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Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of sim-
ulation dimensionality on the laser-driven electron acceleration and the emission of collimated γ-ray beams
from hollow micro-channel targets. We demonstrate that the dimensionality of the simulations considerably
influences the results of electron acceleration and photon generation owing to the variation of laser phase
velocity in different geometries. In a 3D simulation with a cylindrical geometry, the acceleration process of
electrons terminates early due to the higher phase velocity of the propagating laser fields; in contrast, 2D
simulations with planar geometry tend to have prolonged electron acceleration and thus produce much more
energetic electrons. The photon beam generated in the 3D setup is found to be more diverged accompanied
with a lower conversion efficiency. Our work concludes that the 2D simulation can qualitatively reproduce the
features in 3D simulation, but for quantitative evaluations and reliable predictions to facilitate experiment
designs, 3D modelling is strongly recommended.

I. INTRODUCTION

The interaction of high-power ultra-intense lasers
and structured (both nanostructured1–7 and microstruc-
tured8–18) targets has been a topic of great interest for
its capability of enhancing the laser energy conversion ef-
ficiency1, high-order harmonics generation19,20, charged
particles (relativistic electrons and ions3,4,18) accelera-
tion and the production of X-ray1,21–23 to γ-ray15,16,24

radiation. The produced charged particle and photon
beams have a wide range of applications from medical
ion therapy25,26, nuclear physics27,28 to photon-photon
pair production29–31. The microstructured targets with
characteristic size of surface modulation comparable to
laser wavelength are able to extensively absorb laser en-
ergy through various processes, including surface plas-
mon resonance excitation32, multipass stochastic heat-
ing33 in dense clusters, prolonged acceleration distance
in hollow channels10 and microwires11 and relativistic
transparency in prefilled channels15. In this paper, we
examine the regime involving hollow micro-channels (see
Fig. 1).

When ultra-intense lasers irradiate hollow micro-
channels, strong laser fields directly act on electrons,
dragging them into the channel and forming periodic elec-
tron bunches which then surf along with the laser pulse,
gaining energy from the laser. Additionally, the presence
of a channel guides the propagation of the electromag-
netic fields, confines the electron motion and as a result,
leads to a well collimated photon emission. This setup
can serve as a promising electron source to further stim-
ulate ion acceleration18 as long as the ion expansion does
not significantly impact electron acceleration34. How-
ever, to successfully apply such an electron source in ex-
periments, careful numerical investigations are needed in
order to determine where the electron energy peaks, i.e.

the location to cut off the channel and collect an electron
source with an optimal spectrum.

To carry out such numerical studies, one can choose
between 2D3V and 3D3V Particle-In-Cell (PIC) simu-
lations. Both 2D8–10,35,36 and 3D13,14,17,37,38 numerical
simulations have been widely used to characterize laser
interactions with structured targets. The appeal of 2D
simulations is that they require significantly less compu-
tational resources than 3D simulations, so one is able to
perform extensive parameter scans using 2D simulations.
However, the field topology differs between 2D and 3D
setups and it is not immediately clear how the differ-
ences impact the particle dynamics. It is then impor-
tant to evaluate the dimensionality effects on a case-by-
case basis. A few publications5,39–41 have discussed the
influences of simulation dimensionality on ion accelera-
tion with various target geometries. But, to our knowl-
edge, nobody has examined and explained the physics
of dimensional effects on laser-irradiated hollow micro-
channel targets.

In this paper, we show that the chosen dimensional-
ity has a considerable effect on electron acceleration and
the associated photon emission. First, we provide an an-
alytical solution to a test problem to demonstrate that
the dephasing rate between the accelerated electron and
laser wave-fonts strongly depends on simulation geome-
try. Later we show numerical evidence to demonstrate
that the dephasing rate differs with simulation dimen-
sionality and such a difference is the key reason for the
distinguished observation in terms of electron and photon
beam generation. Through collectively evaluating gen-
erated particles and detailed particle tracking, we show
that the occurrence of high phase velocity in the 3D setup
terminates electron acceleration process early in space
and time, and leads to a reduction of photon emission.
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FIG. 1: Laser-irradiated hollow targets in 2D and 3D. (a) 2D setup where a linearly polarized two-dimensional Gaussian
pulse interacts with a two-dimensional hollow plasma channel. (b) 3D setup where a linearly polarized and cylindrically
symmetric Gaussian pulse interacts with a hollow cylindrical target.

II. PHASE VELOCITY IN 2D AND 3D WAVEGUIDES

To provide insights into the role of target geometry on
phase velocity, we here consider a simplified waveguide
problem with a perfectly conducting boundary. Previous
studies10,34,36 have shown that, in a hollow channel with-
out significant ion expansion, the dominant contributor
to electron acceleration is the electric field in the direc-
tion of the laser propagation, i.e. the longitudinal field
Ex. The corresponding structure of propagating electro-
magnetic fields can be characterized as TM (transverse
magnetic) modes. The wave equation of TM modes can
be written as(

∂2

∂y2
+

∂2

∂z2

)
Ex +

(
ω2

c2
− k2

)
Ex = 0, (1)

where ω is the wave frequency, k is the wavenumber and
c is the speed of light. For a two-dimensional waveguide
(shown in Fig. 1a), Ex is a function of y and ∂Ex/∂z = 0.
Equation (1) then becomes ∂2Ex/∂y

2+(ω2/c2−k2)Ex =
0. We choose Ex = E0 sin(πy/R) as the TM-mode so-
lution that matches the field structure in the incoming
pulse (i.e. Ex = 0 on axis) and the boundary conditions
which requires Ex(y = ±R) = 0. Here R represents the
radius of the plasma channel. The dispersion equation in
the 2D waveguide is then given by
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c2
= k2 +

π2

R2
. (2)

For the 3D cylindrical waveguide (shown in Fig. 1b),
it is convenient to rewrite Eq. (1) in cylindrical form as
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where r is the axial distance and ψ is the azimuth. As-
suming a solution in the form of Ex = f sin(ψ), the re-
sulting equation for f then reads

s2
∂2f

∂s2
+ s

∂f

∂s
+ (s2 − 1) = f. (4)

Here s ≡ βr and β2 = ω2/c2 − k2. The solution for f is
given by f = E‖J1(s) = E‖J1(βr) where J1(x) is a Bessel

function of the first kind and E‖ is the amplitude of the
longitudinal field. At the boundary of the cylindrical
waveguide, f(r = R) = 0 which yields βR ≈ 3.8. The
dispersion relation of the 3D cylindrical waveguide is then
written as

ω2

c2
= k2 +

14.7

R2
. (5)

It is convenient to derive a general expression for vph
of a propagating wave with the dispersion relations given
in Eqs. (2) and (5).

u =
vph
c

=
ω

kc
=

√
1 +

α2

R2k2
≈

√
1 +

α2

R2k20
, (6)

where we set k ≈ k0 = ω/c, α2 = π2 ≈ 9.9 for the 2D
channel and α2 = 14.7 for the 3D cylindrical channel.
Subtracting the vph from c, in the limit of α2 � R2k20 we
have

δu = u− 1 ≈ 1

2

α2

R2k20
. (7)

δu is a dimensionless parameter used to quantify the de-
gree of superluminosity42; it can be understood as a de-
phasing rate, since it illustrates how quickly the local
laser wave-front outpaces the electron in question. The
ratio of the dephasing rate for the case in 2D to that in
3D is

δu3D
δu2D

≈ 1.5. (8)

It is worth pointing out that Eqs. (7) and (8) are built on
simplified boundary conditions and the neglect of the in-
fluence of extracted electrons, thus one may find discrep-
ancies in phase velocity when compared to self-consistent
PIC simulations. Nevertheless the difference of dephas-
ing rate in Eq. (8) motivates us to investigate the role of
target geometry on phase velocity with numerical simu-
lations. In the following sections we are going to demon-
strate via PIC simulations that the laser phase velocity
varies with the dimensionality of the simulations and the
lower dephasing rate in 2D leads to an overestimate of
electron acceleration and γ-ray emission.
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III. IMPACT OF DIMENSIONALITY ON ELECTRON
ACCELERATION

We model the electron acceleration through fully rela-
tivistic PIC simulations using the EPOCH code43 which
is available in both 2D and 3D. The target geometries
implemented in the simulations are depicted in Fig. 1.
In 2D, the target is a straight empty channel enclosed by
two uniform plasma slabs. In 3D, the channel is enclosed
by a cylindrical wall of plasma, with a channel diameter
such that a slice along the target axis would be identical
to the 2D setup. The 2D and 3D simulations share the
same plasma composition, plasma density, laser intensity,
temporal profile, and laser spot size. The laser intensity
is set as 1.37× 1022 W/cm

2
, corresponding to a0 = 100.

Here a0 ≡ |e|E0/(mecω) is the normalized laser ampli-
tude, where E0 is the peak amplitude of the electric field
in the incoming laser pulse, and me and e are the elec-
tron mass and charge. The laser pulse is always focused
at the channel entrance. We choose gold as the original
target material with a density of 1.5 g/cm3. According
to the field ionization model, the considered laser pulse
is capable of ionizing gold atoms to the level of Z = 69.
In the simulations, the target is pre-ionized accordingly
to a plasma composed of Au+69 (density 4 ncr) and e−

(density 276 ncr) where ncr ≡ meω/(4πe
2) is the criti-

cal density. A detailed comparison of parameters used in
the 2D and 3D simulations is listed Table I. Note that al-
though the target lengths are set differently, this is done
such that in different dimensionalities the target is long
enough for the electrons to reach their first energy peak.

Figure 2(a) and (b) illustrate the time history of the
electron energy spectrum observed in both 2D and 3D
simulations. There exists more than one energy peak in
both Fig. 2(a) and Fig. 2(b) and our focus is on the first
energy peak which happens before any deceleration takes
effect. It is clear that the maximum electron energy gain
achieved in 2D significantly exceeds the gain observed in
the 3D case. In fact, the first energy peak in 2D occurs at
t = 500 fs with εe = 1920 MeV while in 3D the peak oc-
curs at t = 255 fs with εe = 1240 MeV. Figure 2(c) gives
a direct comparison of the peak spectra observed in the
2D and 3D simulations. In order to facilitate a compari-
son between the two simulations, we added a gray star to
Fig. 2(a) that represents the energy and time of the first
peak from Fig. 2(b). Evidently, the acceleration in 2D
lasts longer, which results in a more energetic electron
spectrum. Note that to make a quantitative compari-
son with the 3D simulations, we assume a uniform third
dimension with a length of 2 µm for the 2D simulation.

To further understand the electron acceleration pro-
cess, we tracked energetic electrons in both simulations.
Figure 2(d) and Figure 2(e) illustrate the trajectories of
representative electrons selected from both the 2D and
3D simulations. Plotted in the space of the transverse
location (y or r) and time, the trajectories are in agree-
ment with the time history of electron spectrum given
in Fig. 2(a-b); the electron energies peak at the corre-

TABLE I: Parameters used in 2D and 3D PIC simulations.
∗To calculate the laser power, we assume the length of third
dimension in 2D simulations as 2 µm.

Parameters shared by 2D and 3D simulations
Laser pulse:

Peak intensity 1.37 × 1022 W/cm2

a0 100
Polarization linearly along ŷ
Wavelength λL = 1 µm
Location of the focal plane x = 0 µm, surface of plasma
Pulse temporal profile Gaussian
Pulse duration
(FHWM for intensity) 30 fs
Pulse width/focal spot
(FWHM for intensity) w0 = 2.8 µm
Plasma:
Composition gold ions and electrons
Channel radius R = 4.0 µm
Target thickness d = 0.4 µm
Electron density ne = 276ncr
Ion mass to charge ratio 197mp : 69
Ion mobility mobile

Parameters varying in 2D and 3D simulations
Spatial resolution 2D: 100/µm × 100/µm

3D: 50/µm × 50/µm × 50/µm
# of macro-particles/cell 2D: 100 for e−, 5 for Au+69

3D: 10 for e−, 5 for Au+69

laser geometry 2D: symmetric about y-axis
3D: cylindrical symmetry

laser power 2D: 0.82 PW∗

3D: 1.24 PW
Target length 2D: L = 350 µm

3D: L = 150µm

sponding moments. Regardless of the dimensionality,
the electrons surf along the channel wall while getting
accelerated by longitudinal electric fields until reaching
their first energy peak. However, the horizontal surfing
of electrons in the 3D simulation terminates earlier due
to its higher dephasing rate, which will be elaborated in
the next section. It is worth noting that the second en-
ergy peak observed in Fig. 2(a-b) is correlated with the
electron motion of crossing the central axis, indicating
an involvement of the transverse electric field in electron
acceleration.

Through evaluating the electron energy spectrum and
tracking individual electron motion, we have shown that
the dimensionality of simulations significantly impacts
electron acceleration. The 2D simulations tend to extend
the electron acceleration process, leading to an overesti-
mate of the maximum electron energy when compared to
more realistic 3D simulations.

IV. ELECTRIC FIELD PROFILES AND PHASE
VELOCITY

An electron travelling in the laser fields gains energy
only while staying in the accelerating phase of the electric
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FIG. 2: Time-resolved electron energy spectrum observed in (a) the 2D simulation (b) the 3D simulation. The colorbar
represents the number of electrons collected onto a certain energy bin dεe. (c) The peak energy spectrum in 2D and 3D which
occurred at t = 500 fs (marked with red circle) and t = 255 fs (marked with gray star) respectively. We define t = 0 fs as the
time when the laser pulse reaches its peak amplitude in the focal plane at x = 0 µm in the absence of the target. Typical
electron trajectories are plotted in (d) y-t space for the 2D simulation (e) r-t space for the 3D simulation. Here r =

√
y2 + z2.

The color on the trajectories represents electron relativistic energy.

field. The electron can gain energy from both longitudi-
nal (E‖ = Ex) and transverse (E⊥ = Ey, Ez) electric
fields. The total work done by the electric fields on a
given electron can be expressed as

Wtot = W‖ +W⊥ = −|e|
∫ t

−∞
(E‖v‖ + E⊥v⊥) dt′. (9)

Figure 3 shows the contributions of W‖ and Wtot to elec-
tron relativistic energy at the first peak by binning all
electrons according to their energies. In the 2D simula-
tion 95% of the energy of energetic electrons (εe > 500
MeV) comes from the work done by the longitudinal elec-
tric fields and in the 3D case the quantity is 86%. It is
then reasonable to approximate

Wtot ≈W‖ = −|e|
∫ t

−∞
E‖v‖ dt

′. (10)

This simply allows us to narrow down the investigation of
electron acceleration to a single component of the electric
fields.

At ultra-high laser intensities, the dephasing rate δu is
approximately (vph−c)/c, since for a relativistic electron
co-propagating with laser, c−vx � vph−c. Figure 4(a-b)
describes the temporal profiles of the transverse electric
fields Ey recorded in a moving window. Note that Ey
and Ex share the same wave mode and phase velocity. By

FIG. 3: Contributions to the electron relativistic energy by
E‖ (W‖, red bars) and the electric fields (including both E‖
and E⊥, Wtot, green bars) in (a) the 2D simulation and (b)
the 3D simulation. The snapshots are taken at t = 500 fs
and t = 255 fs respectively, corresponding to the first peak
of electron energy spectra in Fig. 2. The bar width in (a)
and (b) is set as 75 MeV.

tracking a fixed field segment, we find that vph ≈ 1.0031 c
in the 2D simulation, and vph ≈ 1.0063 c in the 3D sim-
ulation. The dephasing rate in 2D is nearly two times
lower than that in 3D, explaining the distinction between
the electron energy gain seen in the two simulations. The
duration for electrons staying in an accelerating phase of



5

electric fields can be estimated by

δt ≈ 0.5λL/(δu · c), (11)

where 0.5λL is the width of the accelerating phase. We
find that δt ≈ 540 fs and 260 fs in 2D and 3D, matching
well with the times found from the simulations, demon-
strating the accuracy of the approximation used to cal-
culate the phase velocity. The previously derived Eq. (7)
however gives the analytical values of the phase velocity
as vph = 1.0078 c in 2D, and vph ≈ 1.0116 c in 3D. De-
spite the difference in numerical value, the same trend of
an increase in phase velocity is consistent in both the an-
alytical treatment and the numerical simulations. There
are a number of factors that can lead to this discrep-
ancy between the analytical calculations and the numer-
ical simulations, for example: the analytical calculation
assumes a perfectly conducting boundary and so requires
the transverse fields to be zero at the channel edges36; si-
nusoidal waves are not a perfect match (though close) for
the fields observed in the hollow channels; we have ne-
glected the influence of the extracted electrons and their
heating44 on phase velocity. Our additional simulations
with different target size R show that as phase velocity
varies with R, the ratio of δu in 2D to δu in 3D is pre-
served. It is worth pointing out that the modification on
the dephasing rate brought by the numerical artefacts
from the field solver45 in our PIC simulations is about
two orders lower than the values we mentioned above.

To further check how the phase velocity influences elec-
tron acceleration, we track representative electrons with
respect to Ex fields sampled by them, as illustrated in
Fig. 4(c-d). It is clear that the electrons remain acceler-
ated when they stay in the favourable phase of Ex fields
(the negative fields colored in blue). After exiting the
accelerating phase, the electron energy declines. As can
be seen from the time scale in Fig. 4(c-d) electrons in the
2D simulation are subject to far longer periods of accel-
eration than those in 3D, due to the lower phase velocity
in 2D. The evolution of energy and longitudinal work of
the chosen electrons is shown in Fig. 4(e). At early mo-
ments (up to ∼260 fs), the curves of W‖ 2D

and W‖ 3D

almost overlap with each other implying that the ampli-
tudes of accelerating fields in 2D and 3D are similar. It
is then clear that the major cause for the smaller elec-
tron energy observed in the 3D simulation is the early
termination of the acceleration process due to the higher
dephasing rate. It is worth noting in Fig. 4(c) although
the mean phase velocity is superluminal, for short time
intervals (such as t = 190 − 220 fs) the phase velocity
becomes subluminal. As shown in the Appendix, this
feature might be explained by the superposition of the
fundamental TM mode (the one considered in Section II)
with higher modes.

So far we used the same channel radius in 2D and 3D
simulations, making sure that a slice along the axis of
the target in the 3D simulation is identical to the 2D
setup. Since the phase velocity varies with the channel
radius, one may wonder whether a 2D simulation with

a reduced channel radius can match the electron accel-
eration regime in the 3D simulation. Such a comparison
that exclusively focuses on matching the phase velocity
overlooks the fact that the electron acceleration depends
on two factors: 1) the magnitude of the longitudinal elec-
tric field and 2) the time that the electrons spends accel-
erating, which is determined by the phase velocity. By
adjusting the channel radius in a 2D simulation, we not
only change the phase velocity, but also the amplitude of
the accelerating field. This makes it impossible to match
the acceleration regime in 2D to that in 3D via the change
in radius.

In order to elaborate on this, we carried out 2D simula-
tions with different channel radii (R = 2.0, 3.28, 4.0 and
6.0 µm) while keeping the laser peak intensity and pulse
duration constant. We use R = 3.28 µm because, accord-
ing to Eq. (7), the phase velocity at this radius is equal
to the phase velocity in the 3D channel. We found that
the dephasing rate indeed increases as the channel radius
is reduced. For example, as R is reduced from 6.0 µm
to 3.28 µm and to 2.0 µm, δu increases from 7× 10−4 to
5.1 × 10−3 and to 1.27 × 10−2. However, the reduction
of the channel radius significantly changes the amplitude
and slope of the accelerating field Ex. The field lineouts
are shown in Fig. 7 of Appendix A. Therefore, the ad-
justment of R makes it impossible to match both factors
that determine the acceleration regime, i.e. δu and the
field structure of Ex.

V. INFLUENCE OF DIMESIONALITY ON PHOTON
EMISSION

The focus of the discussion in the previous sections
was the impact of simulation dimensionality on the laser-
driven electron acceleration and generation of energetic
electrons with energies of hundreds of MeV to a few
GeV. These high-energy electrons are subject to emit-
ting energetic photons (in x-ray and even up to the γ-
ray range) while accelerating in laser and channel fields.
In this section, we investigate how the photon emission
changes with the dimensionality of simulations. The
emitted power Pγ of synchrotron emission is determined
by the electron acceleration in an instantaneous rest
frame. This acceleration is proportional to a dimension-
less parameter46 η,

η ≡ γe
ES

√(
E +

1

c
[v ×B]

)
2 − 1

c2
(E · v)2, (12)

where E and B are the electric and magnetic fields acting
on the electron, γe and v are the relativistic factor and
the velocity of the electron, and ES ≈ 1.3× 1018 V/m is
the Schwinger field. The emitted power from an electron
scales as Pγ ∝ η2. We are interested in photons with
energy above 100 keV, a threshold shown to be critical
for photon-photon pair production31.

Collecting all the forward-emitted photons over the
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FIG. 4: (a) Temporal profiles of Ey fields on the central axis in (a) the 2D simulation (recorded at y = 0) (b) the 3D
simulation (recorded at y = z = 0). The Ey fields are plotted in a moving window which moves with the speed of light. Here
E0 with a value of 3.2 × 1014 V/m is the peak amplitude of the electric field in the incoming laser pulse. The black dashed
lines show the segments used to determine vph in each run. The trajectory of a typical high-energy electron is plotted
together with the exact Ex fields sampled by that electron in (c) the 2D simulation (d) the 3D simulation. (e) The
comparison of relativistic electron energy and the longitudinal work between the electrons tracked in (c) and (d).

duration of the simulations, Fig. 5 compares the spa-
tial distributions of photons produced in the 2D and 3D
simulations. Noting that in the simulations performed
here, once a photon is generated, the emission location
is marked as the photon location for the duration of the
simulation. Corresponding to the electron acceleration,
the first peak of emission in 3D takes place at x ∼ 60 µm,
well ahead of that in 2D which is located at x ∼ 140 µm
[see Fig. 5(a)]. Up to the first peaks, 38% of laser energy
in 2D is transferred to particles (photons, electrons and
ions) compared to 41% in 3D. Of the transferred energies
0.47% is converted into photons (εγ > 100 keV) in the 2D
simulation in contrast to 0.11% in the 3D simulation. As
shown in Eq. (12), η is directly proportional to electron’s
relativistic factor, i.e. η ∝ γe. In the previous section it
is noted that the field amplitudes acting on the electrons
are similar in both 2D and 3D. Thus the primary cause
of the lower conversion rate in 3D is due to the lack of
electrons at very high energies. Figure 5(b-c) illustrates
the distribution of photons in (x,y) space. The common
feature of both distributions is that most photons are
generated close to the channel boundary, corresponding
to the surfing motion of energetic electrons depicted in
Fig. 2(d-e). The second peak of emission in both simula-
tions becomes weaker in amplitude and accumulates less
photon yield following the first peak. The distribution of
the emission in the 3D simulation on the transverse plane
(y,z) is given in Fig. 5(d). It is clear that the emission

is concentrated around z = 0 µm plane with two pop-
ulated lobes formed near the channel boundaries. Due
to the linear polarization of the laser electric field, elec-
trons near z = 0 µm where the normal component of Ey
fields is the strongest are more susceptible to extraction.
Driven by the laser electric field, more electrons travel
close to z = 0 µm plane (see Fig. 5(e)) and emit photons
such that the spatial distribution of produced photons at
the moment of the emission is aligned with the direction
of laser polarization (in our simulations photons are not
allowed to move after their generation).

Figure 6 compares the angular distribution and en-
ergy spectrum of 2D and 3D simulations. The photon
emission in 3D is projected onto a sphere, as illustrated
Fig. 6(a). Though the target is cylindrical, the emis-
sion pattern does not preserve the same symmetry. From
Fig. 6(b), the energy distribution along the azimuthal an-
gle dEγ/dθγ demonstrates a divergence of 10◦ (i.e. the
FWHM of the energy distribution curve), which is more
than two times wider than that in the polar angle di-
rection. The photon beam in the 2D case is found to be
more collimated with a divergence of 6◦ in dEγ/dθγ . Dis-
tributing emission over θγ and photon energy, Fig. 6(c-
d) manifest the photon beam in 2D is better collimated
throughout the whole energy spectrum. To further eval-
uate the quality of the two photon beams, we compare
the beam brilliance. The source size of the 3D target is
easily decided by its radius while in 2D the source size
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is set as 4×2 µm2. It is found that the brilliance of
γ-ray beams is 2.9×1021 and 5.8×1020 photons/s mm2

mrad2 0.1%BW (at 1 MeV) for 2D and 3D respectively.
In Fig. 6(e) starting from 1.5 MeV, the number of γ-ray
photons in 2D surpasses that in 3D, projecting a larger
brilliance in 2D for energy level above 1 MeV.

In this section, we compared the photon yield with
regard to the simulation dimensionality. Since photon
emission is a direct result of electron acceleration, the
emission demonstrates correlated features as observed for
electrons in Section III. The first peak of photon emission
in 3D arrives early in space due to the high phase velocity.
The lack of high-energy electrons makes the conversion of
laser energy to γ-ray photons less efficient in 3D. Besides
the impact on photon number yield, the dimensionality
also affects the collimation of the photon beam. With a
large divergence angle and a small number of high-energy
photons, the 3D γ-ray beam is less bright than the 2D
beam.

VI. SUMMARY AND CONCLUSIONS

We have demonstrated the effects of simulation dimen-
sionality on electron acceleration and γ-ray production.
There are significant distinctions between the results ob-
tained in 2D and 3D setups from both analytical consid-
eration and numerical calculation. Though in numerical
values vph is close to the speed of light, the dephasing rate
(vph/c− 1) which determines the energy gain varies con-
siderably with simulation geometry. The higher dephas-
ing rate observable in the 3D setup terminates electron
acceleration process early in space and time and leads to
a reduction of photon emission when compared to 2D.

A 2D channel target presents a planar geometry while
a 3D target has a cylindrical symmetry. Analytically we
have shown that the phase velocity of laser fields prop-
agating inside the targets closely depends on the target
geometry; the phase velocity in 2D is smaller than that
in 3D. To be more specific, the dephasing rate in a 2D
setup is derived to be 1.5 times slower when controlling
for the channel radius and laser wavelength. Through
numerical simulations, it is found that the absolute ma-
jority of work done on energetic electrons comes from the
longitudinal electric field, enabling the investigation of
laser-driven particle acceleration based only on one sin-
gle component of the electric fields. By tracking a fixed
segment of laser fields the phase velocity in 2D is again
shown to be smaller than in 3D, matching the correct
trend shown in the analytical derivation. It is clear that
in 2D simulations electrons surf for a longer period in
an accelerating phase compared to 3D simulations. As
a result, electrons in 2D have an elongated acceleration
distance and present a more energetic spectrum, leading
to an overestimate of maximum electron energy and the
number of high-energy electrons when compared to more
realistic 3D simulations.

Similar to electron acceleration, photon emission is

strongly impacted by simulation dimensionality. Due to a
lack of high-energy electrons, in 3D the photon (εγ > 100
keV) conversion rate is more than 4 times smaller and
the emission falls behind on the generation of energetic
photons (εγ > 1.5 MeV). In 3D, the emission is accumu-
lated close to the z = 0 plane with a narrow divergence
along the polar angle. However the emission along the
azimuthal angle is far more diverged in 3D compared to
that in a 2D simulation. As a result, the photon beam
produced in a 3D setup is found to be less bright. It is
also worth noting that the subsequent peaks of photon
emission drop sharply in amplitude and duration.

Though 2D numerical simulations are widely applied
in the research of laser and micro-channel interactions,
one should not ignore the overestimate and inaccuracy
of results caused by the low phase velocity in 2D simula-
tions. In particular, when carrying out numerical simula-
tions to predict and optimize the output for laser micro-
channel experiments, it matters to accurately know the
exact location of peaked electron spectrum and therefore
3D simulations are indispensable. We conclude that the
2D simulations are capable of qualitatively reproducing
the features of 3D simulations, but for quantitative eval-
uations and reliable predictions, 3D modelling is strongly
recommended.
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APPENDIX A: Ex FIELD PROFILE

Fig. 7 describes the transverse profiles of the peak Ex
fields captured at the same snapshot for varied channel
width. The lineouts of Ex field for 2D and 3D at the same
channel radius (R = 4.0µm) are very close to each other,
but there is already a noticeable deviation from the 3D
case when R is reduced to 3.28 µm. In 2D simulations at
R = 2.0 µm or R = 6.0 µm, the amplitude and slope of
Ex fields deviate from the 3D case even further.

APPENDIX B: SUPERPOSITION OF WAVEGUIDE
MODES

In Eq. (2), we have chosen the fundamental TM mode
(n = 1) as the solution of propagating electromagnetic
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FIG. 5: Photon and electron distribution over space. (a) Photon energy distribution along x axis. Photon number
distribution in (x,y) space for (b) 2D and (c) 3D. (d) Transverse distribution of photon number in the 3D simulation plotted
in (y,z) space. (e) Transverse distribution of the number of high-energy electrons in the 3D simulation plotted in (y,z)
space.The considered photons are forward-emitted, accumulated up to 1100 fs and 500 fs for 2D and 3D respectively. The
photon energy threshold is 100 keV. The energy threshold of the high-energy electrons is 100 MeV.

FIG. 6: (a) Photon count per solid angle for the 3D simulation. The solid circles mark polar angles of 5◦ and 15◦. (b)
Photon energy distribution over the azimuthal θγ and polar angles ϕγ for both 2D and 3D, where θγ = arctan(py/px) and
ϕγ = arctan(pz/

√
p2x + p2y). To make the curve for dEγ/dθγ of the 3D simulation visible, its y axis is multiplied by a factor of

6. The spectral-angular distribution of the generated γ-ray pulse in the (c) 2D and (d) 3D simulations. Here
sγ ≡ log10(εγ/MeV). (e) Photon energy spectra. The considered photons are forward-emitted, accumulated upto 1100 fs and
500 fs for 2D and 3D respectively. The photon energy threshold is 100 keV.

FIG. 7: Peak longitudinal electric field profiles with varied
channel width. All the snapshots were taken at t = 100 fs.

fields in the 2D waveguide. Generally, the dispersion rela-
tion of TM modes in the considered steup can be written
as ω2/c2 = k2+(nπ/R)2, where n = 1, 2 . . .. Fig. 8 shows
the temporal profile of |Ex| from the superposition of the
first (n = 1) and second (n = 2) modes, where the ratio
between the amplitudes of the first mode and the second
mode is 4:1. The superposition of the lowest mode with
a higher mode creates the wiggling of the field segments.
The phase velocity becomes subluminal for a short time
period though the mean phase velocity remains superlu-
minal.
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