjσj ,

where σj are permutations,
∑
j qj = 1 and 0 < qj ≤ 1. In

order to prove that Eq. (A5) is ≥ 0, it suffices therefore to

show that, for any permutation matrix σ, ~E ·(σ~p) ≥ ~E ·~p.
This follows from the fact that ρ is ‘passive’, which

means that ~p is ordered in nonincreasing order. Energies
and probabilities are therefore perfectly anticorrelated,
with the greatest probabilities matching the smallest en-
ergies. It is then intuitively clear that any rearrange-
ment of the probability vector ~p will increase the aver-
age energy. This statement can be made precise using
the mathematical result known as the ‘rearrangement in-
equality’ (see, e.g., [77], Section 10.2, Theorem 368).

Appendix B: Qutrit efficiency

Here we give expressions for the efficiency for the
measurement-based engine in the Heisenberg model, for
the three chosen set of angles studied in section V B

η1 =

(Bf −Bi) +
(9.1eJ+Bi)10−16

(0.19− 1.17e2Bi + 0.97eJ+Bi)
J

Bf +
(0.025 + e2Bi − 1.02eJ+Bi)

(0.19− 1.17e2Bi + 0.97eJ+Bi)
J

,

(B1)

η2 =

(Bf −Bi) +
(eJ+Bi − 0.12e2Bi − 0.01)10−15

(0.92− 1.79e2Bi + 0.87eJ+Bi)
J

Bf +
(0.13 + e2Bi − 1.13eJ+Bi)

(0.92− 1.79e2Bi + 0.87eJ+Bi)
J

,

(B2)

η3 =

(Bf −Bi)−
(4.54 + 0.14e2Bi − 9.07eJ+Bi)10−15

(46.54− 7.68e2Bi − 38.86eJ+Bi)
J

Bf +
(39.86 + e2Bi − 40.86eJ+Bi)

(46.54− 7.68e2Bi − 38.86eJ+Bi)
J

,

(B3)
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where η1 is the efficiency with the angles given by θ =
φ = 0.7π and ψ = χ = 0.5π, η2 with θ = φ = χ = 0.7π
and ψ = 0.5π; and η3 with θ = φ = χ = ψ = 0.3π.
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[9] R. M. de Araújo, T. Häffner, R. Bernardi, D. Tasca,
M. Lavery, M. Padgett, A. Kanaan, L. Céleri, and P. S.
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