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Abstract 

We study non-reciprocal wave transmission across the interface of two dissimilar granular media 

separated by an elastic solid medium. Specifically, a left, larger-scale and a right smaller-scale 

granular media composed of two-dimensional (2D), initially uncompressed hexagonally packed 

granules are interfacing with an intermediate linearly elastic solid, modeled either as a thin 

elastic plate or a linear Euler-Bernoulli beam. The granular media are modeled by discrete-

elements and the elastic solid by finite-elements assuming a plane stress approximation for the 

thin plate. Accounting for the combined effects of Hertzian, frictional and rotational interactions 

in the granular media, as well as the highly discontinuous interfacial effects between the (discrete) 

granular media and the (continuous) intermediate elastic solid, the nonlinear acoustics of the 

integrated system is computationally studied subject to a half-sine shock excitation applied to a 

boundary granule of either the left or right granular medium. The highly discontinuous and 

nonlinear interaction forces coupling the granular media to the elastic solid are accurately 

computed through an algorithm with interrelated iteration and interpolation at successive 

adaptive time steps. Numerical convergence is ensured by monitoring the (linearized) 

eigenvalues of a nonlinear map of interface forces at each (variable) time step. Due to the strong 

nonlinearity and hierarchical asymmetry of the left and right granular media, time scale disparity 

occurs in the response of the interface which breaks acoustic reciprocity. Specifically, depending 

on the location and intensity of the applied shock, propagating wavefronts are excited in the 

granular media, which, in turn, excite either (slow) low-frequency vibrations or (fast) high-

frequency acoustics in the intermediate elastic medium. This scale disparity is due to the size 

disparity of the left and right granular media, which yields drastically different wave speeds in 

the resulting propagating wavefronts. As a result, the continuum part of the interface responds 

with either low-frequency vibrations – when the shock is applied to the larger-scale granular 

medium, or high-frequency waves – when the shock is applied to the smaller-scale granular 

medium. This provides the fundamental mechanism for breaking reciprocity in the interface. The 

non-reciprocal interfacial acoustics studied here apply to a broad class of asymmetric hybrid 

(discrete-continuum) nonlinear systems, and can inform predictive designs of highly effective 

granular shock protectors or granular acoustic diodes. 
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1. Introduction 

Wave propagation in granular media composed of ordered discrete elastic particles (granules) 

attracts considerable attention from the view of theoretical and experimental nonlinear acoustics. 

Nesterenko pioneered the field of wave propagation in one-dimensional (1D) homogeneous 

granular chains composed of initially uncompressed, ordered, linearly elastic and identical 

spherical granules interacting in Hertzian contact. Analytical, numerical and experimental studies 

validated the transmission of spatially localized, shape-preserving and strongly nonlinear solitary 

waves – termed Nesterenko solitary waves in these 1D media [1, 2, 3, 4]. Due to the nonlinear 

nature of the Hertzian interactions, the wave speed of a Nesterenko solitary wave is highly 

dependent on its amplitude [4, 5]. Moreover, since the linearized stiffness of the Hertzian 

granular interactions is zero (in the absence of pre-compression), the governing acoustics is 

essentially nonlinear (i.e., they do not admit linearization even in the limit of small amplitudes), 

and the speed of sound as defined in classical linear acoustics is zero in these media; hence their 

designation as “sonic vacua” [1, 2, 3, 4]. Also, the strong tunability with energy of the nonlinear 

acoustics enables interesting and unique features, including frequency pass and stop bands 

tunable with energy [6], countable infinities of families of standing and travelling nonlinear 

waves [7, 8], and intense nonlinear exchanges [9], targeted energy transfers [10] and break of 

reciprocity [11, 12, 13] in coupled granular chains. These unique acoustic features pave the way 

for novel acoustic devices and acoustic metamaterials, e.g., acoustic lenses [14, 15], shock and 

energy absorbing granular layers [16, 17, 18], passive acoustic filters [19] and acoustic switches 

[20]. 

Layers of granular materials separated by continuous elastic sheets are commonly used in 

shock absorption applications including civil engineering constructions. In particular, the layered 

morphology is ubiquitously used in building retaining walls reinforced by geogrid fabrics [21, 

22]. In this configuration, alternating layers of soils and elastic fabrics -called geofabrics- are 

used to reinforce constructions and stabilize them against dynamic loads, providing a much 

higher resilience in comparison with unconstrained homogeneous soils. Similar concepts of 

layered materials are being evaluated for shock absorption outside the civil engineering domains. 

Hence, in order to better utilize the unique performance of granular media layered with elastic 

sheets, a natural next step is to further investigate nonlinear wave scattering between these highly 

discontinuous discrete media and elastic continua, i.e., studying granular-elastic solid interfaces. 

This requires the study the ordered granular media with non-standard flexible boundary 

conditions. Potekin et al. [23] first developed an algorithm to study wave scattering at the 

interface of a 1D granular chain with a linearly elastic cord (tensioned wire), which incorporated 

interrelated iterations and interpolations at successive time steps. Zhang et al. [24] extended that 

algorithm to study nonlinear wave scattering at the interface of a 1D granular chain with a linear 

membrane. Both works showed that the energy transmitted to the elastic media were highly 

discontinuous, and dependent on the local impedance mismatch at the interface. 
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The exploration of nonlinear wave propagation in 2D and 3D ordered granular media is still 

limited. In addition to compressive (normal) Hertzian granular interactions, tangential frictional 

forces due to rotational effects are unavoidable in higher dimensions. In fact, as shown by Yang 

and Sutton [25] the omission of frictional interactions due to granular rotations may lead to 

significant errors when modeling hexagonally packed granular networks. Moreover, Goldenberg 

and Goldhirsch [26], Chattoraj et al. [27] and Charan et al. [28] showed that the frictional force 

may lead to dynamical instabilities. Hence, accounting for these effects may significantly 

improve the agreement between numerical simulations and experiments [12, 26]. By 

incorporating the combined effects of friction and the flexible boundaries, Wang et al. [29] 

extended the algorithm developed by Potekin et al. [23] and Zhang et al. [24] to 2D granular-

solid interfaces consisting of closely packed, hexagonally ordered granules in contact with thin 

plates. To avoid numerical instabilities due to frictional effects, a smooth approximation was 

considered instead of the discontinuous Coulomb friction forces, and a convergence criterion 

based on the eigenvalues of a linearized iterative map of the granule-plate interaction forces at 

each time step was formulated to ensure the stability and robustness of the algorithm [27]. That 

work paved the way for investigating the nonlinear acoustics of 2D nonlinear wave propagation 

across the interfaces between nonlinear discrete granular media and linearly elastic continua. 

Apart from other nonlinear acoustic features, in this work we consider the break of 

reciprocity in the 2D granular-elastic solid interfaces. Acoustic reciprocity is a fundamental 

property of linear time invariant systems [30] governed by Sturm-Liouville operators. Basic 

ways of breaking the reciprocity involve adding odd-symmetric external biases [31, 32, 33], 

inducing time variant properties [34] or imposing nonlinearities in conjunction with some sort of 

system asymmetry. Given the asymmetry and strong nonlinearity of the considered interfaces it 

is anticipated that they will possess non-reciprocal acoustics. Previous work mainly focused on 

the non-reciprocal acoustics of 1D granular systems [11, 12, 13], and in acoustical systems with 

nonlinearity, asymmetry and internal hierarchy [35, 36, 37]. In this work, we will numerically 

study the break of acoustic reciprocity by applying the same shock excitation to the free 

boundary of the left (larger scale) and then of the right (smaller scale) granular medium and 

compare the responses at the corresponding excitation positions. We will investigate how wave 

transmission in the larger and smaller scale granular media and the intermediate elastic solid 

affect non-reciprocity, given that the disparity in size of the granules of the left and right granular 

media affects the dominant time scales of the governing nonlinear acoustics in the granular 

media. Accordingly, the main cause of non-reciprocity in the interface is the excitation of low-

frequency vibrations or high-frequency acoustics in the elastic solid, depending on the location 

and intensity of the applied shock excitation. Moreover, the passive tunability of the acoustic 

non-reciprocity on the intensity (energy) of the applied shock will also be explored. 

This work is structured as follows. In Section 2, we introduce the model of the granular-

elastic solid interface and describe briefly the computational algorithm employed in the 
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simulations. In Section 3, we study the acoustic non-reciprocity of the interface by directly 

computing the granular responses when switching the excitation and measurement points. 

Following this study, we systematically analyze wave transmission in the elastic solid in Section 

4, and show that depending on the location of the applied shock and the governing time scales of 

the granular acoustics, the elastic solid undergoes either vibrations (standing waves – vibration 

modes) or acoustics (travelling waves). Lastly, in Section 5 we summarize the main results of 

this work and discuss their potential applications. 

 

     (a)            (b)       (c) 

Figure 1. Schematics of the granular-elastic solid interface subject to shock excitation: (a) 3D 

isometric view, (b) 2D planar model with boundary conditions, (c) granule-granule and granule-

elastic solid contact points, corresponding free body diagrams and notations for normal and 

tangential interaction forces. 

2. System Description 

We consider the hierarchical 2D granular-solid interface shown in Fig. 1. It is composed of two 

hexagonally packed, initially uncompressed granular media, on the left with larger-size granules 

and on the right with smaller-size granules, separated in the middle by a thin elastic solid; this 

will be modeled either as a thin elastic plate or as a slender Euler-Bernoulli beam. The two left 

and right granular media are hierarchical in the sense that both are composed of 14 identical 

granules which, however, differ in size. Three of the four boundaries of each granular medium 

are clamped, as are the lateral boundaries of the intermediate elastic solid – cf. Fig. 1b. For 

simplicity, we refer to the three components of the granular-solid interface as the large-scale 

granular medium (LSGM), the elastic solid, and the small-scale granular medium (SSGM), 

respectively. This interface is excited from the free edge of either the LSGM or SSGM by a 

shock excitation. Moreover, the granular-solid interface is assumed to be at rest before the 

excitation is applied. In this work, we only discuss a special symmetric case, where the excitation 
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is applied to the middle granule of the boundary perpendicular to the elastic solid; however, the 

computational formulation applies to more general excitation scenarios, including asymmetric 

and general transient excitations.  

Moreover, to simplify the mathematical model we assume that all granular motions are 

planar; in addition, assuming that the intermediate elastic solid is sufficiently thin we consider 

the plane stress approximation for the equations of infinitesimal linear elasticity governing its 

dynamics, so the that its corresponding deformations are also planar. Following the models in the 

previous works [23, 24], the discrete element (DE) method is applied to model the acoustics of 

the left and right granular media, and the finite element (FE) method is applied to model the 

elastic solid. The two computational models are decoupled by accurately computing the 

interaction forces that couple the discrete (granular) and continuum (elastic solid) components of 

the interface at successive time steps [23, 24]. Lastly, the conservation of total energy – 

including dissipative effects – is monitored at each time step to verify the accuracy and validity 

of the algorithm. 

2.1 Discrete element (DE) modeling of the granular media 

Both the LSGM and SSGM are composed of 14 identical, spherical granules that are in point 

contact with each other without prior compression before the excitation is applied. Each granule 

interacts with its neighbors and/or the elastic plate through Hertzian normal interactions with 

normal (viscous) dissipative and tangential frictional forces which are caused by granule 

rotations. Hence, even though each granule is assumed to be linearly elastic, the granular media 

are governed by strongly nonlinear (in fact, non-linearizable) acoustics due to the geometric 

nonlinearities developing at the contact points. Under certain assumptions related to small elastic 

deformations [38, 39, 40], each granule is approximated as a rigid body with three planar degrees 

of freedom (DOF), i.e., two translational DOFs and one rotational DOF. The model of 2D 

granular interactions developed in [29] is adopted in this work as well; it incorporates the 

Hertzian model for normal interactions and a continuous Coulomb-tanh friction model for 

tangential (frictional) interactions. 

In the DE model, the equations of motion of a single granule are given by (note that unless 

otherwise noted bold symbols denote (2 × 1) vectors), 

𝑚𝑖�̈�𝑖 = ∑(𝑵𝑖𝑗 + 𝒇𝑖𝑗)

𝑗

+ ∑(𝑵𝑖𝑘 + 𝒇𝑖𝑘)

𝑘

𝐼𝑖�̈�𝑖 = ∑(𝑅𝑖𝒏𝑖𝑗 × 𝒇𝑖𝑗)

𝑗

+ ∑(𝑅𝑖𝒏𝑖𝑘 × 𝒇𝑖𝑘)

𝑘

(1) 

where 𝑚𝑖 , 𝑅𝑖  and 𝐼𝑖  denote the mass, radius and the moment of inertia of the 𝑖 − 𝑡ℎ granule, 

respectively; specifically, 𝐼𝑖 =
2

5
𝑚𝑖𝑅𝑖

2 for spherical granules. Also, 𝒔𝑖 denotes the displacement 
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vector of the center of the 𝑖 − 𝑡ℎ granule, and 𝜽𝑖 = 𝜃𝑖𝒌 the angular rotation pseudo-vector of the 

𝑖 − 𝑡ℎ granule, where 𝜃𝑖 denotes the rotation amplitude and 𝒌 the unit pseudo-vector with anti-

clockwise rotation designated as the positive direction. Overdot denote differentiation with 

respect to the time variable 𝜏. As shown in Fig. 1c, 𝑵𝑖𝑗, 𝒇𝑖𝑗 are the normal and tangential forces 

exerted to the 𝑖 − 𝑡ℎ granule by the 𝑗 − 𝑡ℎ granule, respectively; whereas, 𝑵𝑖𝑘 , 𝒇𝑖𝑘  denote the 

normal and tangential forces applied on the 𝑖 − 𝑡ℎ granule by the 𝑘 − 𝑡ℎ contact point with the 

thin plate, respectively. In (1) 𝒏𝑖𝑗 denotes the unit position vector between granules that points 

from the center of the 𝑖 − 𝑡ℎ granule to the center of the 𝑗 − 𝑡ℎ granule, and is given by 𝒏𝑖𝑗 =

(𝒔𝑗 − 𝒔𝑖)/|𝒔𝑗 − 𝒔𝑖| ; similarly, 𝒏𝑖𝑘  denotes the unit position vector between a granule and a 

contact point at the edge of the thin plate, pointing from the center of the 𝑖 − 𝑡ℎ  granule 

perpendicular to the 𝑘 − 𝑡ℎ contact point on the edge of the plate. 

The normal force 𝑵𝑖𝑗 generated from the compressive interaction between the 𝑖 − 𝑡ℎ and 𝑗 −

𝑡ℎ granules obeys the Hertzian law [25, 39, 40] with viscous dissipation, 

𝑵𝑖𝑗 = −(𝐴𝑖𝑗𝛿𝑛,𝑖𝑗
3 2⁄

+ 𝛾𝑖𝑗�̇�𝑛,𝑖𝑗) 𝒏𝑖𝑗 (2) 

where 𝛿𝑛,𝑖𝑗 denotes the relative normal deformation between the  𝑖 − 𝑡ℎ and the 𝑗 − 𝑡ℎ granules 

given by 𝛿𝑛,𝑖𝑗 = 𝑚𝑎𝑥(𝑅𝑖 + 𝑅𝑗 − |𝒔𝑗 − 𝒔𝑖|, 0). Note that 𝛿𝑛,𝑖𝑗  is greater than zero only if the 

distance |𝒔𝑗 − 𝒔𝑖| between the centers of the granules at the current time instant is smaller than 

the distance between these centers at the initial state when the granules are in contact without 

compression. Otherwise, the granules loose contact and the normal force 𝑵𝑖𝑗 is zero. The elastic 

and damping coefficients 𝐴𝑖𝑗 and 𝛾𝑖𝑗 are dependent on the material properties of the granules, the 

sizes of the granules, and the relative normal deformation 𝛿𝑛,𝑖𝑗, 

𝐴𝑖𝑗 = (4 3⁄ ) 𝐸𝑖𝑗
∗ √𝑅𝑖𝑗

∗

𝛾𝑖𝑗 = 𝛼𝑛(𝑚𝑖𝑗
∗ 𝐴𝑖𝑗)

1 2⁄
𝛿𝑛,𝑖𝑗

1 4⁄

(3) 

where 𝛼𝑛 is a constant coefficient related to the restitution coefficient [39], and 𝐸∗, 𝑅∗ and 𝑚∗ 

denote the effective Young’s modulus, effective radius and effective mass, respectively. These 

are defined as, 

1

𝐸𝑖𝑗
∗ =

1 − 𝜈𝑖
2

𝐸𝑖
+

1 − 𝜈𝑗
2

𝐸𝑗

1

𝑅𝑖𝑗
∗ =

1

𝑅𝑖
+

1

𝑅𝑗

1

𝑚𝑖𝑗
∗ =

1

𝑚𝑖
+

1

𝑚𝑗

(4) 
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where 𝐸𝑖(𝑗), 𝜈𝑖(𝑗), 𝑅𝑖(𝑗) and 𝑚𝑖(𝑗) denote the elastic modulus, Poisson ratio, radius and mass of 

the 𝑖(𝑗) − 𝑡ℎ granule.  

The Hertzian model with viscous dissipation (2) also applies for the contact between a 

granule and the boundaries of the elastic solid or the lateral fixed walls by replacing the normal 

relative deformation 𝛿𝑛,𝑖𝑗  by the relative normal deformation 𝛿𝑛,𝑖𝑘  between the center of the 

granule and the corresponding boundary (cf. Fig. 1c). The corresponding unit normal vector 𝒏𝑖𝑗 

is also replaced by the unit normal vector 𝒏𝑖𝑘. We assume that the clamped boundaries of the 

rigid walls are rigid and therefore 𝐸𝑘 → +∞, 𝑅𝑘 → +∞ and 𝑚𝑘 → +∞ which yields 𝐸𝑖𝑘
∗ =

𝐸𝑖

1−𝜈𝑖
2, 

𝑚𝑖𝑘
∗ = 𝑚𝑖 , and 𝑅𝑖𝑘

∗ = 𝑅𝑖  at the  contact points between the granules and the three clamped 

boundaries. To determine the effective mass 𝑚𝑖𝑘
∗ , modulus 𝐸𝑖𝑘

∗  and radius 𝑅𝑖𝑘
∗ , for the flexible 

boundaries with the elastic solid we assume that a small, flat, massless rigid layer is perfectly 

bonded to the edge of the elastic solid at the 𝑘 − 𝑡ℎ contact point; this helps to overcome any 

inconsistencies in the contact between a granule and an elastic body [29, 41]. Since the rigid 

layer is flat, massless and rigid, it holds that 𝐸𝑘 → +∞, 𝑅𝑘 → +∞ and 𝑚𝑘 → 0. In this case the 

coefficients 𝐴𝑖𝑘  and 𝛾𝑖𝑘  are defined similarly to equation (3) with 𝐸𝑖𝑘
∗ =

𝐸𝑖

1−𝜈𝑖
2 , 𝑚𝑖𝑘

∗ = 0 , and 

𝑅𝑖𝑘
∗ = 𝑅𝑖  (given that the flat boundary of the thin plane has infinite radius of curvature). 

The Hertzian model is valid for frictionless granular contacts under purely compressive 

interactions. Considering the effect of friction, for (typically) small friction coefficients the 

magnitudes of the tangential forces are much smaller than the normal forces. In this case, shear 

deformations of the granules can be neglected, and so the Hertzian model is still applicable. A 

continuous (smooth) Coulomb-tanh model [42, 43] is adopted to model the tangential forces 

applied to the granules, yielding the following frictional force applied to the granules (cf. Fig. B1 

in Appendix B), 

𝒇𝑖𝑗 = −𝜇|𝑵𝑖𝑗| tanh(𝑘𝑠�̇�𝑡,𝑖𝑗) 𝒕𝑖𝑗 (5) 

where 𝜇  denotes the friction coefficient of the Coulomb model, 𝑘𝑠  is a coefficient that 

determines the smoothness of the Coulomb-tanh model, 𝒕𝑖𝑗  denotes the unit vector in the 

tangential direction of the contact given by 𝒕𝑖𝑗 = 𝒌 × 𝒏𝑖𝑗 , and �̇�𝑡,𝑖𝑗  is the relative tangential 

velocity between interacting granules (between a granule and the 𝑘 − 𝑡ℎ contact point on the 

edge of the plate) given by: 

�̇�𝑡,𝑖𝑗 = [(�̇�𝑖 + 𝑅𝑖�̇�𝑖 × 𝒏𝑖𝑗) − (�̇�𝑗 + 𝑅𝑗�̇�𝑗 × 𝒏𝑗𝑖)] ∙ 𝒕𝑖𝑗 (6) 

Clearly, the friction model (5) is also applicable for the tangential force 𝒇𝑖𝑘 between a boundary 

granule and the thin plate by replacing the relative tangential velocity between granules, �̇�𝑡,𝑖𝑗, 

with the relative tangential velocity �̇�𝑡,𝑖𝑘 = [(�̇�𝑖 + 𝑅𝑖�̇�𝑖 × 𝒏𝑖𝑗) − �̇�𝑘𝑖] ∙ 𝒕𝑖𝑘 between the contact 

granule and the plate.  
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Compared to the discontinuous Coulomb friction model, the Coulomb-tanh model provides a 

continuous relation between the friction force and the relative tangential velocity which as 

discussed in [27] is beneficial for the numerical stability of the computational algorithm. When 

the magnitude of the relative tangential velocity �̇�𝑡,𝑖𝑗(𝑖𝑘) is large, the tanh term approaches the 

limits of ±1  and converges to the Coulomb model. Moreover, when the relative tangential 

velocity �̇�𝑡,𝑖𝑗(𝑖𝑘) is small, equation (5) converges to the viscous damping model. It follows that 

the introduction of the coefficient 𝑘𝑠 in the numerical simulation represents a trade-off between 

the numerical stability and the convergence of the friction force to the Coulomb model. On the 

one hand, large values of 𝑘𝑠 make the Coulomb-tanh model converge to the Coulomb model, but 

at the same time they renders the computations difficult to converge and to require very small 

time steps and prohibitive computational effort. Therefore, a proper choice for 𝑘𝑠 ensures that 

𝑘𝑠𝑣𝑐ℎ ≫ 1 , where 𝑣𝑐ℎ  is the characteristic velocity for the acoustics [27]. In that case, the 

Coulomb-tanh frictional model captures successfully the dissipative effects of friction in the 

granular-elastic solid interface and approximates well the Coulomb model [29]. 

2.2 Finite element (FE) modeling of the intermediate elastic solid 

In this work the intermediate elastic solid will be modeled in two different ways: Either as a thin 

elastic plate or a slender Euler-Bernoulli beam. The rationale behind this dual model 

approximation is to study the efficacy of the simpler beam model or the more accurate plate 

model to capture the strongly nonlinear and highly discontinuous acoustics of the granular 

interface of Fig. 1; moreover, given the expected improved accuracy of the plate model, we wish 

to investigate the limit of applicability of the simpler (and less computationally expensive) beam 

model on capturing the transient stress wave scattering at the interfaces of the elastic solid with 

the left and right granular media.  

We consider first the thin plate model. As in [27], in this work we consider the case where 

the thickness of the intermediate plate is much smaller than its length or width, so that the plane 

stress approximation is applicable [44]. In this case, the 3D infinitesimal linear elasticity 

equations for the plate model is adopted but with stress components 𝜎𝑧 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 0, where 

the 𝑧 denotes the thickness direction. The plane-stress assumption yields 2D governing equations 

of motion, which are compatible with the 2D DE equations governing the granular media, 

𝜌(�̈�𝑥, �̈�𝑦)
𝑇

= (
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜎𝑥𝑦

𝜕𝑦
,
𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
)

𝑇

(𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦)
𝑇

= (
𝜕𝑢𝑥

𝜕𝑥
,
𝜕𝑢𝑦

𝜕𝑥
,
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
)

𝑇

(𝜎𝑥, 𝜎𝑦 , 𝜎𝑥𝑦)
𝑇

=
𝐸

1 − 𝜈2
(

1 𝜈 0
𝜈 1 0
0 0 (1 − 𝜈) 2⁄

) (𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦)
𝑇

(7) 



9 

 

where (𝑢𝑥, 𝑢𝑦)  denotes the displacement vector, 𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦  the normal and shear strains, 

respectively, and 𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦 the normal and shear strains, respectively. In (7) 𝐸, 𝜈 and 𝜌 denote 

the Young’s modulus, Poisson’s ratio and density of the material of the thin plate. Note that the 

effects of dissipation are not considered in (7), since the (linear) wave propagation in the solid 

medium is much faster than the (nonlinear) wave propagation in the granular media [29]; in 

addition, selecting a thin plate made of steel ensures very small levels of structural (internal) 

dissipation so the lossless assumption for the thin plate is justified. 

The boundaries of the plate are either free or clamped except for its contact points with the 

boundary granules of the LSGM and the SSGM, cf. Fig. 1. Accordingly, the boundary condition 

at a clamped boundary is (𝑢𝑥, 𝑢𝑦) = (0,0), while at the free boundary is 𝝈 ∙ 𝒏 = (0,0), where 𝝈 

denotes the 2-dimensional stress tensor and 𝒏 the outward unit normal vector at the edge of the 

plate. However, at a contact point with a granule, the contact area is assumed to be circular, and 

the plate deformation is not uniform along the thickness direction. Therefore, the plane stress 

assumption is not assumed to hold at the contact points between the granules and the plate. To 

overcome this inconsistency, we assume that the small rigid layers bounded to the plate cover the 

thickness direction so that the plate deformation along the thickness direction is assumed to be 

uniform; in that case only translational and rotational motions are allowed for the rigid layers. 

Moreover, given that the deformation of the plate at a contact point is assumed to be small, the 

contact forces exerted to the plate by the contacting granule are approximately applied at the 

middle of the rigid layer, and the directions of the normal and tangential unit vectors at the 

interface, 𝒏𝑖𝑘  and 𝒕𝑖𝑘 , are invariant (cf. Fig. 1c). Under these conditions, the normal and 

tangential forces between the granules and the plate at the contact points are distributed by the 

rigid layers so that the plane-stress condition is approximately satisfied. 

We note that St. Venant’s principle guarantees that the small rigid layers do not have any 

significant effect on the far-field acoustical response of the plate. However, if the length of the 

rigid layer approaches zero, the displacements of the rigid layer diverge to infinity; hence, to 

overcome this inconsistency, it is necessary to select appropriately the length of the rigid layer in 

order to avoid the singularities associated with a concentrated force. Accordingly, the length of 

the rigid layer is selected as 𝑅/10, where 𝑅 denotes the radius of the granule in contact with the 

plate. This value is comparable to the contact diameter at the interface, which leads to reasonable 

results [29]. 

The finite element (FE) method is applied to discretize the plate and solve the 2D planar 

plane stress infinitesimal elasticity equations (7). To this end, 8-node quadrilateral isoparametric 

elements are employed in the FE discretization. Moreover, multi-point constraints are imposed 

upon the nodes on the rigid layers since only rigid body motions are allowed for these 

components. The translational DOFs (in the 𝑥 − and 𝑦 −directions) of the node at the middle 

point of each rigid layer as well as the rotational DOF of the rigid layer are considered as driven 
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DOFs, so that all other DOFs of the nodes on the rigid layer can be expressed as linear 

combinations of the driven DOFs. Therefore, the (linear) equations of motion of the discretized 

plate (incorporating the rigid layers at the contact points with the granules as well as the clamped 

boundary conditions) can be expressed as follows, 

𝑴�̈� + 𝑲𝒙 = 𝑭 (8) 

where 𝑲  and 𝑴  denote the stiffness and mass matrix of the FE model, respectively, 𝒙  the 

displacement vector of the corresponding generalized displacements and rotations at the nodes of 

the plate, and 𝑭 the force vector that incorporates the contact forces exerted at the contact points 

by the interacting granules of the LSGM and SSGM. Since these forces are only applied at the 

middle nodes of the rigid layers, 𝑭 is a sparse vector, composed of the normal and shear forces 

applied at the middle points of the rigid layers given by (2) and (5). Clearly, the displacement 

vector 𝒖𝑘 at the 𝑘 − 𝑡ℎ contact point is identical to the translational displacements at the middle 

nodes of the corresponding rigid layer at that contact point. 

As mentioned previously, an alternative simpler (and less computationally demanding) 

model considered for the thin elastic solid is a slender Euler-Bernoulli beam, based on the fact 

that it has small width compared to its lateral dimension. In considering this alternative model we 

wish to perform a comparative study of the effects of the different modeling of the intermediate 

elastic solid on the overall nonlinear acoustics of the integrated granular-solid interface. To this 

end, and keeping the notation introduced for the plate, the following Euler-Bernoulli beam model 

is considered, 

𝜌𝐴
𝜕2𝑢𝑥

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑢𝑥

𝜕𝑦4
= 𝑓 (9) 

where 𝜌 and 𝐸 denote the density and Young’s modulus of the beam, respectively, 𝐴 its cross 

section, 𝐼  the second moment of area of the cross section about the bending axis, and 𝑓  the 

contact force distribution provided by the interactions of the beam with the contacting granules 

of its left and right. In this case – contrary to the previous plate model (7) – the axial deformation, 

𝑢𝑦, is neglected since the axial rigidity is assumed to be much larger than the flexural rigidity. 

Complementing (9) are the standard boundary conditions 𝑢𝑥 = 0 and 
𝜕𝑢𝑥

𝜕𝑦
= 0 at the clamped 

lateral boundaries.  

As mentioned, the distributed force 𝑓  is dependent on the beam-granule interactions. 

Different from the plate model, however, the response of the beam is finite even subject to a 

concentrated force. Therefore, the contact forces are assumed to be directly applied to the neutral 

axis of the beam as concentrated loads. Under this assumption, the tangential forces do not 

induce any deformations of the beam. The normal forces and the tangential forces are also 

computed by (2) and (5), respectively, where the displacement vector at the edge of the beam 𝒖𝑘 

is approximated by the vector of deformations of the neutral axis at the contact points. 
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To discretize this alternative beam model, the deflection 𝑢𝑥 is interpolated through the use of 

a cubic function. The resulting discretized equation of motion has a form similar to (8), however, 

with different displacement vector  𝒙, force vector 𝑭, stiffness matrix  𝑲 and mass matrix  𝑴. 

Compared with the plate model, the force vector 𝑭 is also a sparse vector containing the normal 

interaction forces as its only non-zero elements. 

2.3 Coupling forces at the granular-elastic solid interfaces 

In synopsis, the governing equations of motion of the granular-solid interface of Fig. 1 are the 

equations (1) and (8) which are coupled by the normal (Hertzian elastic with viscous dissipation) 

and tangential (frictional) interaction forces at the contact points between the LSGM and SSGM 

and the elastic solid. Given the large disparity of the DOFs of the linear FE equations (8) and the 

nonlinear DE equations (1), these are solved separately. Key to this computation is the accurate 

computation of the highly discontinuous, nonlinear coupling forces. This is accomplished 

through a robust iterative-interpolative computational algorithm whose basic elements are 

discussed in Appendices A and B, and more details can be found in [27]; here we only provide a 

brief synopsis. 

The 𝛽 -Newmark method is used to solve the FE equations (8), while the Runge-Kutta 

method is employed to solve the DE equations (1). The most critical step of the computation is 

the accurate computation of the interaction forces at the interface between the granular media 

and the elastic solid at each time step. To this end, a nonlinear map is generated, iterating the 

vector of normal and tangential interaction forces at each time step of the computation, until 

convergence is reached; details of this map are given in [27] and the main steps of the algorithm 

are summarized in Appendix A). Note that when the plate model is considered, the non-zero 

terms in the interaction force vector 𝑭 in (8) involves the friction force as well, which is not 

involved in the beam model. Since the friction force is highly sensitive to the relative tangential 

velocity, a stability analysis is necessary for the convergence of the nonlinear map for the case of 

the plate model. With a few assumptions [27], the nonlinear map of the interaction force vector 

can be divided into several local maps, each corresponding to a separate contact point (cf. 

Appendix A and [29]). Assuming an adaptive (variable) time step ∆𝜏 for the computation, a pair 

of linearized eigenvalues for each of the local maps is analytically computed, and the following 

approximate stability criterion is formulated ensuring stability of the computation of the friction 

forces at the interface with the plate: 

|𝜆𝑘𝑖,𝑡| =
1

2
 𝜇 𝑘𝑠|𝑵𝑖𝑘| ∆𝜏 𝑻𝑖,𝑡 (𝑴 +

1

4
𝑲∆𝜏2)

−1

𝑻𝑖,𝑡
𝑇 cosh−2(𝑘𝑠�̇�𝑡,𝑖𝑘,𝑠) < 1 (10) 

In the above criterion 𝜆𝑘𝑖,𝑡  denotes the linearized eigenvalue of the local map at the 𝑘 − 𝑡ℎ 

contact point at the interface, corresponding to the iteration of the friction force between the 𝑖 −

𝑡ℎ granule and the edge of the plate (it turns out that the corresponding linearized eigenvalues 
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associated with the iterations of the normal interaction forces are always less that unity in 

modulus). In (10) 𝑻𝑖,𝑡 denotes a sparse vector that has only one non-zero element with unit value 

located at the tangential driven DOF of the rigid layer at the 𝑘 − 𝑡ℎ contact point. Whenever the 

modulus of the linearized eigenvalue, |𝜆𝑘𝑖,𝑡|, tends to reach unity, the time step is varied (adapted) 

to ensure that the stability criterion (10) is satisfied. Specifically, from (10), the modulus |𝜆𝑘𝑖,𝑡| is 

proportional to the time step ∆𝜏. Therefore, the self-adaptive algorithm introduced in [29] is 

followed, yielding a critical time step Δ𝜏𝑐𝑟  at each time step of the computation; then, by 

selecting the time step increment Δ𝜏 < Δ𝜏𝑐𝑟  convergence of the simulation is achieved; an 

example of the use of adaptive steps to impose the criterion (10) is given in Appendix B. By 

applying this computational protocol for all contact points at both edges of the plate (i.e., at the 

interfaces with the left LSGM and right SSGM), the convergence of the computational algorithm 

is achieved and numerical instabilities are robustly eliminated from the computation. 

Lastly, energy measures are also computed to provide an overall (global) indicator for 

convergence of the computational algorithm at each time step. To this end, we compute the 

instantaneous energy of each component of the interface (i.e., the LSGM, the intermediate elastic 

solid and the SSGM) in order to study the energy transmission through, and scattering at the 

interface, and also verify the accuracy and robustness of the simulation. The energy of each 

component is evaluated as follows, 

𝐸𝑒 =
1

2
�̇�𝑒

𝑇𝑴𝑒�̇�𝑒 +
1

2
𝒙𝑒

𝑇𝑲𝑒𝒙𝑒

𝐸𝑔𝑖 =
1

2
𝑚𝑖|�̇�𝑖|

2 +
1

2
𝐼𝑖�̇�𝑖

2 +
1

5
∑ 𝐴𝑖𝑗𝛿𝑛,𝑖𝑗

5 2⁄

𝑗

+
2

5
∑ 𝐴𝑖𝑘𝛿𝑛,𝑖𝑘

5 2⁄

𝑘

𝐸𝑝(𝑏) = ∑ 𝐸𝑒 =
1

2
�̇�𝑇𝑴�̇� +

1

2
𝒙𝑇𝑲𝒙

𝐸𝑔 = 𝐸𝑔,𝐿𝑆 + 𝐸𝑔,𝑆𝑆 = ∑ 𝐸𝑔𝑖

𝑖∈𝐿𝑆

+ ∑ 𝐸𝑔𝑖

𝑖∈𝑆𝑆

(11) 

where 𝐸𝑝(𝑏) denotes the instantaneous energy of the elastic plate (beam), 𝐸𝑒  the instantaneous 

energy of an element of the plate (beam), 𝐸𝑔 the instantaneous energy of the granular system, 𝐸𝑔𝑖 

the total instantaneous energy of a granule, and 𝐸𝑔,𝐿𝑆 and 𝐸𝑔,𝑆𝑆 the instantaneous energies of the 

LSGM and SSGM, respectively. The vector 𝒙𝑒 , and matrices 𝑴𝑒 , and 𝑲𝑒  denote the nodal 

vector, and mass and stiffness matrices, respectively, of an element of the elastic solid. Moreover, 

the dissipated energy is evaluated based on the work that is performed by the dissipative forces 

as follows, 



13 

 

𝑊viscous,𝑖(𝜏0) = ∑ ∫ {∑(𝛾𝑖𝑗�̇�𝑛,𝑖𝑗 𝒏𝑖𝑗 ⋅ �̇�𝑖)

𝑗

+ ∑(𝛾𝑖𝑘�̇�𝑛,𝑖𝑘 𝒏𝑖𝑘 ⋅ �̇�𝑖)

𝑘

} 𝑑𝜏
𝜏0

0𝑖

𝑊friction,𝑖(𝜏0) = ∑ ∫ {∑[𝒇𝑖𝑗 ⋅ (�̇�𝑖 + 𝑅𝑖�̇�𝑖𝒕𝑖𝑗)]

𝑗

+ ∑[𝒇𝑖𝑘 ⋅ (�̇�𝑖 + 𝑅𝑖�̇�𝑖𝒕𝑖𝑘 − �̇�𝑘)]

𝑘

} 𝑑𝜏
𝜏0

0𝑖

𝐷(𝜏0) = −𝑊viscous,𝑖(𝜏0) − 𝑊friction,𝑖(𝜏0)

(12) 

where 𝑊viscous,𝑖(𝜏0) and 𝑊friction,𝑖(𝜏0) denote the dissipative work by the viscoelastic (structural) 

damping of the granule material, and the friction from the time instant 0 to time instant 𝜏0, and 

𝐷(𝜏0)  denotes the total dissipated energy at time 𝜏0 . Since the power performed by the 

dissipative forces is always non-positive, the dissipated energy is always non-negative and 

monotonically increasing. Considering the expressions (11) and (12), the total instantaneous 

energy of the granular-elastic solid interface that includes the dissipated energy, 𝐸(𝜏0), should be 

equal to the initial impulsive energy 𝐸𝑖𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒, 

𝐸𝑝(𝜏0) + 𝐸𝑔(𝜏0) + 𝐷(𝜏0) ≡ 𝐸(𝜏0) = 𝐸𝑖𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒 (13) 

and be conserved at each time step of the computation after the excitation is applied. Hence, this 

conservation relation is an additional (global) check for the accuracy of the simulation. 

3. Non-reciprocal acoustics of the granular-elastic solid system 

In the following computational study of the non-reciprocal acoustics of the granular-elastic solid 

of Fig. 1, the granules and the elastic solid are composed of steel with modulus of elasticity 𝐸 =

200 𝐺𝑃𝑎, density 𝜌 = 7850 𝑘𝑔/𝑚3 and Poisson’s ratio 𝜈 = 0.3. Based on previous studies of 

the granular-solid interfaces [25, 29, 39, 42], the friction and viscoelastic damping coefficients of 

the granular medium are selected as 𝜇 = 0.099, 𝛼𝑛 = 6.313 × 10−3 and 𝑘𝑠 = 100 𝑠/𝑚, where 

the notation of the previous section holds. The planar dimensions of the elastic solid medium are 

0.1 𝑚 × 0.01 𝑚, with a (small) thickness of 0.001 𝑚. The radii of the granules of the LSGM are 

0.01𝑚, whereas the ones of the SSGM 0.005 𝑚. The FE mesh of the elastic solid medium is 

shown in Figure 2.  
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Figure 2. Computational modeling of the granular-elastic solid interfaces: (a) FE mesh when the 

elastic solid is modeled as a slender Euler-Bernoulli beam – note that the contact forces are 

applied at nodes of the FE mesh; (b) FE mesh when the elastic solid is modeled as a thin plate – 

note the denser mesh close to each contact point with a granule; small rigid layer at a contact 

point between a granule of (c) the LSGM and (d) the SSGM and the thin plate model. 

For the case when the elastic solid medium is modeled as Euler-Bernouli beam, it is 

discretized into 40 beam elements (cf. Fig. 2a), whereas when it is modeled as a thin plate is 

discretized into 570 plate elements (cf. Fig. 2b). The beam model is valid mainly for low-

frequency/wavenumber vibrations (standing waves), whereas the plate model is valid for 

vibrations as well as higher-frequency/wavenumber acoustics (traveling waves). As such, the 

plate model provides a more accurate result at the expense of more computational effort due to 

the better modeling of the acoustics of the interface, the larger amount of DOFs and 

implementation of the strict convergence criterion (10).  

The length of the rigid layer at each interface of a boundary granule of the LSGM and the 

SSGM and the elastic solid is selected as 𝑅/10, where 𝑅 denotes the radius of the granule at the 

contact point. Accordingly, the FE mesh of the plate model is refined near each contact point, 

with two finite elements being connected on the rigid layer as shown in Figs. 2c and 2d. Since 

the top and the bottom boundaries of the elastic plate are clamped, the nodes on the top and 

bottom boundaries are fixed as well. This results in 3618 degrees of freedom in total for the plate 

model. The FE modeling of the slender beam model is much simpler (as no variable finite 

elements are needed in that case), resulting in just 78 degrees of freedom, after the boundary 

conditions and the multi-point constraints with the rigid layers are taken into account. This 

provides an indication of the simplicity and the much less computational effort required for the 

slender beam model. 

Rigid 

Layer 

Rigid 

Layer 

(a) 

(d) 

(c) 

(b) 
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   (a)              (b) 

Figure 3. Acoustic non-reciprocity in the granular-elastic solid (modeled as a plate) interface of 

Fig. 1: (a) The Strong shock excitation; and (b) velocities of granule 3 of the SSGM, 𝑣3𝐶 , and 

granule C of the LSGM, 𝑣𝐶3, for excitations as described in the text and in the inset of Fig. 3a. 

In Figure 3 we depict the velocity of granule 3 of the LSGM, 𝑣3𝐶 , when a shock excitation is 

applied to granule C of the SSGM; and also the response of granule C, 𝑣𝐶3, when an identical 

shock excitation is applied to granule 3 (i.e., when the forcing and measurement positions are 

interchanged); the labeling of the granules is indicated in Fig. 1b and is repeated in the inset of 

Fig. 3a. The intermediate elastic solid is considered to be a thin plate for this simulation, which is 

performed in order to highlight the non-reciprocal nature of the nonlinear acoustics of the 

hierarchical granular interface (since for a linear interface the responses in the two cases should 

be identical, i.e., 𝑣3𝐶 = 𝑣𝐶3). The excitation consists of a half-sine pulse applied for a duration of 

0.01 𝑚𝑠 with maximum amplitude 𝐹𝑚𝑎𝑥 = 1591.6 𝑁 (cf. Fig. 3a – this corresponds to a high 

excitation intensity as discussed below). From the responses depicted in Fig. 3b it is clearly seen 

that the interface is highly non-reciprocal. The source of this acoustic non-reciprocity can be 

traced in the combined effects of nonlinearity and asymmetry [34]. Indeed, nonlinearity of the 

interface is induced from three sources, namely, (i) Hertzian granule-to-granule and granule-to-

solid interactions; (ii) collisions following separations between granules and at the granule-solid 

contact points; and (iii) frictional effects due to granule rotations. Moreover, the symmetry of the 

interface is broken by the hierarchical structure of the LSGM and the SSGM. We note that the 

convergence of the computational results is ensured by checking and stability criterion (10) at 

each time step and adapting the variable time step (cf. Fig. B1 in Appendix B). 

Considering the time series of the velocities 𝑣𝐶3  and 𝑣3𝐶  we notice an initial time lag when 

we compare the arrival of the acoustic waves in the two cases. Specifically, the earlier arrival of 

the pulse in granule 3 of the LSGM indicates that the acoustic waves propagate faster from right-

to-left compared to left-to-right. Moreover, the frequency content appears to be different in the 

two time series, with a lower frequency content being noted for 𝑣3𝐶  compared to 𝑣𝐶3 (especially 
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for 𝜏 > 0.6 𝑚𝑠). We provide below a brief scaling argument that justifies the apparent difference 

in the wave speeds for right-to-left and left-to-right wave transmission, which should originate 

from the difference in scales between the LSGM and the SSGM. Indeed, since the radii of the 

spherical granules in the (left) LSGM are twice as large compared to the ones in the (right) 

SSGM, the corresponding granular masses are eight times as heavy in the LSGM compared to 

the SSGM. Also, since the duration of the shock excitation is extremely small, the energy of the 

applied shock can be estimated approximately as 𝐸 ≈ 𝐼2/𝑚 , where 𝐼  is the intensity of the 

applied impulse and 𝑚 the mass of the excited granule; therefore, for the same shock excitation, 

the shock energy that is induced to the SSGM is nearly eight times as large as the corresponding 

shock energy induced to the LSGM. Considering that the nonlinear exponent of the Hertzian 

elastic interaction force between two contacting granules is 3 2⁄ > 1, the effective stiffness of 

the granular interaction increases for larger energy, i.e., it exhibits a stiffness-hardening 

constitutive relation, which, in turn, increases the wave speed for increasing energy [4, 5, 38]. 

This argument shows that when the shock excitation is applied to the SSGM (on the right), the 

resulting nonlinear acoustic wave propagates faster compared to when the excitation is applied to 

the LSGM (on the left); this explains the earlier arrival of the pulse in granule C of the LSGM. 

As a preliminary general comment, we note that the combined effects of nonlinearity and 

scale asymmetry (hierarchy) in the granular interface considered yields different wave speeds for 

right-to-left and left-to-right wave transmission, which accounts for the time lag in the velocity 

signals of Fig. 3b and acoustic non-reciprocity. Compared to previous works which do not 

incorporate an intermediate elastic medium [45, 46], in this work there is a novel type of non-

reciprocity based on the disparity of time scales in the nonlinear acoustics of the granular media 

and the response of the intermediate elastic layer. Specifically, depending on the location and 

intensity of the applied shock, the elastic layer respond either in terms of (slow) vibrations or 

(fast) acoustics; accordingly, the intermediate elastic medium plays a central role in the acoustics 

of the entire interface as it acts as a “filter” for the frequency and wavenumber content of the 

waves that it transmits. To get a physical insight into the different frequency contents of the two 

velocity signals in Fig. 3b (which also contribute to the break of acoustic reciprocity) it is 

necessary to consider the wave scattering (transmission and reflection) at the two granular 

interfaces of the intermediate elastic solid with the left LSGM and the right SSGM. 

Hence, we proceed to study the non-reciprocal acoustics of the granular interface when an 

identical shock excitation is applied either in granule 3 of the LSGM or granule C of the SSGM, 

generating acoustic waves propagating from left-to-right or right-to-left, respectively. To this end 

we consider three different shock intensities, namely weak, moderate, and strong. In each case 

the shock excitation has the half-sine shape shown in Fig. 3a and is applied for a finite duration 

of 𝜏𝑒𝑥𝑐 = 0.01 𝑚𝑠 ; its peak forcing amplitude, 𝐹𝑚𝑎𝑥 , is then selected as 63.67 𝑁  for weak, 

318.3 𝑁 for moderate and 1591.6 𝑁 for strong shock excitation (this later value corresponds to 
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the result of Fig. 3b), respectively. Moreover, in our study we consider both the plate and beam 

models to simulate the acoustics of the intermediate elastic solid. 

 

Figure 4. Instantaneous normalized energies (with respect to impulsive energy) of the LSGM, the 

SSGM, the elastic solid (modeled as plate or beam), and the entire granular interface (with and 

without dissipation effects added): (a,c,e) Excitation is applied to granule 3 of the LSGM for 

weak, moderate and strong shocks, respectively; and (b,d,f) excitation is applied to granule C of 

the SSGM granule for weak, moderate and strong shock excitations, respectively; the inset in (f) 

is an enlargement of the energy of the elastic solid in this case when modeled as plate or beam. 

In Figure 4 we depict the instantaneous normalized energies (with respect to the initial shock 

energy in each case) of the LSGM, the SSGM, and the elastic solid for the three shock 

excitations considered. In addition, we present the total normalized energy of the entire granular 

interface when dissipative effects (that is, viscoelastic and frictional effects) are taken into 

(a) (c) (e) 

(b) (d) (f) 



18 

 

account or when they are added to the total energy; this later case is considered in order to verify 

that at each time instant the total instantaneous normalized energy sums up to 100% and, hence, 

ensure the accuracy of the computation. We note that in Figs. 4a,c,e we present the results for 

shock excitation applied to granule 3 of the LSGM, whereas in Figs. 4b,d,f for application of the 

same shock excitation (in each case) to granule C of the SSGM; in all cases considered the 

intermediate elastic solid is modeled either as a thin plate (solid lines), or as a simplified slender 

Euler-Bernoulli beam (dashed lines). Lastly, the total simulation time is selected as 0.8 𝑚𝑠 in all 

cases, and the numerical stability of the numerical simulation is ensured by selecting adaptively 

the variable time step so that the convergence criterion (10) is satisfied at each time step. We 

note that at all shock intensity levels only a moderate portion of shock energy ends up being 

transmitted across the interface, for both right-to-left and left-to-right acoustic wave transmission, 

which highlights the efficacy of the granular interface as robust shock mitigator. In all cases, the 

elastic solid acts as an intermediary medium, which receives incident energy from the excited 

granular medium and scatters it, i.e., releases (transmits) part of this energy to the granular 

medium on the other side, confines (localizes) another part of this energy, and reflects the 

remaining part of the incident energy back to the granular medium where it is originally 

generated. 

For the case where the shock excitation is applied to granule 3 of the LSGM (cf. Figs. 4a,c,e), 

we observe clear energy transmission and reflection, and the energy transmitted in the SSGM 

and the energy retained (localized) in the elastic solid reach their peaks almost simultaneously. 

However, when the excitation is applied to granule C of the SSGM, the shock energy appears to 

be scattered into the whole interface. The time scale of the acoustics in this case seems to be 

faster compared to the previous case, and the elastic solid is excited by the propagating 

wavefront from the right much earlier. In addition, irrespective of the side of application of the 

shock the speed of the propagating wavefront (i.e., the dominant governing time scale of the 

nonlinear acoustics) strongly depends on the excitation level (or energy); this is anticipated for 

such a strongly nonlinear acoustical system. Indeed, from Fig. 4a (case of weak shock) we note 

that the wavefront initiated at the LSGM reaches the interface with the elastic solid after 

approximately ~0.2 𝑚𝑠 , compared to ~0.1 𝑚𝑠  in Fig. 4e corresponding to strong shock 

excitation from the same side.  

The same can be observed when the excitation is applied to the SSGM, e.g., compare the 

plots in Figs. 4b and 4f. This result can be understood when one takes into account that the 

hardening-stiffness nonlinearity of the Hertzian granular interactions yields higher speeds for the 

nonlinear acoustic waves in the granular media when the energy increases. In addition, 

regardless of the location of the shock excitation, the higher the excitation level is, the greater is 

the rate of shock energy dissipation; however, the energy dissipation is larger and faster when the 

excitation is applied to the SSGM. 
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In Appendix C we provide animations of the nonlinear acoustical responses of the granular 

interface for weak, moderate and strong shock excitations, and for the cases when the elastic 

solid is modeled as a thin plate or as a slender beam. To gain better physical insight into the 

nonlinear acoustics of the granular interface we need to consider in more detail the dynamics of 

the intermediate elastic solid when it is modeled either as a thin plate or (a simpler) slender beam. 

In particular, it is of interest to study how the elastic solid transmits, reflects or localizes shock 

energy that impedes from its left or right sides, since this will lead to a better understanding of 

the generation of acoustic non-reciprocity in this discrete-continuum system. 

4. Scale disparity in the response in the intermediate elastic solid  

The non-reciprocal acoustics of the granular interface of Fig. 1 are influenced by two main 

sources: First, the dissimilar wave speeds and frequency contents of the nonlinear transmitted 

waves (or the propagating wavefronts) in the right and left different-scale granular media; and 

second by the nonlinear scattering of the propagating wavefronts at the interfaces of the granular 

media with the elastic solid. The first source of non-reciprocity is attributed to the stiffness-

hardening nonlinear behavior of the granular interactions, as well as on the scale disparity of the 

granule geometries of the LSGM and SSGM, which drastically affect the initial formation and 

propagation of the primary wavefronts, i.e., the waves that are generated in the granular media 

immediately following the applications of the shocks on the right or left. The second source has 

to do with the transmission and reflection of the primary wavefronts at the discrete-continuum 

interfaces when they reach the boundaries with the elastic solid. In this section we wish to study 

in detail this nonlinear scattering of the primary wavefronts and establish how it influences the 

acoustic non-reciprocity. 

We start by noting that based on the results of Fig. 4 the efficacy of the simplified beam 

model for the acoustics of the intermediate elastic medium can be assessed. In Figs. 4a,c,e, it is 

observed that the results predicted by the beam model are in good agreement with the ones 

predicted by the more accurate (and computationally expensive) plate model when the shock is 

applied on granule 3 of the LSGM, especially for weak and moderate shocks. By contrast the 

difference between the predictions of the beam and plate models is considerable when the shock 

is applied to granule C of the SSGM – cf. Figs. 4b,d,f. Hence, for energy transmission from the 

SSGM to the LSGM, the beam model fails to accurately capture the nonlinear wave scattering at 

the discrete-continuum interface, with the maximum disparity with the plate model occurring for 

strong shock (i.e., when the primary wavefront propagating from right-to-left reaches the 

boundary with the elastic solid at ~0.05 𝑚𝑠 – refer to the inset in Fig. 4f).  

The failure of the beam model to model the wave transmission from the SSGM to the LSGM 

hints on the time scale disparity of its response when the shock is applied to the left or right 

boundaries of the interface. To gain better physical insight into the nonlinear acoustics of the 

granular interface we need to consider in more detail the response of the intermediate elastic 
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solid when it is modeled either as a thin plate or (a simpler) slender beam. In particular, it is of 

interest to study how the elastic solid transmits, reflects or localizes shock energy that impedes 

from its left or right sides, since this will lead to a better understanding of the generation of 

acoustic non-reciprocity in this discrete-continuum system. To highlight the difference in the 

dynamics of the elastic solid when modeled as a thin plate (in plane stress) or as a slender beam 

we compare snapshots of instantaneous normalized energy densities of the elastic solid for strong 

shock excitation applied to either side of the granular interface. In Appendix C we provide 

animations of the nonlinear acoustical responses of the granular interface for weak, moderate and 

strong shock excitations, and for the cases when the elastic solid is modeled as a thin plate or as a 

slender beam. To this end, the energy density is normalized by the initial maximum energy 

density of the excited granule (i.e., granule 3 of the LSGM or granule C of the SSGM): 

�̂� =
𝑤

𝑤0
=

𝐸𝑒/𝑉𝑒

(1/2)𝑚𝑣0
2

(14) 

In (14) �̂� and 𝑤 denote the normalized and non-normalized energy density, 𝑤0 the maximum 

energy density of the excited granule, and 𝐸𝑒 and 𝑉𝑒 the instantaneous energy and volume of 

each element (either FE for the elastic solid or granule for the LSGM and SSGM), 𝑚 the mass of 

the excited granule, and 𝑣0 the maximum instantaneous velocity of the excited granule. Special 

consideration needs to be given to the energy density of the beam element along the direction of 

its width and height; this is due to the fact that, since the finite elements of the beam are 1D, we 

need to perform a 2D spatial interpolation of the energy density of the beam in order to compare 

it to the energy density of the plate. We note at this point that in the Euler-Bernoulli beam model 

a planar cross-section is implicitly assumed (i.e., cross sections remain planar after deformation), 

and also that the normal stress is a linear function of the beam’s width. It follows that the 

potential energy density is a parabolic function along the beam’s width – with the potential 

energy on the neutral axis of the beam being zero. Moreover, the velocity along the direction of 

the beam’s height is constant and therefore the kinetic energy is uniformly distributed along the 

beam’s height. Therefore, we can compute the energy density along the width direction of each 

beam element based on the FE result, and then interpolate the energy to the height direction 

based on the implicit assumption of the planar cross-section. 

In Fig. 5 we depict the comparison of two snapshots of the normalized energy densities for 

the case of strong shock applied to either side of the granular interface, with the elastic solid 

being modelled as a thin plate or beam. The snapshots are taken when the energy density in the 

elastic solid reaches its maximum, that is, at 𝜏 = 0.2𝑚𝑠 for left-side excitation and 𝜏 = 0.05𝑚𝑠 

for right-side excitation. Comparing the results of Figs. 5a,c, we note that the wave patterns for 

excitations applied to the LSGM and the SSGM are different. When the shock is applied to the 

SSGM the energy density in the plate model indicates wave transmission from the three middle 

granules of the SSGM in contact with the elastic solid, to the corresponding three middle 
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contacting granules of LSGM. This reveals the excitation of a travelling wave propagating from 

the right to left and the realization of high frequency/wavenumber acoustics in the thin plate; this 

is more evident in the animations of energy densities provided in the Appendix C. However, 

such a travelling wave pattern is not observed in the case of excitation from LSGM, where the 

response of the thin plate is in the form of lower frequency/wavenumber vibrations, i.e., 

dynamics. 

 

Figure 5. Normalized energy density snapshots of the granular-elastic solid interface for the case 

of strong shock excitation: (a,b) 𝜏 = 0.2𝑚𝑠 with the excitation applied to granule 3 of the LSGM, 

and the elastic solid modeled as thin plate or Euler- Bernoulli beam, respectively; (c,d) 𝜏 =

0.05𝑚𝑠 with the excitation applied to granule C of the SSGM, and the elastic solid modeled as 

thin plate or Euler- Bernoulli beam, respectively; note the much faster acoustics in the latter case. 

This is confirmed when comparing the results of Figs. 5a,b: When the shock is applied to the 

LSGM we note that the energy density distribution in the elastic solid predicted by the beam 

model is similar to that of the plate model, confirming the realization of vibrations. However, 

when the same shock is applied to the SSGM (cf. Figs. 5c,d) the beam model fails to predict the 

distributions of energy densities in the elastic solid. In both cases, in the beam model the strain is 

(a) (b) 

(c) (d) 

Plate 

Plate 

Beam 

Beam 
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linearly distributed along the width and so the energy density distribution is symmetric with 

respect to the neutral axis of the beam (indicating vibrations); however, for the case of the plate 

model the energy density is not symmetric with respect to the neutral axis (indicating acoustics). 

In the latter case, due to the disparity in the time scales of the responses of the contacting 

granules in the LSGM and SSGM, the resulting paths of the travelling waves through the elastic 

solid are not symmetric with respect to its neutral axis. These observations motivate us for a 

closer examination of the response of the elastic solid when modeled either a thin plate or a 

slender beam subject to the two shock scenarios shown in Fig. 5. 

To this end, we hypothesize that when the shock is applied on the left (to the LSGM), the 

duration of the interaction forces at the interface between the LSGM and the left lateral boundary 

of the elastic solid is relatively long, the elastic solid performs relatively low frequency 

vibrations where the leading bending modes with low-frequency (and large wavelengths) are 

excited and standing waves are generated. On the contrary, for the same shock excitation applied 

to the right side (the SSGM), the acoustics is much faster, so a larger number of higher-

frequency modes of the elastic solid are excited (some of which non-bending), which instead of 

vibrations supports elastic wave propagation within it at a much faster time scale (and much 

lower wavelengths). Hence, for shock excitation on the left the elastic solid undergoes mainly 

vibrations (standing waves) while for shock excitation on the right, it supports acoustics 

(travelling waves).  

To verify this hypothesis, we analyze the frequencies, shapes and energies of the modes of 

the elastic solid. We notice that all modes of the beam model are bending ones as it is governed 

by the Euler-Bernoulli partial differential equation. The modal analysis of the plate model shows 

that the first leading (lowest frequency) mode is a bending mode (cf. Fig. 6b), while the 2nd, 3rd, 

5th, and 6th modes (sorted by their natural frequencies in the ascending order) are also bending 

modes and can find their analogs in the beam model of the elastic solid. However, apart from 

these bending modes, the plate model also possesses families of modes that are not captured by 

the simplified beam model; these are axial modes and bulk modes. In Fig. 6c, the 4th axial mode 

of the plate is depicted, where the elastic solid vibrates along the vertical (axial) direction; this is 

the lowest frequency mode of the family of axial modes of the thin plate, which are absent from 

the beam mode. Also, in Fig. 6d, the 7th bulk mode of the plate is shown, where the elastic solid 

is squeezed (or expanded) along the horizontal direction; again, this is the lowest frequency 

mode of the bulk family which is not supported by the beam model. 

At this point we note that since in this work, we only consider a symmetric shock excitation 

scenario, the 4th axial mode of the plate cannot be excited due to its anti-symmetry, and does not 

participate in the nonlinear acoustics. However, the bulk modes have a significant effect on the 

energy transfer. We note that the bending modes and bulk modes exhibit different symmetries. 

The bending modes exhibit anti-symmetric mode shapes with respect to the neutral axis, whereas 

the bulk modes exhibit symmetric mode shapes. Since the energy distribution in the elastic solid 
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at 𝜏 = 0.05𝑚𝑠 for strong excitation from SSGM (CF. Fig. 5c) is asymmetric, both the symmetric 

axial modes and the anti-symmetric bending modes are excited. It follows that if such bulk 

modes are excited in the plate model by the impeding wavefronts, the simplified beam model 

could not accurately predict the dynamics of the elastic solid, nor the nonlinear scattering of the 

impeding wavefronts at the boundaries with the left and right granular media. Therefore, the 

failure of the beam model is related to the generation of travelling waves (acoustics) in the elastic 

solid. 

 

Figure 6. Selected modes of the thin plate model of the elastic solid of the granular interface of 

Fig. 1: (a) Undeformed FE mesh, (b) 1st bending mode with natural period 0.199𝑚𝑠, (c) 4th axial 

mode with natural period 0.0395𝑚𝑠  – due it its anti-symmetry it cannot contribute to the 

acoustics, and (d) 7th bulk mode with natural period 0.0198𝑚𝑠 – due to its symmetry it may 

participate in the acoustics. 

Furthermore, we investigate the family of modes excited in the acoustical response of the 

elastic solid by considering its instantaneous modal energies defined as follows, 

𝐸𝑒𝑠,𝑛 =
1

2
�̇�𝑛

2𝝓𝑛
𝑇𝑲𝝓𝑛 +

1

2
𝑋𝑛

2𝝓𝑛
𝑇𝑲𝝓𝑛 (15) 

where 𝑲 and 𝑴 denote the stiffness and mass matrices, respectively, 𝐸𝑒𝑠,𝑛 the energy of the 𝑛 −

𝑡ℎ mode of the elastic solid, 𝑋𝑛 and �̇�𝑛 the corresponding modal amplitude and its derivative 

with respect to time, respectively, and 𝝓𝑛 the 𝑛 − 𝑡ℎ eigenvector.  

(a) (b) (c) (d) 
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Figure 7. Normalized accumulated modal energy in the elastic solid when modeled as a thin plate 

in plane stress, subject to strong shock applied (a) at granule 3 of the LSGM, and (b) granule C 

of SSGM; in each case the accumulated total energy and modal energies of the leading 6, 100 

and 1000 plate modes are depicted as functions of time. 

In Fig. 7 we depict the normalized accumulated energy captured by the leading modes of the 

plate model and compare it to total instantaneous energy. The individual modal energies are 

computed by (15) and the energy normalization is performed with respect to the total energy that 

is induced to the system by the shock. To this end, an identical strong excitation is applied to 

either side of the granular interface in order to compare the convergence of the modal energy 

accumulation in the two excitation scenarios. In both excitation scenarios a peak of the total plate 

energy is observed corresponding to the arrival of the primary wavefront generated following the 

application of the strong shock to the LSGM or SSGM. In both cases, the amplitude of the peak 

is around 20% of the input energy, however, since the time scale of the acoustics for right-side 

excitation is faster, an earlier arrival of the primary waveform and a shorter duration of the peak 

is observed in that case (cf. Fig.7b). When the strong shock is applied to the left side the duration 

of the peak is longer and the accumulation of modal energy compared to total energy appears to 

be faster. Note that in Fig. 6 we showed that the leading six modes of the thin plate model consist 

of the leading five bending modes and an anti-symmetric axial mode that has no counterpart in 

the thin plate model; however, that low-frequency axial mode seems not to be excited by the 

primary waveform (due to its anti-symmetry) and so most energy is localized in the leading order 

bending modes. Since these modes are also predicted by the beam model, the difference of the 

energy distribution between the plate and the beam model shown in Figs. 5a and b is small. In 

this case, standing waves are realized, and the elastic solid mainly undergoes vibrations. 

The convergence of modal accumulated energy is slower when the strong shock is applied on 

the right-hand side (cf. Fig. 7b), indicating that the nonlinear acoustics of wave scattering at the 

(a) (b) 
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interface of the elastic solid and the granular media is different. Indeed, in this case the plate 

energy reaches its early maximum at 𝜏 ≈ 0.05 𝑚𝑠, and the accumulated modal energy converges 

slowly to the total energy within this primary peak. With more modes being excited by the 

primary wavefront in this case, the convergence of modal energy in the peak is slow, even when 

considering as many as 1000 leading modes (a number of modes which is comparable to the total 

3618 degrees of freedom of the plate model). The slow modal accumulation mainly occurs in the 

primary peak, since following that the convergence is seen to satisfactory. In this case the elastic 

solid does not merely undergo vibrations as numerous modes with large wavenumbers (or short 

wavelengths) are excited. Instead, we observe the occurrence of acoustics, i.e., elastic waves 

propagating along the width of the elastic solid when the excitation is applied to the SSGM (for 

links to animations showing clearly this acoustical response we refer to Appendix C). Therefore, 

we observe strong acoustic non-reciprocity in the granular interface for shock excitations applied 

to both sides: For excitation applied to the left LSGM the elastic solid (when modeled as a thin 

plate in plate stress) undergoes mainly (low frequency/wavenumber) vibrations, whereas for an 

identical excitation applied to the right SSGM it undergoes (high frequency/wavenumber) 

acoustics. To the authors’ best knowledge this is the first report of a non-reciprocal system 

which, depending on the location of the applied shock excitation, undergoes either vibrations 

(standing waves) or acoustics (travelling waves). The source of non-reciprocity is the strong 

nonlinearity of the granular media in synergy to the asymmetry caused by the different scale 

composition of the left and right granular media. 

Considering that the length of the plate model of the elastic solid is 0.1 𝑚 and its width 

0.01𝑚, the resulting slenderness ratio is small so the natural frequencies of the leading axial and 

bulk modes are comparable to the natural frequencies of the lowest bending modes. Specifically, 

the natural period of the 1st (bending) mode of the plate model is 0.199 𝑚𝑠, while that of the 7th 

(bulk) mode is 0.0198 𝑚𝑠 (the anti-symmetric lowest axial mode does not participate in the 

acoustics due to the symmetry of the applied shock excitation). Clearly, the accuracy of the beam 

model is dependent on whether the leading bending modes are dominant in its response, which, 

in turn, is determined by the dominant time scales of the impeding wavefronts, and of the 

granular-elastic solid interaction. As mentioned previously [4, 5], subject to the same shock 

applied to either side of the granular interface, the resulting propagating primary wavefront in the 

SSGM is much faster compared to the one transmitted in the LSGM. This means that that the 

time scales governing the nonlinear scattering of the wavefront at the granular-solid interface are 

much faster when the shock is applied to the right (SSGM is excited). In turn, this results in the 

excitation of a higher range of modes of the elastic solid, over a wider range of frequencies. 

Therefore, the bulk-modes and the travelling waves are excited, and the simplified beam model 

does not agree with the plate model. For the shock applied to the LSGM, the time scales 

governing the nonlinear scattering of the wavefront at the granular-solid interface are relatively 
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slow, and therefore only the leading bending modes of the elastic solid are excited (in the form of 

standing waves), so the simplified model agrees well with the plate model. 

The slenderness ratio of the intermediate elastic solid is also critical factor. For larger 

slenderness ratios, the natural frequencies of the leading bulk modes are much larger than the 

natural frequencies of the leading bending modes. In this case, the elastic solid acts as a beam 

and only standing waves are excited (involving the bending modes) irrespective of the location 

of the applied shock (left or right). However, for smaller slenderness ratios, travelling waves are 

initiated and the beam model fails irrespective of the location of the shock. Therefore, the 

previously discussed time scale disparity of the nonlinear acoustics depends also on the 

slenderness ratio of the intermediate elastic solid. 

Another interesting aspect of the non-reciprocal acoustics is gained by studying the partition 

of the instantaneous total energy of the elastic solid in terms of kinetic and potential energies. In 

Fig. 8 we depict the normalized kinetic, potential, and total energies of the elastic solid when 

modeled as a thin plate in plane stress, with the same strong shock excitations applied on either 

side. With the excitation applied to the LSGM (cf. Fig.8a) the potential energy overweighs the 

kinetic energy throughout the duration of the response of the elastic solid. Given that the natural 

period of the first bending mode of the plate is ~0.2 𝑚𝑠, i.e., comparable with the duration of the 

primary (main) peak, the elastic solid is excited “pseudo-statically” predominantly in its first 

bending mode, and, as mentioned previously undergoes relatively low-frequency vibrations. This 

provides another evidence that the standing waves are generated with the excitation from LSGM. 

However, a different picture is obtained when the excitation is applied to the SSGM (cf. Fig. 8b), 

where the potential energy overweighs the kinetic energy only in the primary peak, which in this 

case is much shorter in duration compared to the previous case; this indicates that more modes 

than the fundamental bending ones are now excited by the impeding primary wavefront; this 

confirms the acoustical (rather than vibrational) response of the elastic solid in this case. 

Moreover, note that after the main peak, the elastic solid continuously exchanges kinetic and 

potential energies resembling a “global oscillator” effect [29]. This behavior opens the way for 

conceiving non-reciprocal systems with response features dominated by either vibrations or 

acoustics, depending on the location of the excitation shock. In turn, this can enhance the 

capacity of such systems to passively confine and locally dissipate a significant portion of input 

shock energy at a given frequency range, examples of which have been demonstrated 

theoretically and experimentally in previous studies [47, 48]. 
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    (a)                (b) 

Figure 8. Instantaneous normalized total, elastic and kinetic energies of the elastic solid when 

modeled as a thin plate in plane stress subject to strong shock excitation applied to (a) granule 3 

of the LSGM, and (b) granule C of the SSGM. 

Lastly, we study the dependence of the acoustic non-reciprocity of the granular interface on 

the level of the shock. To this end, we consider the half-sine pulse excitation depicted in Fig. 3a 

with the aforementioned three levels of forcing amplitude, 𝐹𝑚𝑎𝑥 = 63.67 𝑁, 318.3 𝑁  and 

1591.6 𝑁, corresponding to weak, moderate and strong excitation levels, respectively, and fixed 

shock 𝜏𝑒𝑥𝑐 = 0.01 𝑚𝑠. In Fig. 9 we depict twelve cases of shock excitation applied either from 

the left (at granule 3 of the LSGM) or the right side (granule C of the SSGM) of the granular 

interface, and with the intermediate elastic solid being modeled either as a thin plate or a slender 

beam. In these plots we consider the normalized accumulated energy captured by the leading 1 <

𝑁 < 103 modes of the elastic solid for each excitation scenario, averaged over time as follows: 

∑
∫ 𝐸𝑒𝑠,𝑛𝑑𝜏

𝜏0

0

∫ 𝐸𝑒𝑠𝑑𝜏
𝜏0

0

𝑁

𝑛=1

(16) 

In (16) 𝐸𝑒𝑠,𝑛  denotes the modal energy of the 𝑛 − 𝑡ℎ  mode of the elastic solid, 𝐸𝑒𝑠  the total 

energy of the elastic solid, and 𝜏0  the total simulation time, taken as 𝜏0 = 0.8 𝑚𝑠  in all 

simulations. In each case we plot the proportion of total energy accumulated by 𝑁 modes.  
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Figure 9. Accumulated energy captured by the leading modes, as defined in (16): (a) Weak 

(𝐹𝑚𝑎𝑥 = 63.67 𝑁), (b) moderate (𝐹𝑚𝑎𝑥 = 318.3 𝑁), and (c) strong (𝐹𝑚𝑎𝑥 = 1591.6 𝑁) shocks. 

For weak shock excitation (cf. Fig. 9a) the proportion of energy is close to unity even for as 

low as 𝑁 = 3 modes irrespective of the location of the shock (that is, left or right), and the 

difference in accumulated energy almost vanishes for 𝑁 > 3, regardless of the model that we 

adopt. Hence, we observed quick convergence for the accumulated modal energy in this case, 

with higher order modes in the plate model being nearly unexcited excited, and with the beam 

model agreeing well with the plate model. Given the small number of modes required for weak 

shock excitation we conclude that the elastic solid undergoes low-frequency vibrations in this 

case, irrespective of the location of application of the shock. 

However, a different picture is obtained for moderate and strong shocks (cf. Figs. 9b,c), as 

the responses of the granular interface exhibit strong non-reciprocity. In these cases, the plate 

modal energy accumulates much slower when the excitation is applied on the right side, 

compared to when the same excitation is applied on the left side. For moderate shock applied to 

the left side the energy on the leading modes dominates the total energy in the elastic solid 

irrespective if it is modeled as a plate or beam, indicating that the response of the plate model 

agrees well with that of the beam model; in this case the plate mode undergoes low-frequency 

vibrations with only a limited number of modes being excited. However, for the moderate shock 

applied to the right side the plate modal energy converges much more slowly to the total energy, 

with more energy spread to higher modes, whereas the beam model does not agree well with the 

plate model. In this case the response of the elastic solid is acoustical rather than vibrational, as it 

involves the excitation of a much higher number of modes of the elastic solid. Clearly, in this 

case the beam model fails, as it is incapable of capturing the acoustical response of the elastic 

solid. These conclusions hold even more for the case of strong shock excitation, where the non-

reciprocity of the response subject to left or right shocks is much stronger. Indeed, in Fig. 9c, the 

excitation of the higher order modes of the elastic solid is evident for strong shock applied to the 

right, and the differences between the beam model and the plate model are significant. However, 

(a) (b) (c) 
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the accumulated modal energy converges much faster when the strong excitation is applied to the 

left, compared to when it is applied on the right, a result that highlights even further the non-

reciprocal response of the granular interface. Again, in this case we excite vibrations when 

forcing from the left and acoustics when forcing from the right. These results reveal the strong 

dependence of non-reciprocity on the energy level of the response, which was to be expected 

given the strong nonlinearity of the system, and demonstrates the passive adaptivity of the 

response of the nonlinear granular interface on energy (or shock intensity). Even more interesting, 

the results reported in this work indicate that it is possible to conceive non-reciprocal nonlinear 

and asymmetric systems that undergo either low-frequency vibrations or high-frequency 

acoustics depending on the intensity and location of the applied shock excitations. 

As mentioned previously, the strong dependence of non-reciprocity on energy originates 

from the strong nonlinearity of the granular system. With higher impulsive energy, the wave 

speed in the granular medium is faster both for shock excitations from the left and the right sides, 

and the corresponding time scales of the acoustical interactions at the interfaces between the 

LSGM and SSGM and the elastic solid are faster. Moreover, the time scales of the granular-solid 

interactions are always faster when a shock is applied to the SSGM compared to the LSGM. 

Therefore, for low impulsive energy, the time scales are relatively slow irrespective of the 

location of the shock, and only the leading order modes of the elastic solid are excited. For 

moderate and high impulsive energy, the time scales are much faster and travelling waves are 

excited in the elastic solid for the case of the SSGM excitation. In this case, the beam model fails 

to predict the response of the elastic solid. Given the disparity in the sizes of the granules in the 

SSGM and LSGM, the effects of the higher order modes are different depending on the location 

of the shock excitation from due to the different governing time scales of nonlinear primary 

wavefront scattering (transmission and reflection), and discrete-continuum interfaces, yielding 

non-reciprocity in the response. 

5. Concluding remarks 

We studied the non-reciprocal acoustics of an 2D initially uncompressed, strongly nonlinear 

granular-elastic solid interface with asymmetry and internal hierarchy, subject to a half-sine 

shock excitation applied to either side of the interface. The computational algorithm developed in 

[29] is adopted and extended here to compute the nonlinear acoustical response of this system, 

taking into account rotational and frictional effects in the granule responses, and the highly 

discontinuous nature of the discrete-continuum interactions at the two interfaces of the 

intermediate elastic solid. The elastic solid was modeled either as a thin plate in plane stress, or 

as a much simpler slender beam. The aim of this study was to study the efficacy of the beam 

model which is mainly valid for low frequency/wavenumber vibrations, compared to the thin 

plate model which is valid both for vibrations as well as higher frequency/wavenumber traveling 

waves (acoustics). 
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The break of acoustic reciprocity is studied by examining the responses of the granular media 

and the intermediate elastic continuum, when the location of the excitation is switched. Due to 

the strong nonlinearity of the granular media, there occurs a time scale disparity in the 

propagating wavefronts following the application of the shock when its location is switched. In 

turn, this yields strong non-reciprocity in the response of the elastic solid, which responds either 

in the vibration or the acoustics regime. Specifically, when the excitation is applied to a 

boundary granule of the large scale granular medium (LSGM) the elastic solid undergoes 

vibrations with only a few low frequency/wavenumber modes participating in its response. In 

this case, the response of the beam model agrees well with the plate model, and the energy of the 

elastic solid is mainly confined to a few leading-order modes. Moreover, since the time scale of 

the interaction force between the granules and the solid is relatively slow, the elastic solid is 

nearly quasi-statically excited, and the potential energy overweighs the kinetic energy in this 

case. However, completely different physics occurs when moderate or strong shock excitations 

are applied to a boundary granule of the small scale granular medium (SSGM). In this case, the 

governing time scales of the interaction forces between the granules and the elastic solid are 

much faster, and travelling waves propagate within the elastic solid, with its response being in 

the acoustic regime with many high frequency/wavenumber modes participating. In this case the 

simpler beam model is not capable of accurately modeling the acoustics of the interface.  

Hence, the cause of non-reciprocity in the granular-solid interface can be directly traced to 

the time scale disparity in the transient response of the intermediate elastic solid either in the 

vibration or acoustic regime, depending on the location and intensity of the applied shock. In 

turn, this time scale disparity is due to the strong tunability (with energy) of wave transmission in 

the component granular media of the interface due to the essentially nonlinear (non-linearizable) 

Hertzian contact law governing the granule-to-granule and granule-to-elastic solid interactions. 

The main features of the acoustics of the elastic solid is then determined by the governing time 

scales of the granular-elastic solid interactions which are strongly dependent on the excitation 

levels. In the granular interface considered, traveling waves (acoustics) in the elastic solid occur 

for moderate and strong shocks applied to the SSGM, whereas vibrations in the elastic solid 

occur for weak excitations or when the excitations are applied to the LSGM. 

Hence, the presented granular-solid interface is a new paradigm of a completely passive 

(hybrid) discrete-continuum system, which, depending on the location and intensity of the shock 

excitation exhibits completely different non-reciprocal response regimes: (i) Acoustics in the 

granular media and vibrations in the elastic continuum, or (ii) acoustics in both the granular 

media and the elastic continuum. To our knowledge, such a tunability of the response to either 

vibrations and/or acoustics depending on the type and location of the excitation, is presented for 

the first time for a passive mechanical system. It is clear that what enables the co-existence of 

dynamics and acoustics in the interface is the break of classical reciprocity through the synergy 
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of asymmetry (different-scale granular media on the right and left) and strong nonlinearity (of 

the granular media). 

The reported non-reciprocal acoustics of the considered 2D granular-elastic solid interface 

may guide the designs of new types of efficient granular mitigators or granular-based “acoustic 

diodes” supporting unidirectional (preferred) wave transmission in specific energy and frequency 

ranges. It would be of interest to extend of the interface to narrowband loads (e.g., harmonic 

excitations), in order to study the tunability of the response and the break of acoustic reciprocity 

subject to this type of excitations as well. In addition, it would be of interest to study if the co-

existence of vibrations and waves could be achieved for narrowband loads as well. In a more 

general context, the passive tunability of acoustic non-reciprocity to energy could be exploited 

when designing nonlinear interfaces with performance tailored to the frequency/wavenumber and 

energy contents of the applied broadband or narrowband excitations. This could also find 

applications to new types of vibration energy harvesters whose operation would be based on the 

non-reciprocal features of such interfaces. 
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Appendix A. Brief details of the computational algorithm [27] 

Referring to the governing equations of the granular media (1) and the elastic solid (8), these are 

coupled through the interaction force vector 𝑭. Given the solution of the system at the time 

instant 𝜏 = 𝜏𝑠, the iteration-interpolation algorithm calculating the interaction forces at the next 

time step 𝜏 = 𝜏𝑠+1 can be summarized in the following steps: 

Step 1: We start with an initial guess for the interaction force vector 𝑭𝑠+1
(1)

= 𝑭𝑠
𝐶 , where the sub-

script (𝑠 + 1)  refers to evaluation at time instant 𝜏𝑠+1 , the super-script (1)  denotes the first 

iteration, and 𝑭𝑠
𝐶 denotes the converged force vector at the previous time instant 𝜏𝑠 (for the initial 

time instant 𝜏0 = 0 we consider the trivial initial guess, 𝑭0
𝐶 = 𝟎). 

Step 2: Based on the initial guess of 𝑭𝑠+1
(1)

, we compute the response of the elastic solid at the 

time instant 𝜏𝑠+1  based on the 𝛽 -Newmark method. To this end, the governing equation of 

motion are expressed as, 

�̇�𝑠+1
(1)

= �̇�𝑠
𝐶 + [(1 − 𝛾)�̈�𝑠

𝐶 + 𝛾�̈�𝑠+1
(1)

] ∆𝜏

𝒙𝑠+1
(1)

= 𝒙𝑠
𝐶 + �̇�𝑠

𝐶∆𝜏 + [
1 − 2𝛽

2
 �̈�𝑠

𝐶 + 𝛽 �̈�𝑠+1
(1)

] ∆𝜏2

𝑴�̈�𝑠+1
(1)

+ 𝑲𝒙𝑠+1
(1)

= 𝑭𝑠+1
(1)

(𝐴 − 1) 

where 𝒙𝑠+1
(1)

 denotes the first iteration of the displacement vector 𝒙 at the time instant 𝜏𝑠+1, 𝒙𝑠
𝐶 

denotes the converged value of the displacement vector 𝒙 at the previous time instant 𝜏𝑠, and 

𝛽 = 1/4 and 𝛾 = 1/2 are the two coefficients of the 𝛽-Newmark method, yielding the constant 

averaged acceleration variant. The solutions of the equations (A-1) are given by, 

�̈�𝑠+1
(1)

= (𝑴 +
1

4
𝑲∆𝜏2)

−1

[𝑭𝑠+1
(1)

− 𝑲 (𝒙𝑠
𝐶 + �̇�𝑠

𝐶∆𝜏 +
1

4
�̈�𝑠

𝐶∆𝜏2)]

�̇�𝑠+1
(1)

= �̇�𝑠
𝐶 +

�̈�𝑠
𝐶 + �̈�𝑠+1

(1)

2
∆𝜏

𝒙𝑠+1
(1)

= 𝒙𝑠
𝐶 + �̇�𝑠

𝐶∆𝜏 +
1

2
(

�̈�𝑠
𝐶 + �̈�𝑠+1

(1)

2
) ∆𝜏2

(𝐴 − 2) 

where ∆𝜏 = 𝜏𝑠+1 − 𝜏𝑠 denotes the time step between successive time instants. 

Step 3: Interpolate the response of the elastic solid with constant averaged acceleration (�̈�𝑠
𝐶 +

�̈�𝑠+1
(1)

)/2. The response between time instants 𝜏𝑠 and 𝜏𝑠+1 is given by, 
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�̇�(1)(𝜏) = �̇�𝑠
𝐶 +

�̈�𝑠
𝐶 + �̈�𝑠+1

(1)

2
(𝜏 − 𝜏𝑠)

𝒙(1)(𝜏) = 𝒙𝑠
𝐶 + �̇�𝑠

𝐶(𝜏 − 𝜏𝑠) +
1

2
(

�̈�𝑠
𝐶 + �̈�𝑠+1

(1)

2
) (𝜏 − 𝜏𝑠)2

(𝐴 − 3) 

Step 4: Given the response of the elastic solid, 𝒙𝑠+1
(1) (𝜏), the response of the flexible boundary 

𝒖𝑘𝑖
(1)

 at contact point 𝑘 of the elastic solid is determined. Therefore, the DE equations of the 

granular medium (1) subject to the constitutive relations (5) and (6) and the boundary conditions 

𝒖𝑘𝑖 = 𝒖𝑘𝑖
(1)

 can be solved using the fourth order Runge-Kutta method. This provides the first 

iteration for the responses of the granular media. 

Step 5: Compute the interaction forces through the relations (5) and (6) based on the first 

iteration of the granular responses and the boundary responses 𝒖𝑘𝑖
(1)

 of the elastic solid Assemble 

the external force vector applied to the elastic solid medium with the interaction forces being 

computed based on the second iteration of the force vector, 𝑭𝑠+1
(2)

. 

Step 6: Repeat steps 1~5 until the interaction force vector converges. The convergence condition 

is given by,  

|𝐹(𝑠+1),𝑛
(𝑗+1)

− 𝐹(𝑠+1),𝑛
(𝑗)

| < 𝐴𝑏𝑠𝑡𝑜𝑙,
|𝐹(𝑠+1),𝑛

(𝑗+1)
− 𝐹(𝑠+1),𝑛

(𝑗)
|

|𝐹(𝑠+1),𝑛

(𝑗)
|

< 𝑅𝑒𝑙𝑡𝑜𝑙 (𝐴 − 4) 

where 𝐹(𝑠+1),𝑛
(𝑗)

 denotes the 𝑛𝑡ℎ element of the 𝑗𝑡ℎ iteration of the interaction force vector 𝑭 at the 

time instant 𝜏𝑠+1, and 𝐴𝑏𝑠𝑡𝑜𝑙 and 𝑅𝑒𝑙𝑡𝑜𝑙 pre-set absolute and relative tolerances, respectively. 

The force vector 𝑭𝑠+1 is assumed to be converged as long as (𝐴 − 4) is satisfied for all of its 

non-zero elements. 

Step 7: Once the interaction forces at the time instant 𝜏𝑠+1 has converged, and the force vector 

𝑭𝑠+1 = 𝑭𝑠+1
𝐶  is computed, the converged response of the elastic solid at time instant 𝜏𝑠+1  is 

computed by (A-2) and the converged responses of the granular media at the same time instant 

are computed by the Runge-Kutta method. Then we repeat steps 1~6 in order to get the 

responses at the time next instants 𝜏𝑠+2, 𝜏𝑠+3, … until the simulation time is completed. 

As a result of the steps 1-5 a nonlinear map 𝑭𝑠+1 → 𝑭𝑠+1 is constructed. The stability of this 

map is crucial for the numerical convergence of the computational algorithm and needs to be 

carefully considered, since this ensures that the iteration in step 6 converges to the fixed point of 

the map. To this end, we assume that there are N non-zero elements in 𝑭𝑠+1, then the previous 

vector map yields an N-dimensional nonlinear map. The stability condition for the iteration is all 

moduli of the N eigenvalues are smaller than unity. A special consideration is given to the plate 

model for large 𝑘𝑠 values – which is a parameter in the Coulomb-tanh friction force (5), i.e., 
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when the friction forces at the boundaries are sensitive to the relative tangential velocity. At this 

point we note that the Jacobian matrix of the N-dimensional nonlinear map is given by: 

𝜕𝑭𝑠+1
(𝑗+1)

𝜕𝑭𝑠+1
(𝑗)

=
𝜕𝑭𝑠+1

(𝑗+1)

𝜕 (𝒙𝑠+1
(𝑗)

, �̇�𝑠+1
(𝑗)

)

𝜕 (𝒙𝑠+1
(𝑗)

, �̇�𝑠+1
(𝑗)

)

𝜕𝑭𝑠+1
(𝑗)

(𝐴 − 5) 

Notice that the term 
𝜕(𝒙𝑠+1

(𝑗)
,�̇�𝑠+1

(𝑗)
)

𝜕𝑭𝑠+1
(𝑗)  is solely determined by the FE equations of the elastic solid, and 

the term 
𝜕𝑭𝑠+1

(𝑗+1)

𝜕(𝒙𝑠+1
(𝑗)

,�̇�𝑠+1
(𝑗)

)
 by the DE granular equations. Hence, for large values of 𝑘𝑠 , a small 

variation in the boundary condition 𝒖𝑘𝑖
(𝑗)

 yields a large variation in the corresponding interaction 

forces. In the limit of the Coulomb frictional model when 𝑘𝑠 → +∞ , the term 
𝜕𝑭𝑠+1

(𝑗+1)

𝜕(𝒙𝑠+1
(𝑗)

,�̇�𝑠+1
(𝑗)

)
 

becomes unbounded and the computational algorithm cannot converge and becomes numerically 

unstable. 

In the following analysis we provide a brief discussion of the numerical stability of the 

computational response of the thin plate model which involves friction forces (no such forces are 

involved in the slender beam model), and for a more detailed analysis we refer to [29]. To start 

with, we introduce several assumptions to simplify the previous expressions. 

Assumption 1: Since the time step ∆𝜏 is small, we assume that the variation of the interaction 

forces at time instant 𝜏𝑠+1 has only a local effects on the response of the plate. That is, the 

variations of the interaction forces at a contact point between the plate and the granular medium 

at 𝜏𝑠+1 has negligible effects on the responses of the plate at the other contact points at the same 

time step 𝜏𝑠+1. 

Assumption 2: Since the effects of the interaction forces are assumed to be local and the 

interaction forces are applied at the middle points of the small rigid layers (cf. Figs. 2c,d), the 

normal and tangential responses of the rigid layers are decoupled due to symmetry. That is, 

normal interaction forces do not yield tangential responses of the rigid layers, and tangential 

interaction forces do not generate normal responses. 

Assumption 3: Given the great disparity in mass between a single contacting granule and the 

finite elements of the plate attached to the contacting rigid layer, the response of the rigid layer is 

much more sensitive to changes in the interaction forces compared to the response of the 

contacting granule. Therefore, we neglect the sensitivities related to the granule responses.  

Based on these three assumptions, the nonlinear N-D global map 𝑭𝑠+1 → 𝑭𝑠+1 is simplified 

as N decoupled nonlinear 1-D local maps since the variation of each element of 𝑭𝑠+1 does not 

affect the other elements. We pay special attention to the local maps related to friction forces. 
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The linearized eigenvalue 𝜆𝑘𝑖,𝑡,(𝑠+1) of the local map of the friction interaction force between the 

𝑘 − 𝑡ℎ contact point of the plate and the 𝑖 − 𝑡ℎ granule can be evaluated as, 

𝜆𝑘𝑖,𝑡,(𝑠+1) =
𝜕𝑓𝑘𝑖,(𝑠+1)

(𝑗+1)

𝜕𝑓
𝑘𝑖,(𝑠+1)
(𝑗)

=
𝜕𝑓𝑘𝑖,(𝑠+1)

(𝑗+1)

𝜕�̇�
𝑘𝑖,(𝑠+1)
(𝑗)

𝜕�̇�𝑘𝑖,(𝑠+1)
(𝑗)

𝜕𝑓
𝑘𝑖,(𝑠+1)
(𝑗)

(𝐴 − 6) 

where 𝑓𝑘𝑖,(𝑠+1)
(𝑗+1)

 denotes the (𝑗 + 1) − 𝑡ℎ iteration of the tangential interaction force applied from 

the 𝑖 − 𝑡ℎ  granule to the 𝑘 − 𝑡ℎ  contact point of the plate at time instant 𝜏𝑠+1 , and �̇�𝑘𝑖,(𝑠+1)
(𝑗)

 

denotes the relative tangential velocity between the 𝑘 − 𝑡ℎ contact point of the plate and the 𝑖 −

𝑡ℎ granule at time instant 𝜏𝑠+1. The positive direction of 𝑓𝑘𝑖,(𝑠+1)
(𝑗+1)

 and �̇�𝑘𝑖,(𝑠+1)
(𝑗)

 agrees with the 

positive direction of the tangential degree of freedom of the rigid layer at the contact point. 

Based on the constitutive relation (5) of the DE granular equations and with the sensitivity of 

granule response neglected, the first term 
𝜕𝑓𝑘𝑖,(𝑠+1)

(𝑗+1)

𝜕�̇�
𝑘𝑖,(𝑠+1)
(𝑗)  is approximated by, 

|
𝜕𝑓𝑘𝑖,(𝑠+1)

(𝑗+1)

𝜕�̇�
𝑘𝑖,(𝑠+1)
(𝑗)

| = 𝜇𝑘𝑠 |𝑵𝑖𝑘,(𝑠+1)
(𝑗+1)

| cosh−2 (𝑘𝑠�̇�𝑡,𝑖𝑘,(𝑠+1)
(𝑗+1)

) (𝐴 − 7) 

where the sign is dependent on whether the unit vector 𝒕𝑖𝑘 defined in the DE equations agrees 

with the direction of the tangential driving DOF of the rigid layer in the FE model. The second 

term 
𝜕�̇�𝑘𝑖,(𝑠+1)

(𝑗)

𝜕𝑓
𝑘𝑖,(𝑠+1)
(𝑗)  is determined by the FE equations, which can be explicitly expressed from (A-2) 

after some algebraic manipulations as, 

𝜕�̇�𝑘𝑖,(𝑠+1)
(𝑗)

𝜕𝑓
𝑘𝑖,(𝑠+1)
(𝑗)

=
1

2
∆𝜏𝑻𝑖,𝑡 (𝑴 +

1

4
𝑲∆𝜏2)

−1

𝑻𝑖,𝑡
𝑇 (𝐴 − 8) 

where 𝑻𝑖,𝑡 is a sparse vector such that �̇�𝑘𝑖,(𝑠+1)
(𝑗)

= 𝑻𝑖,𝑡�̇�𝑠+1
(𝑗)

. The only non-zero element of 𝑻𝑖,𝑡 

with value equal to unity is located on the tangential driving DOF of the rigid layer at the 𝑘 − 𝑡ℎ 

contact point between the 𝑖 − 𝑡ℎ granule and the boundary of the plate. The modulus of the 

eigenvalue associated with the frictional interaction force is computed based on (A-7) and (A-8). 

For convenience we replace the variables at the time instant 𝜏𝑠+1 with the variables at the time 

instant 𝜏𝑠, so that the modulus of the eigenvalue is approximated as, 

|𝜆𝑘𝑖,𝑡,(𝑠+1)| =
1

2
𝜇𝑘𝑠|𝑵𝑖𝑘,𝑠

𝐶 |∆𝜏𝑻𝑖,𝑡 (𝑴 +
1

4
𝑲∆𝜏2)

−1

𝑻𝑖,𝑡
𝑇 cosh−2(𝑘𝑠�̇�𝑡,𝑖𝑘,𝑠

𝐶 ) (𝐴 − 9) 

It can be shown that all eigenvalues of the local nonlinear maps associated with the normal 

interaction forces are unconditionally stable, so they do not need to be considered in the stability 

analysis [27]. The eigenvalues corresponding to all 𝑘 contact points between the plate and the 
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LSGM and SSGM can be evaluated by (𝐴 − 9) and need to be evaluated at each time instant and 

for every contact point; otherwise the simplified local map diverges and the interaction force at 

the current time instant diverges leading to numerical instability 

Appendix B. Details of the self-adaptive process and a numerical example 

In Fig. 10 we depict the tanh-Coulomb friction model used in this study and compare it to the 

discontinuous Coulomb dry friction model. As discussed in the paper, the latter one is 

unconditionally unstable, i.e., it yields linearized eigenvalues (A-9) that exceed unity in certain 

time steps, which prevents numerical convergence of the computational algorithm. On the 

contrary, the smooth tanh-Coulomb model enables adaptive selection of the time step of the 

numerical simulation that ensures numerical stability of the algorithm. This is described below 

by means of a numerical example to show the details of the numerical simulation as well as the 

way that we check of moduli of the eigenvalues (A-9). In all simulations the initial time step is 

selected as Δ𝜏0 = 4 × 10−8𝑠, and set as constant when using the beam model for the elastic solid. 

When the plate model is adopted, the eigenvalue moduli (A-9) are checked at each time instant. 

Due to the symmetry of the acoustics, only the eigenvalues corresponding to frictional 

interactions between granules 10, 11 and 12 of the LSGM (cf. Fig. 10b) and the left edge of the 

plate are labelled as 𝜆10 , 𝜆11  and 𝜆12 , respectively, and are checked to satisfy the stability 

condition (10). Similarly, the eigenvalues corresponding to the frictional interactions between the 

granules J, K and L of the SSGM and right edge of the plate are checked and named labelled as 

𝜆𝐽, 𝜆𝐾 and 𝜆𝐿 respectively. 

 

Figure 10. Force-velocity constitutive relation of (a) the smooth Coulomb-tanh friction model, 

and (b) the discontinuous Coulomb dry friction model. 

The eigenvalues at these six contact points are available by plugging the initial time step 

increment Δ𝜏 = Δ𝜏0 = 4 × 10−8𝑠 into (10). As one of the six eigenvalues is greater than 0.5, a 
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smaller time step Δ𝜏 = Δ𝜏1 =
1

2
Δ𝜏0 is adopted. Note that the eigenvalues being proportional to 

the increment in the time steps, become smaller as the time step is decreased. The general rule 

for adaptively selecting the time step increment Δ𝜏𝑛 is by satisfying the following two criteria: 

Δ𝜏 = Δ𝜏0, max(𝜆(Δ𝜏0)) ≤
1

2

Δ𝜏 = Δ𝜏𝑛 =
Δ𝜏0

2𝑛
,

1

4
< max(𝜆(Δ𝜏𝑛)) =

max(𝜆(Δ𝜏0))

2𝑛
≤

1

2

(𝐵 − 1) 

That is, the initial time step Δ𝜏0 is divided by a sufficiently large integer power of 2 so that the 

corresponding moduli of all eigenvalues are smaller or equal than ½; this ensures that the 

iteration converges fast to the fixed point of the nonlinear map and the algorithm converges 

quickly to the solution of the given time step.  

To check the validity of our algorithm, we pick the case for strong shock applied to granule C 

of the SSGM, cf. Figs. 4f, 6c, 7b and 8b. This corresponds to the most critical case since the 

corresponding iteration is the more challenging from a convergence point of view. From Figs 7b 

and 8b. we note that the primary wavefront reaches the intermediate plate and starts getting 

scattered at around ~0.02𝑚𝑠. The corresponding moduli of the six eigenvalues are plotted in Fig. 

11 for 𝜏 = 0~0.2𝑚𝑠 , and are all smaller than unity, which ensures the convergence of the 

simulation. Note that the eigenvalues are not smooth due to the necessary (adaptive) change in 

the time step increment Δ𝜏 during successive time steps to ensure convergence as discussed 

previously. 

 

Figure 11. Moduli of the six eigenvalues for strong shock applied to the granule C of the SSGM, 

at the three contact points (a) on the left boundary of the plate, and (b) on the right boundary of 

the plate; note the discontinuous nature of the eigenvalues due to the adaptive change of the time 

step. 

Instability Region Instability Region 

(b) (a) 
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Appendix C. Animations of the energy distributions 

Here we provide the animations that better visualize the nonlinear acoustics of the granular-elastic solid 

interface for weak, moderate and strong shock excitations (these correspond to the results presented in the 

main text) in the supplementary material. The animations are grouped into two main categories, namely (i) 

videos of deformations, and (ii) animations of instantaneous normalized energy densities. For better 

visualization, the magnification factor for the animations of the deformations are, ×5000 for weak, ×1000 

for moderate and ×200 for strong shock excitation. At each shock level we consider the excitation of 

either granule 3 of the LSGM of granule C of the SSGM. 

The animations are also available through the following links, 

Links for animations of the deformations: 

https://uofi.box.com/s/qpgt6mz691c7k35mz0ej297e90qrjtrd  

Links for animations of the normalized energy densities: 

https://uofi.box.com/s/zx3mmmsnnitfjfzxqsjrufgaemc0o9zx   

https://uofi.box.com/s/qpgt6mz691c7k35mz0ej297e90qrjtrd
https://uofi.box.com/s/zx3mmmsnnitfjfzxqsjrufgaemc0o9zx
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